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Modelling the impact of mass administration of 
ivermectin in the treatment of onchocerciasis (river 
blindness)
E.O. Omondi1,2,3*, F. Nyabadza3 and R.J. Smith?4

Abstract: Onchocerciasis (river blindness) is a disease spread from black flies to 
humans. This disease is responsible for chronic morbidity in sub-Saharan Africa. The 
principal strategy to achieve onchocerciasis elimination is through mass drug 
administration with ivermectin, a drug that is effective in the short term but wanes 
quickly. Ivermectin kills the skin-dwelling microfilariae. It may also kill and/or 
sterilize adult worms. This treatment protocol occurs bi-annually. Consequently, a 
system of impulsive differential equations is introduced to model both fixed and 
non-fixed mass drug administration with ivermectin. We determine the threshold 
for the proportion of treated individuals that reduces the infection in the human 
population. In the absence of impulsive mass drug administration with ivermectin, 
we determine the threshold for eradication R

0
 and carry out stability analysis. The 

sensitivity analysis results reveal that the disease is unlikely to be eradicated 
without extremely low transmission levels or strong vector control. If treatment is 
included, then treatment at fixed intervals can control but not eradicate the disease. 
Treatment at non-fixed intervals may produce bursts of infection. Thus, bi-annual 
mass drug administration with ivermectin that is tailored to eradicate 
onchocerciasis, can only lead to significant reduction of onchocerciasis. However, to 
achieve 2020/2025 onchocerciasis elimination goals set by World Health 
Organization, the human-vector contact should be sufficiently reduced and vector 
control programmes implemented to supplement an intensive and effective mass 
drug administration with ivermectin.
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1. Introduction
Onchocerciasis (also known as river blindness) is a neglected tropical disease caused by the filarial 
nematode Onchocerca volvulus in human hosts (Feasey, Wansbrough-Jones, Mabey, & Solomon, 
2009). The disease is transmitted by the black fly (Simulium damnosum) (Turner, Basáñez, Walker, & 
Churcher, 2014). Simulium breeds close to oxygen-rich flowing streams and rivers in inter-tropical 
zones (Crosskey, 1990; Kealey, 2010). Onchocerciasis endemic areas thus tend to include the most 
agriculturally fertile land available. The infection of onchocerciasis begins at the third larvae stage in 
the human host after the vector’s blood meal. The larvae develop into adult filariae in the subcuta-
neous tissues from which microfilariae migrate throughout the body, predominantly within the skin 
(Lustigman, MacDonald, & Abraham, 2003). This produces an intense itching of the skin and a chron-
ic dermatitis that leads to skin atrophy and depigmentation (Cox, 2002). The migration of micro-
filariae through the anterior and posterior segments of the eye precipitates inflammatory reactions 
that lead to loss of vision and sometimes blindness (Kealey, 2010; Mopecha & Thieme, 2003).

Various onchocerciasis control strategies have achieved dramatic success in reducing onchocer-
ciasis transmission (Traoré et al., 2009; Winnen et al., 2002). The strategies have employed both the 
use of larvicide spraying at black fly breeding sites and the periodic mass drug administration with 
ivermectin to the affected human populations. The control programmes have been spearheaded by 
three international programmes: the Onchocerciasis Control Program, the Onchocerciasis Elimination 
Programme in the Americas and the African Program for Onchocerciasis Control (APOC). Transmission 
of onchocerciasis was interrupted in Guatemala and in several hyper-endemic foci of Mali and 
Senegal following six-monthly mass drug administration with ivermectin (Gonzalez et al., 2009). In 
2014, Columbia and Ecuador were declared free of onchocerciasis following the implementation of 
the control strategies for decades by the WHO (Global Health Observatory, 2016).

Mass drug administration with ivermectin is the main strategy used to achieve elimination of on-
chocerciasis in sub-Saharan Africa by 2020/2025 as articulated by the 2012 Roadmap of World 
Health Organization (WHO) (Hopkins & Boatin, 2011; Winnen et al., 2002; World Health Organization, 
2012). Ivermectin kills the skin dwelling microfilariae that are the progeny of adult Onchocerca vol-
vulus and are infectious to biting black fly species vectors. Ivermectin may also kill and/or sterilize 
adult worms (Gardon, Boussinesq, Kamgno, Gardon-Wendel, & Duke, 2002). Multiple rounds of mass 
treatment are effective in lowering the prevalence and intensity of onchocerciasis. Furthermore, if 
given for long enough at high enough coverage, it can lead to the interruption of transmission and 
elimination of the infection (Lovato et al., 2014). Mass treatment with ivermectin was initially carried 
out annually. However, a change in strategy to six monthly mass treatments was adopted to in-
crease the probability of disease eradication (Barrett & Stanberry, 2009; Winnen et al., 2002).

Although substantial epidemiological work has been done on the study of onchocerciasis trans-
mission dynamics, little has been done to model the disease using impulsive differential equations. 
Our aim is to examine the effects of mass drug administration with ivermectin using a mathematical 
model of impulsive differential equations. The model focuses on the effect of fixed and non-fixed 
mass drug administration with ivermectin in the treatment of onchocerciasis to account for the re-
duction of infection of onchocerciasis in the human population. Thus, we endeavour to address the 
following research questions: (1) Can we determine the critical threshold for the proportion of indi-
viduals with ochocerciasis that will reduce the infection of the onchocerciasis in the population? (2) 
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Can mass drug administration with ivermectin eradicate onchocerciasis? (3) Does control of oncho-
cerciasis depend on mass drug administration with ivermectin occurring at fixed times? Thus, the 
potential effect of mass treatment on onchocerciasis transmission dynamics is of great interest.

In this manuscript, our work is organized as follows: related literature is provided in Section 2. In 
Section 3, we formulate the mathematical model. In Section 4, we analyse the non-impulsive ver-
sion of the model by calculating the basic reproduction number and carrying out stability analysis. 
In Section 5, we analyse the model with impulses and determine the effectiveness of mass drug 
administration with ivermectin for the regular mass treatment. Numerical simulation results are 
then presented in Section 6. In Section 7, we conclude our project and give relevant 
recommendation.

2. Related literature
A number of epidemiological models have been formulated and mathematically analysed to de-
scribe the behaviour of onchocerciasis in the population. Walker et al. (2017) tested the EPIONCHO 
and ONCHOSIM models against epidemiological data. The data were collected over two decades 
from 27 sentinel communities in two onchocerciasis foci in Mali and Senegal where the observed 
prevalence of infection was brought to zero circa 2007–2009 after 15–17 years of mass treatment 
with ivermectin. They simulated the models using programmatic information on the frequency and 
coverage of mass treatments and trained the model projections using longitudinal parasitological 
data, evaluating the projected outcome of elimination (local parasite extinction) or resurgence. Their 
findings suggested that meeeting onchocerciasis elimination goals of 2020/2025 depends on when 
an intervention began; how intensively and effectively it was implemented and on the local trans-
mission conditions. Furthermore, in areas where the prevailing ecological conditions are highly pro-
pitious to transmission, elimination by 2020 or 2025 may be unfeasible with ivermectin alone. Thus, 
they suggested that localized low-cost vector control should be considered as a complement to 
mass treatment with ivermectin alongside other alternative treatment strategies that include anti-
wolbachial therapies to accelerate progress towards the 2020/2025 goals.

Authors in Lont et al. (2017), Golden et al. (2016) extended ONCHOSIM model with new output on 
the Ov16 antibody serostatus of individuals based on their history of infection. They then used 
ONCHOSIM simulation model to explore for different transmission settings how the Ov16 antibody 
prevalence in children 1 year after the last mass drug administration with ivermectin round is re-
lated to the duration and coverage of mass drug administration with ivermectin, the microfilariae 
prevalence in the population and the probability that onchocerciasis is eventually eliminated. The 
results suggested that the post mass administration of ivermectin microfilariae prevalence in the 
population aged 5 years and above and the Ov16 antibody prevalence in children aged 0-9 years 
decline with increasing duration and treatment coverage.

Mopecha and Thieme (2003) developed a model to account for both human and bovine onchocer-
ciasis. They considered cross-reactive immunity in response to inocculation of cattle by larvae. They 
showed that if parasites are wasted on the “wrong" hosts, then the reproduction number is lowered, 
while cross-reactive immunity can lead to classical competition phenomena. Basáñez and Boussinesq 
(1999), Basáñez and Ricárdez-Esquinca (2001) developed a model to describe the population biology 
and control of human onchocerciasis. Their aim was to evaluate various interventions combining the 
removal of adult worms (nodulectomy) and the microfilaricidal and sterilizing effects of ivermectin. 
They derived a threshold condition for disease control involving the vector biting rate and the basic 
reproduction number. They estimated that the annual biting rate for the Simulium onchraceum s.l is 
7665 bites per person per year. This is the minimum below which human onchocerciasis would be 
unable to become endemic in Central America since the basic reproduction number, R

0
, would be 
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less than unity. They recommended that if the worm is sterilised and the vector population is con-
densed, then the epidemic could be restricted. In Africa, several field studies have achieved signifi-
cant reduction in the transmission of infection by repeated annual mass treatment with ivermectin 
(Guillet et al., 1995; Plaisier, Alley, Van Oortmarssen, Boatin, & Habbema, 1997; Remme, De Sole, & 
Van Oortmarssen, 1990).

Alley et al. (2001) used a microsimulation model to examine the possibility of switching treatment 
from the microfilaricide ivermectin to a hypothetical macrofilaricide. They showed that elimination 
was possible using a macrofilaricide, but that high coverage levels were critical. Filipe et al. (2005) 
developed an age and sex structured model for intensity of infection with parasite regulation within 
humans and vectors. They showed that heterogeneous age and sex exposure could explain location 
specific infection patterns of onchocerciasis. Poolman and Galvani (2006) incorporated host hetero-
geneity into a model in order to evaluate intervention strategies targeting specific populations for 
treatment with ivermectin. They found that targeted allocation of ivermectin in a highly heterogene-
ous population could reduce the public health burden of onchocerciasis using 20–25% of the doses 
of untargeted allocation. Over the years, a very large literature on mathematical modelling of on-
chocerciasis has been produced and other several reviews pertinent to this study are available 
(Basáñez, Walker, Turner, Coffeng, de Vlas, & Stolk, 2016; Coffeng et al., 2017; Lovato et al., 2014; 
Oguoma & Acho, 2014; OHanlon et al., 2016; Omondi, Orwa, & Nyabadza, 2017; Omondi, Nyabadza, 
Bonyah, & Badu, 2017).

This paper is motivated by the work in Omondi (2016) and was done as an Msc. research project 
by the first author. Stopping the transmission chain of onchocerciasis remains the only viable form 
of control against the spread of infection. The potential effect of mass administration of ivermectin 
is thus of great interest. We focus on the application of impulsive differential equations to model the 
periodic mass administration of ivermectin tailored towards eradicating onchocerciasis. To the 
author?s best knowledge, impulsive differential equation has not been applied to onchocerciasis 
disease transmission.

3. The mathematical model

3.1. Model formulation
We develop a model to better understand the transmission dynamics of onchocerciasis and its 
treatment. We consider a habitat with two interacting populations. The two populations are humans 
(hosts) and black flies (vectors). The total human population is partitioned into six compartments: 
the susceptible human compartment, SH, referring to individuals not infected with onchocerciasis 
but who are at risk of infection; the exposed compartment, EH, referring to the individuals that have 
been exposed to onchocerciaisis through bites; the infectious compartment, IH, referring to individu-
als with onchocerciaisis infection; susceptible humans undergoing ivermectin treatment, ST; ex-
posed humans undergoing ivermectin treatment, ET; and the infectious humans undergoing 
ivermectin treatment, IT. The black fly population is partitioned into three compartments: suscepti-
ble vectors, SV, referring to black flies that have not picked up microfilariae but are at risk of picking 
up microfilariae during a blood meal; the exposed vector compartment, EV, referring to black flies 
that have picked up microfilariae from an infected human during blood meal; and the infected vec-
tor compartment, IV.

The total human and vector populations at any given time, t, are respectively given by;

(1)
N(t) = SH(t) + EH(t) + IH(t) + ST(t) + ET(t) + IT(t),

V(t) = SV(t) + EV(t) + IV(t).

}
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We assume that the transmission of onchocerciaisis in susceptible hosts is only through contact 
with an infectious vector. We also assume that susceptible vectors become infectious as a result of 
contact with infectious hosts during a blood meal. The population under study is assumed to be 
large enough to be modelled deterministically. The recruitment of new susceptible individuals and 
susceptible vectors is given by b

1
 and b

2
, respectively. Assuming � is the blackfly biting rate, that is, 

the average number of bites per black fly per unit, the rate of infection per susceptible black fly can 
be represented by

where q is the transmission probability from infectious human to black flies and � is the modification 
parameter which measures the relative ability of individuals in class IT to cause new infections rela-
tive to those in class IH. We assume here that the individuals under treatment have a slightly lower 
probability to initiate new infections, thus, 0 ≤ � ≤ 1. Assuming that the total number of bites made 
by black flies equals the number of bites received by humans, then the average number of bites per 
human receives per unit time is �V

N
. Assuming that the transmission probability per bite from infec-

tious black flies to human is p, the rate of infection per susceptible human is given by

We then introduce �h = p� and �v = q� parameters to simplify the infection rates per susceptible 
human and vector respectively. Individuals in class EH progress to class IH at rate �. Individuals un-
dergoing ivermectin treatment in class ST acquire infection at the rate ��h, where � defines the re-
duced effect of infection of the susceptible individuals as a result of treatment. Individuals in class 
ET progress to class IT at the rate ��, where � is the reduced effect of progression to class IT as a re-
sult of treatment. Immediately following treatment, infection in the human population is assumed 
to be reduced by some proportion �. This therefore results in a system of impulsive differential equa-
tions (Bainov & Simeonov, 1993; Lakshmikantham, Bainov, & Simeonov, 1989). It is assumed that 
individuals undergoing treatment relapse due to waning of the drug at the rate �. We include natu-
ral mortality rates given by �h and �v for the human and vector populations respectively.

(2)�v(t) =
q�(IH + �IT)

N
,

(3)�h(t) =
p�V

N

IV
V

=
p�IV
N

.

Figure 1. A compartmental 
representation of the 
epidemics and treatment of 
onchocerciasis. It is important 
to note that the model 
proposed here is an extension 
of the previous model studied 
in Omondi et al. (2017).
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We further assume that individuals under treatment have no immunity to the disease upon treat-
ment. In addition, we assume that infected vectors and human do not recover from the infection 
during the modelling time. The dynamics in the host and vector populations are represented in the 
schematic diagram in Figure 1.

3.2. Model equations
The following system of non-linear ordinary differential equations, with non-negative initial condi-
tions, describes the dynamics of onchocerciasis epidemics:

subject to the following initial conditions:

The impulsive conditions are

Treatment may occur at either fixed or non-fixed intervals.

4. System without impulses

4.1. Well-posedness
System (4) describes a human-vector population, so it is therefore necessary to prove that the solu-
tions of system (4) with non-negative initial conditions remain non-negative for all time t ≥ 0 and 
are bounded in the region

Theorem 4.1  Let SH ≥ 0, EH ≥ 0, IH ≥ 0, ST ≥ 0, ET ≥ 0, IT ≥ 0, SV ≥ 0, EV ≥ 0, IV ≥ 0. Then the solutions 
SH(t), EH(t), IH(t), ST(t), ET(t), IT(t), SV (t), EV (t), IV (t) of the system (4) are positive for all t ≥ 0. In addition, 
the region Ω is positively invariant and all solutions starting in Ω approach, enter or stay in Ω.

Proof  Let t∗ = sup{t > 0:SH(t) > 0, EH(t) > 0, IH(t) > 0, ST(t) > 0, ET(t) > 0, IT(t) > 0, SV (t) > 0, EV (t) > 0, IV (t) > 0}. 
Thus t∗ ≥ 0. Then, from the first equation of our system (4), we obtain

(4)

̇SH = b
1
+ 𝜑ST −

𝛽hIVSH

N
− 𝜇hSH,

̇EH =
𝛽hIVSH

N
+ 𝜑ET − (𝛾 + 𝜇h)EH,

̇IH = 𝛾EH + 𝜑IT − 𝜇hIH,

ṠT = −
𝛿𝛽hIVST

N
− (𝜑 + 𝜇h)ST ,

ĖT =
𝛿𝛽hIVST

N
− (𝜌𝛾 + 𝜑 + 𝜇h)ET ,

̇IT = 𝜌𝛾ET − (𝜑 + 𝜇h)IT ,
̇SV = b

2
−

𝛽v IHSV

N
−

𝜅𝛽v ITSV

N
− 𝜇vSV ,

̇EV =
𝛽v IHSV

N
+

𝜅𝛽v ITSV

N
− (𝜂 + 𝜇v)EV ,

̇IV = 𝜂EV − 𝜇vIV .

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, t ≠ tk,

(5)
SH(0) > 0, EH(0) > 0, IH(0) > 0, ST(0) > 0, ET(0) > 0, IT(0) > 0,

SV(0) > 0, EV(0) > 0, IV(0) > 0.

}

(6)
△SH = −�SH, △EH = −�EH, △IH = −�IH,

△ST = +�SH, △ET = +�EH, △IT = +�IH,

}
, t = tk.

(7)Ω =

{
(SH, EH, IH, ST , ET , IT) ∈ ℝ

6

+
:N ≤

b
1

�h
, (SV , EV , IV) ∈ ℝ

3

+
:V ≤

b
2

�v

}
.

̇SH = b1 + 𝜑ST −
𝛽hIVSH
N

− 𝜇hSH ≥ −
(
𝜆h + 𝜇h

)
SH,

SH(t
∗) ≥ SH(0) exp

{
−

(
�

t∗

0

𝜆h(m)dm + 𝜇ht
∗

)}
.
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Similarly, one can show that EH ≥ 0, IH ≥ 0, ST ≥ 0, ET ≥ 0, IT ≥ 0, SV ≥ 0, EV ≥ 0, IV ≥ 0. This completes 
the proof for positivity.

The total population of the humans N and that of the vector population V is governed by

Hence

Therefore, N(t) and V(t) are bounded and the domain of biological significance is positively invariant 
and attracting. Thus, all solutions starting in Ω remain in Ω.

4.2. Maximal solution
Next, we overestimate the number of infectious individuals in the population. From the system (4), 
we have established that the total human (host) population is bounded above by b1

�h
. Thus, from the 

fifth equation of the system (4) we have

If we bound ST by the total human population and IV by the total vector population, we have

Solving the inequality in (10), we obtain

As t approaches infinity, then the solution in (11) is bounded by

Substituting the expression in (12) into the sixth equation of the system (4), we have

whose solution can be expressed as

Using the solutions obtained in (12) and (13) in the second and third equations in the system (4) 
respectively, we have

(8)Ṅ = b1 − 𝜇hN, V̇ = b2 − 𝜇vV.

(9)lim
t→∞

supN ≤
b1
�h

and lim
t→∞

supV ≤
b2
�v
.

dET
dt

=
��hIVST
N

− (�� + � + �h)ET .

(10)
dET
dt

≤
��hb2
�v

− (�� + � + �h)ET .

(11)ET ≤
��hb2

�v(�� + � + �h)
+

[
ET(0) −

��hb2
�v(�� + � + �h)

]
e−(��+�+�h)t.

(12)ET ≤
��hb2

�v(�� + � + �h)
.

dIT
dt

≤
��h��b2

�v(�� + � + �h)
− (� + �h)IT ,

(13)IT ≤
��h��b2

�v(� + �h)(�� + � + �h)
.

(14)EH ≤

[
�hb2
�v

+
���hb2

�v(�� + � + �h)

]
,

IH ≤�

[
�hb2
�v

+
���hb2

�v(�� + � + �h)

]
+ �

[
��h��b2

�v(� + �h)(�� + � + �h)

]
. (15)
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The significance of these inequalities is that they overestimate the number of people with oncho-
cerciasis in the population without necessarily solving the original systems of the differential equa-
tions. We will make use of these overestimates shortly.

4.3. Stability of the model equilibria

4.3.1. Disease-free equilibrium
The disease-free equilibrium for the system without impulses is given by

4.3.2. The basic reproduction number
The basic reproduction number for the system (4) is obtained using the next-generation method 
described in Van den Driessche and Watmough (2002). It is given by

Note that this expression is a threshold, not necessarily the average number of secondary infections 
(Li, Blakeley, & Smith?, 2011).

Theorem 4.2  The disease-free equilibrium, E0, given in (16) of the system (4) is globally stable if 0 < 1 
otherwise unstable.

Proof  Let V = �1EH + �2IH + �3ET + �4IT + �5EV + �6IV be a candidate Lyapunov function. The con-
stants �1 for i = 1, 2, 3, 4, 5, 6 are non-negative. We can find the constants �i such that the Lyapunov 
candidate is positive definite. The derivative of the Lyapunov function is given by

where

Setting the coefficients to IH, ET , IT , EV andIV to zero, we obtain

We then use the coefficients obtained in (17) into the candidate Lyapunov function. The derivative of 
the resulting Lyapunov function becomes

(16)E
0
= (ŜH, ÊH, ÎH, ŜT , ÊT , ÎT , ŜV , ÊV , ÎV) =

(
b
1

𝜇h
, 0, 0, 0, 0, 0,

b
2

𝜇v
, 0, 0

)
.

R
0
=

√

0
=

√
b
2
���h�v

b
1
�
2

v

(
� + �h

)(
� + �v

) .

dV

dt
= �1

dEH
dt

+ �2

dIH
dt

+ �3

dET
dt

+ �4

dIT
dt

+ �5

dEV
dt

+ �6

dIV
dt
,

= �1

[
�hIVSH
N

+ �ET − Q1EH

]
+ �2[�EH + �IT − �hIH] + �3

[
��hIVST
N

− Q3ET

]

+ �4[��ET − Q2IT] + �5

[
�vIHSV
N

+
��vITSV
N

− Q4EV

]
+ �6[�EV − �vIV ],

= [�2� − �1Q1]EH +

[
�5�hb2�v
�vb1

− �2�h

]
IH + [�1� + �4�� − �3Q3]ET

+

[
�2� +

�5��v�hb2
�vb1

− �4Q2

]
IT + [�6� − �5Q4]EV + [�1�h − �6�v]IV ,

Q1 = � + �h, Q2 = � + �h, Q3 = �� + � + �h, Q4 = � + �v .

(17)
�1 =

Q4�v
�h

, �2 =
b2�v�

b1�v
, �3 =

b2�����h�v
b1Q2Q3�v

+
b2�����v
b1Q2Q3�v

+
Q4��v
Q3�h

,

�4 =
b2�v�(��h + �)

Q2b1�v
, �5 = �, �6 = Q4.

(18)
dV

dt
=
Q1Q4�v

�h

[
0 − 1

]
.
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We note that, whenever 0 < 1, then dV
dt

< 0. Therefore, by LaSalle’s Invariance principle (LaSalle, 
1976), the disease-free equilibrium is globally stable whenever 0 < 1.

4.3.3. Endemic equilibrium
The endemic equilibrium point, E

1
, is found by equating the right-hand of the system (4) to zero. 

Expressing all the variables in terms of IH, we get

After some algebraic manipulations, we either have I∗H = 0 or

The case where I∗H = 0, gives the disease-free equilibrium, treated earlier. From expression (19), one 
sees that when 

0
< 1, then I∗H < 0, implying that the system (4) has no positive solution. However, 

when 
0
> 1, then I∗H > 0 and a unique endemic equilibrium exists.

Theorem 4.3  If 0 > 0, then E0 is unstable and the unique endemic equilibrium E1 is locally asymptoti-
cally stable in the interior of the feasible region Ω.

Proof  The stability and the direction of bifurcation 0 = 1 of the endemic equilibrium is proved by 
the direct use of the Center Manifold Theory (CMT) as described in Castillo-Chavez and Song (2004). 
We avoid re-stating the theorem and adopting notations as described in Castillo-Chavez and Song 
(2004), we compute the values of � and � whose signs determine local dynamics of the model (4). 
The basic reproduction of the system (4) is established to be

Suppose, we choose � = �h as the bifurcation parameter so that when 0 = 1, we have

In order to apply the Center Manifold Theory (CMT), it is necessary to make the following changes 
to the state variables, we let SH = x1, EH = x2, IH = x3, ST = x4, ET = x5, IT = x6, SV = x7, EV = x8, IV = x9. 
The system (4) can now be written in the form df

dx
= f (x), where x = (x1, x2, x3, x4, x5, x6, x7, x8, x9). The 

system (4) therefore becomes

S∗H = b
1

(
1

�h
−

b
2
��hI

∗

H�v

b
1
Q
4
�v

(
b
1
�v + �hI

∗

H�v

)
+ b

2
��h�hI

∗

H�v

)
,

E∗H =
b
1
b
2
��h�hI

∗

H�v

Q
1

(
b
1
Q
4
�v

(
b
1
�v + �hI

∗

H�v

)
+ b

2
��h�hI

∗

H�v

) , S∗T = E
∗

T = I
∗

T = 0,

S∗V =
b
1
b
2

�v�hI
∗

H + b1�v
, E∗V =

b
2
�v�hI

∗

H

Q
4
(�v�hI

∗

H + b1�v)
, I∗V =

b
2
�v�h�I

∗

H

Q
4
�v(�v�hI

∗

H + b1�v)
.

(19)I∗H =
Q
1
Q
4
b2
1
�
2

v

Q
1
�v�h(b2�h� + Q4b1�v)

[

0
− 1

]
.

(20)0 =
b2���h�v

b1�
2
v

(
� + �h

)(
� + �v

) .

(21)� =
b1�

2
v

(
� + �h

)(
� + �v

)
b2���v
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The system (22) with the bifurcation point �, has a simple zero eigenvalue. Thus, it enables us to use 
the Center Manifold Theory to analyse the stability of the system (22) near �h = �. Therefore, a right 
eigenvector w associated with zero eigenvalue has components

Similarly, the corresponding left eigenvector v associated with zero eigenvalue has components

We now compute � and � as outlined in Castillo-Chavez and Song (2004). From the system (22), the 
non-zero partial derivatives of f(x) associated with � are given by

Thus, the expression for � is given by

We finally compute the value of �. The non-zero partial derivatives of f(x) associated with b is given by

(22)

ẋ1 = b1 + 𝜑x4 −
𝛽hx9x1
N

− 𝜇hx1,

ẋ2 =
𝛽hx9x1
N

+ 𝜑x5 − Q1x2,

ẋ3 = 𝛾x2 + 𝜑x6 − 𝜇hx3,

ẋ4 = −
𝛿𝛽hx9x4
N

− Q2x4,

ẋ5 =
𝛿𝛽hx9x4
N

− Q3x5,

ẋ6 = 𝜌𝛾x5 − Q2x6,

ẋ7 = b2 −
𝛽vx3x7
N

−
𝜅𝛽vx6x7
N

− 𝜇vx7,

ẋ8 =
𝛽vx3x7
N

+
𝜅𝛽vx6x7
N

− Q4x8,

ẋ9 = 𝜂x8 − 𝜇vx9.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)
w1 = −

b1�
2
v

(
� + �h

)(
� + �v

)
b2���h�v

, w2 =
b1�

2
v

(
� + �v

)
b2���v

, w3 =
b1�

2
v

(
� + �v

)
b2��h�v

,

w4 = w5 = w6 = 0, w7 = −
(� + �v)

�
, w8 =

�v

�
, w9 = 1.

(24)

v1 = v4 = v7 = 0, v2 = 1, v3 =
Q1
�
,

v5 =
Q1��v���h + �v�(�(�� + �) + �h(� + ��))

Q2Q3�v�
,

v6 =
Q1�v(��h + �)

Q2�v�
, v8 =

Q1b1�v
b2�v�

, v9 =
Q1Q4b1�v
b2�v��

.

(25)
�
2f2

�x1�x9
=

��h

b1
,

�
2f8

�x3�x7
=

�v�h

b1
,

�
2f8

�x6�x7
=

��v�h

b1
.

(26)

� = v2w1w9

𝜕
2f2

𝜕x1𝜕x9
+ v8w3w7

𝜕
2f8

𝜕x3𝜕x7
+ v8w6w7

𝜕
2f8

𝜕x6𝜕x7
,

= −

(
b1𝜇

3
v

(
𝛾 + 𝜇h

)(
𝜂 + 𝜇v

)2(
𝜇v

(
𝛾 + 𝜇h

)
+ 𝛾𝜅𝛽v

)

b22𝛾
2
𝜂
2
𝛽
2
v

)
< 0.

(27)

�
2f2

�x9��
= 1.
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Therefore the expression for � is given by

Since, � < 0 and � > 0, we conclude from item (iv) of Center Manifold Theorem (Castillo-Chavez & 
Song, 2004) that the established endemic equilibrium E1 is locally asymptotically stable for 0 > 1 
and there exists a positive unstable equilibrium. This completes the proof.

5. Model with impulses
In this section, we present and analyse the system with pulse treatment of onchocerciasis with iver-
mectin. Treatment occurs every six months. We, therefore, first examine the case of fixed times tk, 
with individuals treated at rate �. This results in system of impulsive differential equations (Bainov & 
Simeonov, 1993; Lakshmikantham, Bainov, & Simeonov, 1989; Samoilenko, Perestyuk, & Chapovsky, 
1995). The administration of ivermectin is thus approximated by an instantaneous change.

5.1. General solution
Here, we overestimate the number of people infected with onchocerciasis in the population. Suppose 
the maximal number of individuals infected with onchocerciasis is given by inequality (15). Then the 
one-dimensional impulsive differential equation given by

overestimates the number of infected individuals.

Letting I = IH for notational simplicity, from (29) we have

Let Q
5
= �hb2�[��� + Q

2
(�� + Q

3
)] and denote I+

k
= I(t+

k
) and I−k = I(t−k ). Here, I(t−k ) is the popu-

lation proportion of infected individuals immediately before the impulse and I(t+
k
) is the value im-

mediately after the impulse. Hence, for a single impulsive cycle tk ≤ t ≤ tk + 1, we have

It therefore follows that

(28)� = v2w9

𝜕
2f2

𝜕x9𝜕𝜃
= 1 > 0.

(29)

dIH
dt

= �

[
�hb2
�v

+
���hb2

�v(�� + � + �h)

]
+ �

[
��h��b2

�v(� + �h)(�� + � + �h)

]
− �hIH, t ≠ tk,

△IH = −�IH, t = tk,

I+ − I− = −�I,

I+ = (1 − �)I−.

I�(t) + �hI(t) =
Q
5

Q
2
Q
3
�v
,

d

dt

(
e�htI

)
=

Q
5

Q
2
Q
3
�v

(
e�htI

)
,

e�htI(t) − e�htk I(t+
k
) =

Q
5

Q
2
Q
3
�h�v

e�ht −
Q
5

Q
2
Q
3
�
2

h�v

e�htk ,

I(t) =
Q
5

Q
2
Q
3
�h�v

(
1 − e�h(tk−t)

)
+ I(t+

k
)e�h(tk−t).

(30)

I−k+1 =

(
Q
5

Q
2
Q
3
�h�v

)(
1 − e�h(tk+1−tk)

)
+ I+

k
e�h(tk+1−tk),

=

(
Q
5

Q
2
Q
3
�h�v

)(
1 − e−�h(tk+1−tk)

)
+ (1 − �)I−k

(
e−�h(tk+1−tk)

)
.
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The solution obtained in (30) at the impulse points satisfies

Thus, the general solution becomes

The general solution obtained in (31) defines the maximal number of people with onchocerciasis 
immediately before the mass treatment with ivermectin. This solution depends on the human and 
vector recruitment rates, the human-vector transmission contact rate, the incubation period in the 
human, the waning rate of ivermectin, human and vector death rates, treatment times and the 
treatment effectiveness. A similar approach can be employed to calculate the maximal number of 
latently infected individuals using the overestimate obtained in (14). For fixed mass administration 
of ivermectin, (31) does not depend on time.

5.2. Fixed administration of ivermectin
For a fixed time period � = tn+1 − tn, we have

I−
1
=

Q
5

Q
2
Q
3
�h�v

, I+
1
= (1 − �)

(
Q
5

Q
2
Q
3
�h�v

)
,

I−
2
= (1 − �)

(
Q
5

Q
2
Q
3
�h�v

)
e−�h(t2−t1) +

(
Q
5

Q
2
Q
3
�h�v

)(
1 − e�h(t2−t1)

)
,

I+
2
= (1 − �)I−

2
= (1 − �)2

(
Q
5

Q
2
Q
3
�h�v

)
e−�h(t2−t1)

+ (1 − �)

(
Q
5

Q
2
Q
3
�h�v

)(
1 − e�h(t2−t1)

)
,

I−
3
=

Q
5

Q
2
Q
3
�h�v

(
(1 − �)2e−�h(t3−t1) + (1 − �)e−�h(t3−t2)

+ 1 − (1 − �)e−�h(t3−t1) − e−�h(t3−t2)
)
,

I+
3
= (1 − �)I−

3
=

Q
5

Q
2
Q
3
�h�v

(
(1 − �)3e−�h(t3−t1)

+ (1 − �)2e−�h(t3−t2) + (1 − �) − (1 − �)2e−�h(t3−t1) − (1 − �)e−�h(t3−t2)
)
,

I−
4
=

Q
5

Q
2
Q
3
�h�v

(
(1 − �)3e−�h(t4−t1) + (1 − �)2e−�h(t4−t2) + (1 − �)e−�h(t4−t3)

+ 1 − (1 − �)2e−�h(t4−t1) − (1 − �)e−�h(t4−t2) − e−�h(t4−t3)
)
, I+

4
= (1 − �)I−

4
.

(31)

I−n =
Q
5

Q
2
Q
3
�h�v

(
(1 − �)(n−1)e−�h(tn−t1) + (1 − �)(n−2)e−�h(tn−2) +⋯

+ (1 − �)e−�h(tn−tn−1) + 1 − (1 − �)(n−2)e−�h(tn−t1)

− (1 − �)(n−3)e−�h(tn−t2) −⋯ − e−�h(tn−tn−1)
)
.

I−n =
Q
5

Q
2
Q
3
�h�v

(
1 + (1 − �)e�h� + (1 − �)2e−2�h� +⋯ + (1 − �)(n−1)e−�h(n−1)�

− e−�h�
(
1 + (1 − �)e−�h� +⋯ + (1 − �)(n−2)e−�h(n−2)�

))
,

=
Q
5

Q
2
Q
3
�h�v

(
1 − (1 − �)ne�hn�

1 − (1 − �)e�h�
−
1 − (1 − �)(n−1)e−�h(n−1)�

1 − (1 − �)e�h�
e−�h�

)
.



Page 13 of 26

Omondi et al., Cogent Mathematics & Statistics (2018), 5: 1429700
https://doi.org/10.1080/23311835.2018.1429700

Thus

The solution obtained in (32) is the maximum population of the infected individuals. Note that

implying that the total number of infected humans shrinks to zero as the frequency of mass treat-
ment with ivermectin increases (although note that the impulsive assumptions would break down in 
this limit). In order to keep the infected individuals under a threshold Î, we have

which implies that

The expression in (33) gives the maximum period of mass administration of ivermectin in the 
population to keep the infection of onchocerciasis below Î. If we restrict � to 0 ≤ 𝜏 < 𝜏

max
, then the 

disease can be controlled below the threshold Î (but not necessarily eradicated).

5.3. Non-fixed administration of ivermectin
In this section, we consider a situation in which the mass administration of ivermectin is carried out 
at non-fixed times. However, this would require that the entire history of mass drug administration 
with ivermectin is known, which is unlikely to be the case (Figure 2). Thus, we will assume that mass 
drug administration with ivermectin occurring more than two events previously has a negligible ef-
fect on the number of currently treated individuals. That is,

It then follows from (30) that

(32)

lim
n→∞

I−n =
Q
5

Q
2
Q
3
�h�v

(
1

1 − (1 − �)e−�h�
−

1

1 − (1 − �)e−�h�
e−�h�

)

=
Q
5

Q
2
Q
3
�h�v

(
1 − e−�h�

1 − (1 − �)e−�h�

)
.

lim
�→0
n→∞

I−n = 0,

Î <
Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 − e−𝜇h𝜏

1 − (1 − 𝛼)e−𝜇h𝜏

)
,

(33)𝜏 <
1

𝜇h
ln

[
Q
5
− ÎQ

2
Q
3
𝜇h𝜇v(1 − 𝛼)

Q
5
− ÎQ

2
Q
3
𝜇h𝜇v

]
= 𝜏

max
(𝛼).

e−𝜇h(tn−tk) ≈ 0 fork > 2.

Figure 2. Comparison of the 
actual infected individuals 
and the estimated infected 
individuals.
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The above inequality can be approximated as

The expression in (34) gives the number of infected humans that will be below Î based on knowing 
the two previous mass administration times. Then the “next best” mass drug administration with 
ivermectin satisfies the following:

Next, we compare fixed and non-fixed mass drug administration with ivermectin. Assuming that 
the mass treatment times in the non-fixed case are constant, 𝜏, then from (33), we have

If there is no impulse, then from (29), we have limt→∞
I =

Q
5

Q
2
Q
3
�
2

h�v
. Thus, we can assume that 

Î =
Q
5

Q
2
Q
3
𝜇h𝜇v

. Hence,

I−n <
Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 − e−𝜇h(tn−tn−1)

)
,

I−n+1 <
Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 − e−𝜇h(tn−tn−1)

)
+ (1 − 𝛼)I−n e

−𝜇h(tn−tn−1),

<
Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 − e−𝜇h(tn+1−tn)

)

+ (1 − 𝛼)
Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 − 𝛼e−𝜇h(tn−tn−1)

)
e−𝜇h(tn+1−tn).

(34)

Î ≡
Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 − e−𝜇h(tn+1−tn)

)

+ (1 − 𝛼)
Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 − 𝛼e−𝜇h(tn−tn−1)

)
e−𝜇h(tn+1−tn).

Q
5

Q
2
Q
3
𝜇h𝜇v

(
1 + (1 − 𝛼)

)
− Î = e−𝜇h(tn+1−tn)

(
Q
5

Q
2
Q
3
𝜇h𝜇v

)

(
1 + 𝛼(1 − 𝛼)e−𝜇h(tn+1−tn)

)
,

e−𝜇h(tn+1−tn) =
2 − 𝛼 − Q

5
∕Q

2
Q
3
𝜇h𝜇v

1 + 𝛼(1 − 𝛼)e−𝜇h(tn+1−tn)
,

tn+1 = tn −
1

𝜇h
ln

(
2 − 𝛼 − Q

5
∕Q

2
Q
3
𝜇h𝜇v

1 + 𝛼(1 − 𝛼)e−𝜇h(tn+1−tn)

)
.

(35)𝜏 =
1

𝜇h
ln

(
Q
5
− ÎQ

2
Q
3
𝜇h𝜇v(1 − 𝛼)

Q
5
− ÎQ

2
Q
3
𝜇h𝜇v

)
,

(36)𝜏|
𝛼=0

=
1

𝜇h
ln

(
Q
5
− ÎQ

2
Q
3
𝜇h𝜇v

Q
5
− ÎQ

2
Q
3
𝜇h𝜇v

)
= 0,

(37)𝜏|
𝛼=1

=
1

𝜇h
ln

(
Q
5

Q
5
− ÎQ

2
Q
3
𝜇h𝜇v

)
.

(38)
0 < 1 −

Q
2
Q
3
𝜇h𝜇v Î

Q
5

< 1,
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therefore, 𝜏
𝛼=1

> 0. Assuming that non-fixed mass treatment with ivermectin occurs indefinitely 
and further letting �

max
≡ tn+1 − tn = tn − tn−1, then the minimum treatment effectiveness 

satisfies

If �
max

= 0, then it follows that (39) becomes

The larger root exceeds 1 and hence can be discounted. It follows that the smaller root 

�
0
= 1 −

√
Q
2
Q
3
�h�v

Q
5

, satisfies 0 < 𝛼
0
< 1 as stated in (38). This implies that the mass treatment is 

only effective in the range 𝛼
0
< 𝛼 ≤ 1.

6. Numerical simulations
In this section, we carry out parameter estimation, sensitivity analysis of the model parameters and 
numerical simulations for system (4) to demonstrate the theoretical results. The simulations are 
performed using the fourth order Runge-Kutta scheme in Matlab 2014a with the set of parameter 
values given in Table 1. We consider the parameters in realistic ranges with guidance from past lit-
erature on onchocerciasis epidemics in Ghana.

(39)𝜏
max

=
1

𝜇h
ln

(
2 − 𝛼 − ÎQ

2
Q
3
𝜇h𝜇v∕Q5

1 + 𝛼(1 − 𝛼)e−𝜇h𝜏max

)
.

1

𝜇h
ln

(
2 − 𝛼 − ÎQ

2
Q
3
𝜇h𝜇v∕Q5

1 + 𝛼(1 − 𝛼)

)
= 0,

2 − 𝛼 − Î
Q
2
Q
3
𝜇h𝜇v

Q
5

= 1 + 𝛼(1 − 𝛼),

𝛼 = 1 ±

√
Q
2
Q
3
𝜇h𝜇v

Q
5

.

Table 1. Estimated parameter values in the model for onchocerciasis case. The rates are given 
per day
Parameter Range Point value (assumed) Source
b
1

0.0000819–0.001085 0.00009/N Estimated

�
h

0.0000391–0.0000548 0.000052 Central Intelligence Agency: The World 
Fact Book (2016), Ghana Statistical 
Service (2016)

�
h

0–0.01 0.00198 Assumed

� 0.00137–0.00365 0.00139 Animal Diversity Web (2016), Hopkins and 
Boatin (2011), Onchocerciasis (2016), 
Nguyen et al. (2005)

� 0–1 [0.1, 0.65] Turner et al. (2015), Winnen et al. (2002)

� 0.01–0.1 0.0015 Turner et al. (2015)

� 0–1 0.0083 Assumed

� 0–0.1 0.001 Assumed

� 0–1 0.002 Assumed

b
2

0.0214–0.4 0.144/V Assumed

�
v

0–0.01 0.00079 Assumed

� 0.0714–0.1667 0.078 Animal Diversity Web (2016), Hopkins and 
Boatin (2011), How is Onchocerciasis 
Spread? (2016), Onchocerciasis (2016)

�
v

0.0118–0.0714 0.068 Hopkins and Boatin (2011), Simulium spp. 
(2016)
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6.1. Parameter estimation
We consider average parameter values that encompass features of onchocerciasis disease including 
the rate of infection, the incubation period and the length of infections period in the vector and host 
populations. Although estimates of some parameters are given in Table 1, here we give additional 
explanations and descriptions of some of the parameters.

(1) � The average birthrate in Ghana was estimated to be 31.09 births/1,000 population in 2015 and 
30.60 births/1,000 population in 2014 according to the World Fact Book by Central Intelligence 
Agency (2016) and Ghana Statistical Service report on Demographic and Health Survey (2016), 
respectively. Owing to unchecked immigration, the recruitment rate is, therefore, estimated to 
be in the range (0.0000819 ≤ b

1
≤ 0.00108)N per day.

(2) � The natural human death rate is estimated based on average life of 50–70 years in accordance 
with Central Intelligence Agency data and 2014 demographic data released by Ghana 
Statistical Service estimates of life expectancy at birth (Central Intelligence Agency: The World 
Fact Book, 2016; Ghana Statistical Service, 2016). The average black fly lifespan is 2–3 weeks 
(Hopkins & Boatin, 2011; Simulium spp., 2016).

(3) �� It takes 3
4
 to 2 years for the worm to mature and release enough microfilariae to be detectable 

in the skin of the human host (Animal Diversity Web, 2016; Hopkins & Boatin, 2011; 
Onchocerciasis, 2016; Nguyen et al., 2005). Therefore a reasonable estimate of the incubation 
rate � is 0.00137 ≤ � ≤ 0.00365 per day. On the other hand, the average incubation period 
in the blackfly is 1–2 weeks (Animal Diversity Web, 2016; Hopkins & Boatin, 2011; How is 
Onchocerciasis Spread?, 2016; Onchocerciasis, 2016). Thus, a reasonable value for � is 
0.0714 ≤ � ≤ 0.1667 per day.

(4) �� The modification parameters (�, � and�) are strictly between 0 and 1 due to the reduced abil-
ity of individuals to cause infections following ivermectin treatment.

(5) �� The mass administration rate � is estimated to be between 0% and 100%.

For illustration purpose, we consider the parameter values estimates given in Table 1 with 
N = 200, 000 and V = 10, 000.

6.2. Sensitivity analysis
Sensitivity analysis is the study of how uncertainty in the output of a system can be apportioned to 
different sources of uncertainty in the model input  (Saltelli et al., 2008a, 2008b). It is a technique for 

Figure 3. Tornado plots of 
partial rank correlation 
coefficients (PRCCs) of the 
parameters that influence 
R
0
 for the input parameters 

using the values in Table 1. 
Parameters with PRCC > 0 
increase R

0
 when they are 

increased whereas parameters 
with PRCC < 0 decrease R

0
 when 

they are increased.
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systematically varying model inputs and determining their effect on the model output. We perform 
sensitivity analysis in order to investigate the contribution of vital parameters on the model dynam-
ics, specifically to establish the parameters that have significant influence on the onchocerciasis 
dynamics. We use Latin Hypercube Sampling (LHS), a stratified Monte Carlo sampling scheme ap-
plicable to many parameters from a multidimensional distribution (Saltelli et al., 2008a, 2008b). It 
allows for simultaneous determination of an unbiased estimate of the model output for a given set 
of model input. We perform the sensitivity analysis by computing the Partial Rank Correlation 
Coefficients (PRCCs) for each parameter value, sampled by the LHS scheme (Blower & Dowlatabadi, 
1994). Parameters with positive PRCCs will increase R

0
 when they are increased, whereas parame-

ters with negative PRCCs will decrease R
0
 when they are increased. The outcome is the reproduction 

number R
0
 derived from the theoretical model. We determine PRCCs with 1000 simulations per run 

to determine parameters that have a significant influence on R
0
.

Figure 4. The Monte Carlo 
simulations for the three 
parameters with the greatest 
influence on the R

0
: the 

transmission contact rate in 
humans, the transmission 
contact rate in the vector and 
the vector death rate for the 
input parameters using the 
values in Table 1 and 1,000 
simulations per run. Eradication 
is only possible if the 
transmissibilities are extremely 
small or if the vector death rate 
is extremely high.
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The PRCCs results in Figure 3 illustrate the degree of the effect that each parameter has on the 
outcome. The three parameters with the most influence on R

0
 are the transmission contact rate in 

humans, �h, the vector transmission contact rate, �v, and the vector death rate �v.

Figure 4 displays 1000 Monte Carlo simulations for the input parameters with the most effect on 
the basic reproduction number. Scatter plots show that R

0
 is monotone increasing with increasing 

values of �h and �v and monotone decreasing with increasing vector mortality rate, �v. However, R
0
 

is only guaranteed to be less than unity when the human–vector and vector-human contact rates 

Figure 6. System behaviour 
for fixed and non-fixed 
mass administration 
of ivermectin with 
� = 0.10,R

0
= 1.2412, b

1
= 0.0009,

b
2
= 0.35, �h = 0.00562, �v = 0.00243,� = 0.025,

�v = 0.012.
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are sufficiently small. These results also suggest that, even if vector death rate is extremely high, 
eradication is not possible.

In order to gain more insight into the three parameters with the greatest influence on the basic 
reproduction number, R

0
, all other parameters were fixed at their sample values. A surface plot for 

R
0
= 1 is shown in Figure 5.

Figure 7. System behaviour 
for fixed and non-fixed 
mass administration 
of ivermectin with 

� = 0.65,R
0
= 1.2412, b

1
= 0.0009,

b
2
= 0.35, �h = 0.00562, �v = 0.00243,

� = 0.025,�v = 0.012.

Note that increasing � improves 
the outcome but does not lead 
to eradication.
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6.3. Simulation results
The results presented in this section demonstrate the dynamics of onchocerciasis for the system (4) 
obtained using Matlab ODE45 solver, which employs simultaneously the fourth and fifth order 
Runge-Kutta schemes. Unless otherwise stated, parameters are as stated in Table 1. We give results 
of system (4) with impulses for both the cases when R

0
< 1 and when R

0
> 1 as shown in Figures 

8–11 and Figures 6–7, respectively. In addition, we numerically make a comparison between fixed 
and non-fixed mass administration of ivermectin in the treatment of onchocerciasis. In order to il-
lustrate the effectiveness of ivermectin, we vary the reduction rate (�) for both the cases of R

0
.

Figure 8. System behaviour 
for fixed and non-fixed 
mass administration 
of ivermectin with 
� = 0.10,R

0
= 0.9352, b

1
= 0.0009,

b
2
= 0.35, �h = 0.00443,� = 0.025,

�v = 0.00175,�v = 0.012.

Non-fixed adminsitration may 
produce lower overall numbers 
of infected individuals, but the 
outcome is not predictable.
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First, we examine the behaviour of the system (4) when the basic reproduction number, R
0
, is 

greater than unity for the fixed and non-fixed mass administration of ivermectin. It is seen in Figure 
6 that when the effectiveness of ivermectin is low, that is, � = 0.10, the disease spreads in the popu-
lation. However, the results in Figure 7 show that the endemicity of the disease is reduced when the 
effectiveness rate of mass administration of ivermectin is increased. We also observe that fixed 
mass treatment yields a better outcome compared to non-fixed mass administration.

We then examine the case when the basic reproduction number is below unity for both the fixed 
and non-fixed mass drug administration with ivermectin. We examine two cases of R

0
< 1: when R

0
 

is close to unity and where R
0
 is significantly less than unity. We observe in Figure 8 that when R

0
 is 

less than but close to one, the disease may persist in the population when the value of � is small. 

Figure 9. System behaviour 
for fixed and non-fixed 
mass administration 
of ivermectin with 
� = 0.65,R

0
= 0.9352, b

1
= 0.0009,

b
2
= 0.35, �h = 0.00443,� = 0.025,

�v = 0.00175,�v = 0.012.

 

Non-fixed administration may 
produces bursts of infection, 
even if the disease would be 
otherwise kept at low levels.
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However an increment in the value of � moves the system towards a disease-free state, but there is 
no eradication. This is shown in Figure 9 with � = 0.65. The results in Figure 10 show the dynamics 
of the population under both fixed and non-fixed mass administration of ivermectin at � = 0.1 keep-
ing the interval � = 182.5 days (6 monthly interval) for fixed mass administration of ivermectin. We 
observe that the system with impulses attains its disease-free state, suggesting that onchocerciasis 
dies out. These results are consistent with theorem (). However, when the ivermectin effectiveness 
is increased, the system attains the disease free equilibrium much faster as shown in Figure 11.

Figure 10. System behaviour 
for fixed and non-fixed mass 
administration of ivermectin 
with � = 0.1,R

0
= 0.1181 

using parameter values in 
Table 1. Note that non-fixed 
administration may have a 
delaying or preventative effect 
on eradication.
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7. Conclusion
Onchocerciasis is one of the neglected tropical diseases that is still to be eradicated. In connection 
with the WHO’s plan of onchocerciasis elimination, mass drug administration with ivermectin is the 
most efficient approach towards this effort. This is spearheaded by APOC in Sub-Saharan Africa 
where the disease is endemic. In order to investigate the effectiveness of ivermectin in the control 
of onchocerciasis, we formulated a deterministic model that captures the dynamics of this disease 
in humans and blackflies. The analysis of the model without pulse mass administration of ivermectin 
shows that, the disease-free state exists and is stable if R

0
< 1. On the other hand, if R

0
> 1, the 

disease-free state loses its stability and the system tends towards the endemic state. Then, sensitiv-
ity analysis, we have computed the Partial Rank Correlation Coefficients between R

0
 and each 

Figure 11. System behaviour 
for fixed and non-fixed mass 
administration of ivermectin 
with � = 0.65,R

0
= 0.1181 

using parameter values in 
Table 1. Increasing � hastens 
eradication, in both the fixed 
and non-fixed case.

Time (Days)
0 1000 2000 3000 4000 5000 6000 7000 8000

Su
sc

ep
tib

le
 h

um
an

 (h
os

ts
),S

H

105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (Days)
0 1000 2000 3000 4000 5000 6000 7000 8000

Su
sc

ep
tib

le
 h

um
an

 (h
os

ts
),S

H

105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (Days)
0 1000 2000 3000 4000 5000 6000 7000 8000

Ex
po

se
d 

hu
m

an
 (h

os
ts

),E
H

0

200

400

600

800

1000

1200

1400

Time (Days)
0 1000 2000 3000 4000 5000 6000 7000 8000

Ex
po

se
d 

hu
m

an
 (h

os
ts

),E
H

0

200

400

600

800

1000

1200

1400

Time (Days)
0 1000 2000 3000 4000 5000 6000 7000 8000

In
fe

ct
io

us
 h

um
an

 (h
os

ts
),I

H

0

50

100

150

200

250

300

350

400

Time (Days)
0 1000 2000 3000 4000 5000 6000 7000 8000

In
fe

ct
io

us
 h

um
an

 (h
os

ts
),I

H

0

50

100

150

200

250

300

350

400



Page 24 of 26

Omondi et al., Cogent Mathematics & Statistics (2018), 5: 1429700
https://doi.org/10.1080/23311835.2018.1429700

parameter of the model. The results show that the parameters �h , the transmission contact of infec-
tion from an infected vector to a susceptible human and �v, the transmission of infection from an 
infected human to a susceptible vector, have the highest influence on R

0
. The other parameter with 

an important effect �v, the vector removal rate.

We have provided the estimates for the necessary frequency and strength of mass drug administration 
with ivermectin. We may conclude that the disease can be controlled through mass drug administration 
with ivermectin with needed frequency and high strength of ivermectin. Furthermore, our results suggest 
that reducing human-vector contact can be one way of reducing but not eradicating onchocerciasis from 
the population. This can be done by implementing personal protection practices such as wearing insect 
repellent, wearing long sleeves and long pants during the day when blackflies bite. In addition, applica-
tion of insecticides can be effective in reducing the presence of vector in the environment.

To assess the impact of combination of different controls, we have conducted several simulations, 
using the called “pulse control" technique. We have observed from our numerical results that the 
eradication of onchocerciasis is possible with tolerable regularity of mass drug administration with 
ivermectin provided the basic reproduction number is kept (far) below unity. We can conclude that, 
in the presence of mass administration of ivermectin with six month intervals, the disease can be 
controlled. Furthermore, if the frequency of mass administration is increased, the system moves 
towards a better outcome. Our modelling results show that mass administration of ivermectin at 
regular interval is an effective method of onchocerciaisis eradication if other parameters can be suf-
ficiently controlled. However, emerging new treatment options as suggested in Kuesel (2016), par-
ticularly moxidectin which is similar but more efficacious than ivermectin, present promising 
alternatives (Awadzi, Opoku, Attah, Lazdins-Helds, & Kuesel, 2014; Turner et al., 2015).

The model presented in this paper has a number of limitations. Mass administration of ivermectin 
is assumed to occur instantaneously. However, in reality, there is usually a small delay as mass treat-
ment reaches it maximum coverage. It is important to note that the delays do not affect the impul-
sive assumptions, provided the time interval of mass administration of ivermectin is significantly 
larger than the instantaneous approximation. Unavailability of experiential data poses a challenge 
for model verification. Despite the shortcomings, the model still provides some useful insights into the 
control of onchocerciasis through the implementation of regular mass administration of ivermectin 
in conjunction with transmission reduction and the implementation of vector control measures.
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