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ABSTRACT
Population modelling spans many domains and techniques,
and new technologies offer cutting-edge opportunities to a
growing field. The population modelling working group has
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been recently active in coordination amongst different popu-
lation modellers of different fields. One activity is mapping
the population modelling domain by examples of work. This
is the second collaborative paper by group members. This pa-
per includes new examples and new authors in an attempt to
define the field. Some analysis and discussion is provided in
view of the existing examples.

Author Keywords
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INTRODUCTION
The Population Modelling Working group is active under the
Interagency Modelling and Analysis Group (IMAG) umbrella
[1]. The group conducts several activities such as webinars,
collaborative papers and meetings. Members of this group
meet annually at the MSM (Multi-Scale Modelling)/IMAG
meeting at the US National Institutes of Health alongside
other groups. The working group maintains a web portal [2]
and a mailing list [3, 4].

The group has recently grown and increased its activity. This
was apparent last year when the group published its first col-
laborative paper [5]. The paper showed activities of different
group members by examples. One goal was an attempt to de-
fine the field boundaries and better define the term. The initial
definition of the field was “Modelling a collection of entities
with different levels of heterogeneity”. This definition was
broad and required more details. The group addressed this by
providing specific examples of work self-defined as popula-
tion modelling. Those were initially posted to the mailing list
and then gathered into the collaborative paper.

In the year after the publication of the first paper, new popu-
lation modellers joined the group and introduced their work.
This added to the examples to better define the field. This pa-
per gathers these examples according to discipline and pro-
vides discussion regarding the field.
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The majority of individual contributions are motivated by
problems that arise in medicine and the biomedical sciences.
We have attempted to revise the previous definition, although
we note that any attempt to do so will remain extremely
broad. Expanding on the previous definition, we have: “Tack-
ling real-life problems that are relevant at the population level
using a range of mathematical tools”. By its very nature, these
definitions are imprecise, but they are reaching towards a fun-
damental understanding of what it means to be population
modellers. However, the goal of this work is not to provide a
concise, one-line definition but rather to illustrate the field by
way of examples. We believe that this will ultimately provide
a clearer insight into both the complexity and the usefulness
that is population modelling.

We have organised this paper into sections by topic, in order
to illustrate the applications and provide a way of navigat-
ing through the field. Such organisation is of course limited,
with both an overlap of several topics and also an acknowl-
edgement that many different structures could have been em-
ployed. To that end, we have also provided two different
perspectives on the organisational structure in the discussion,
which illustrates the content through a different prism. The
structures we have chosen give perspectives on the field that
focus on some of its key interests at the moment. We expect
these to change in the future, as the field grows and evolves,
but we hope this paper will serve as a useful snapshot in time
of where the field is currently situated.

EXAMPLES

INFECTIOUS DISEASES

Robert Smith?
(Note that the question mark is part of this author’s name.)

A few years ago, a group of researchers proposed a program
for HIV called “Test and Treat” [6]. The idea was to test ev-
eryone in the world (or as many as they reasonably could)
and, if someone was found to be HIV positive, then they
would start treatment immediately. This sounds like a good
idea in theory... but it doesn’t account for the rise of drug re-
sistance. Imperfect treatment can have a direct impact on the
development of drug resistance, which wasn’t included in the
model. The mathematical model that was used was flawed
[7], but the World Health Organisation adopted it anyway and
began this widescale program. Our modelling took the orig-
inal model but added in both drug resistance and also educa-
tion (manifested through behaviour changes) [8]. We showed
that, in the absence of education but with drug resistance in-
cluded, then the “test and treat” program was highly likely to
make matters worse, leading to widespread treatment failure
down the line. However, if good-quality education was pro-
vided, either at the time of treatment or subsequently, then
the effects of drug resistance could be overcome. This is true
even if education is only partially effective.

Polio is a disease that’s almost been eradicated from the
world... but not quite. In 2013, the number of cases doubled
from the previous year, prompting the World Health Organ-
isation to declare a polio emergency. We have a good vac-
cine (although in some cases, the vaccine itself can give you

polio), but a key question is when to take it. Many coun-
tries undertake mass vaccinations, on National Immunisation
Days (NIDs). A single NID can result in millions of chil-
dren being vaccinated at once. However, different countries
vaccinate at different times. We wondered if these should
be synchronised? Using impulsive differential equations to
model pulse vaccinations, we see the benefits of synchroni-
sation: they overcome the issue of migration, because mi-
grants aren’t lost between different NIDs [9]. We proved
that, under some conditions, synchronising the pulses is a lo-
cal minimum and hence the best strategy. However, seasonal
effects can change the picture: it’s important to vaccinate be-
fore the high-transmission season. If migration is low, then
two countries with different seasonal patterns should de-link
their NIDs. (Something that was not done recently when it
should have been.) However, if migration is high, then this
will swamp the effects of seasonality and neighbouring coun-
tries with high migration should re-synchronise their NIDs.
It follows that understanding the effects of human behaviour
is crucial if we are to eradicate this disease in the next few
years.

Bruce Y. Lee
In order to address various public-health issues, it is critical to
develop computational models and tools that decision-makers
can utilise. One of those tools is an agent-based model
(ABM), which uses individual characteristics, behaviours and
interactions to describe a system as a collection of agents.
These agents are autonomous, decision-making entities that
can assess situations, make decisions and compete or co-
operate based on pre-defined rules.

We developed RHEA (Regional Healthcare Ecosystem An-
alyst), a software platform that can generate an ABM of a
health-care system with detailed representations of the health-
care facilities and the patients moving among these facilities
and the surrounding community [10]. We applied this to all
the acute and long-term care facilities in Orange County, Cal-
ifornia. We have used this model to better understand the
spread and control of various healthcare-associated pathogens
such as methicillin-resistant Staphylococcus aureus (MRSA)
[11], norovirus [12] and carbapenem-resistant Enterobacteri-
aceae (CRE) [13].

Large-scale ABMs can serve as virtual representations of
entire towns, cities, counties and states to better under-
stand the spread and control of both communicable and non-
communicable diseases. These include ABMs of the Wash-
ington, DC, metropolitan area and Pennsylvania. During the
2009 influenza pandemic, the US Health and Human Services
used our models to help with the national response [14].

Aristides Moustakas
Bovine Tuberculosis (TB) is a major problem for the agricul-
tural industry in several countries. TB can be contracted and
spread by species other than cattle, and this can cause a prob-
lem for disease control. In the UK and Ireland, badgers are a
recognised reservoir of infection, and there has been substan-
tial discussion about potential control strategies. Strategies
in England consist largely of badger control, whereas Wales
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is focused on cattle testing; Scotland had a high-risk surveil-
lance testing policy until 2009, when Scotland was declared
TB free.

We developed a coupling of individual-based models of
bovine TB in badgers and cattle, which captured key details
of the natural history of the disease and of both species at ap-
proximately county scale [15]. Factors such as bigger herds
and keeping cattle inside for winter could explain the rise in
TB in recent decades. We showed that housing cattle in large
sheds over winter could potentially double the number of in-
fected animals by creating conditions where TB can spread.
This is likely to be significantly more effective than culling
badgers.

We followed this with time-series statistical analysis of public
data regarding TB incidence and prevalence in different re-
gions in the UK [16]. By comparing different strategies used
in different countries, we concluded that more frequent test-
ing is leading to lower TB infections in cattle both in terms of
TB prevalence as well as TB incidence.

BIOMARKERS

Andreas Zeigler
Biomarkers are tools that enhance cardiovascular risk esti-
mation. However, the value of biomarkers on risk estima-
tion beyond standard risk scores remains unclear. Their com-
parative impact among different European regions and their
role in personalised medicine also remains to be elucidated.
As part of the the “Biomarker for Cardiovascular Risk As-
sessment in Europe” (BiomarCaRE) project, we assessed the
value of established and emerging biomarkers for cardiovas-
cular risk prediction using standard statistical approaches as
well as machine-learning methods, such as random forests or
support-vector machines [17]. The strength of BiomarCaRE
lies in its well-defined primary and secondary prevention co-
horts, including over 300,000 participants from 13 European
countries.

Mélanie Prague
Models based on ordinary differential equations (ODEs) are
tools for describing dynamical systems. They may be used
to estimate and predict trajectories of individual biomarkers.
Data from each subject can be sparse, making it difficult to
precisely estimate individual parameters. However, informa-
tion can often be gained from between-subject variability us-
ing non-linear mixed effect (NLME) models on parameters
of the ODEs. We call these NLME-ODE models mechanistic
because they are based on a medical understanding of the dy-
namics of biomarkers. Mechanistic models often suffer from
identifiability issues linked with the complexity of ODE mod-
els.

We proposed an algorithm using a Bayesian approach to make
use of a priori knowledge of parameters. It relies on the maxi-
mization of a penalized likelihood using an approximation of
the posterior distribution. We developed both methodologi-
cal aspects — including validation of asymptotical properties,
development of statistical convergence criteria and model-
choice theory — and technical tools [18]. In particular, we

released a software called NIMROD (Normal approximation
Inference in Models with Random effects based on Ordinary
Differential equations) using parallel computing [19]. These
mechanistic methods can be use to describe the dynamics of
biomarkers for HIV progression under treatment [20]. It is
then possible to optimize treatment in HIV-infected patients
by individualising the treatment and hence reducing side ef-
fects of lifelong treatment. Observations for a given patient
can be used to dynamically tune the dose, and we can define
the individual optimal dose so that the infection is controlled
with a high probability [21].

POPULATION MODELLING

Romualdo Santos
Knowledge of population growth of a particular region is
of great importance for resource allocation and planning,
with political, cultural and economic implications. We used
Malthusian modelling to study population growth in Sergipe,
Brazil’s smallest state [22]. Until 1920, Sergipe exhib-
ited sub-optimal growth, compared to the surrounding areas.
However, growth subsequently increased, passing the sur-
rounding areas after 1970. Using both differential equations
and difference equations, we found that the estimation of pop-
ulation growth for Sergipe shows a decrease in the coming
decades until 2050; at this time, the Malthusian model can no
longer be applied and the growth model changes from contin-
uous to discrete.

Matthias Chung
Inferring information from observed population dynamics
onto population interactions is inherently difficult. We con-
sider parameter estimation methods to overcome such obsta-
cles. Let us assume the dynamics of interacting species can
mathematically be modelled by a generalised Lotka–Volterra
system

~y ′ = diag(~y )(~r +A~y ).

Here the vector function ~y describes the time-dependent dy-
namic, ~r captures the intrinsic growth, and A describes the
interaction between species yj . Notice that, in higher dimen-
sions (more than two species), the dynamics of ~y are highly
sensitive to small changes in the interaction A. Hence infer-
ring A from longitudinal observations ~d is notably difficult.

Single- and multiple-shooting methods are standard methods
for point estimation of ordinary differential equations. How-
ever, these methods are known to fail for highly sensitive
equations such as population dynamical systems. To over-
come this issue, the underlying parameter estimation problem
is reformulated as

min ‖m(~s)− ~d ‖+ a‖~s ′ − diag(~s)(r +A~s )‖,

where ~s is an adequate parameterised function approximation
of ~y, m is a projection of that function onto the observation
space, ‖ · ‖ is the Euclidian norm and a is an appropriate reg-
ularisation parameter, while we optimise over A and ~s. These
continuous-shooting methods have been shown to generate
robust estimates for the inferred parameters A [23, 24].
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Robin Gras
Artificial-life-simulated ecosystems can be used to study the
evolutionary process and the emergence of species. We devel-
oped an individual-based, evolving predator–prey ecosystem
simulation called EcoSim [25, 26]. The agents evaluate their
environment (e.g., distance to predator/prey, distance to po-
tential breeding partner, distance to food, energy level), their
internal states (e.g., fear, hunger, curiosity) and choose among
several possible actions such as evasion, eating or breeding.
The behavioural model of each individual is unique and is the
outcome of the evolution process. One major and unique con-
tribution of this simulation is that it combines a behavioural,
an evolutionary and a speciation mechanism. This approach
allows interesting studies on theoretical ecology and artificial
life in collaboration with biologists. For example, it is used
to study the species-abundance distribution, patterns and rates
of speciation, the evolution of sexual and asexual populations,
the interaction and diffusion of an invasive species or the ef-
fect of toxic chemicals in an existing ecosystem.

EcoSim is an individual-based model including three trophic
levels (primary producers, prey and predators) in a large
(1000 × 1000 cells) toroidal discrete world. Each individ-
ual possesses its proper behavioural model implemented by a
Fuzzy Cognitive Map [27] composed of perception, internal
and action concepts linked by excitatory and inhibitory edges
allowing for positive and negative feedback loops to appear.
The behavioural model and the physical characteristics (such
as size, speed and vision range) of each individual are coded
in its genome, allowing for the evolution of new behaviours
and physical characteristics. Species are also represented
as populations of individuals with high genomic similarities.
Species can emerge or disappear at any time step due to the
evolution, birth and death of their individuals [28]. Each in-
dividual is also associated with a reserve of energy that can
be refilled through food consumption and a metabolism func-
tion determining its energy usage based on its physical char-
acteristics, the complexity of its behavioural model and the
type of action performed, sexual reproduction being a partic-
ularly costly one. An important property of our model is that
it does not rely on any pre-defined fitness function [29]. In-
stead, fitness emerges from the multiple interactions between
the individuals and their changing environment.

With hundreds of thousands of unique individuals simultane-
ously living in a large and dynamic environment and being
subject to evolution for thousands of generations, many bi-
ological and ecological theories can be investigate through
EcoSim. EcoSim has been validated through studies show-
ing clear coherence of the features generated by the simula-
tion with empirical data such as species-abundance patterns,
chaotic and multi-fractal patterns and species–area relation-
ships.

Valery Forbes
Population modelling can be used to assess the risks of toxic
chemicals and other stressors, such as extrapolating from
toxic effects at the individual level to consequences for popu-
lation dynamics. Population modelling can add value to eco-
logical risk assessment by reducing uncertainty when extrap-

olating from ecotoxicological observations to relevant eco-
logical effects. Population models have the potential for
adding value to ecological risk assessment by incorporat-
ing better understanding of the links between individual re-
sponses and population size and structure, and by incorporat-
ing greater levels of ecological complexity [30].

HEALTH ECONOMICS

Sixten Borg
Heterogeneity in patient populations is an important issue in
health-economic evaluations, as the cost-effectiveness of an
intervention can vary between patient subgroups, while an
intervention that is not cost-effective in the overall popula-
tion may be cost-effective in particular subgroups. Identify-
ing such subgroups is of interest in the allocation of health-
care resources. We modelled disease activity in a heteroge-
neous patient population, by dividing it into more homoge-
neous subgroups and using a finite-mixture-model framework
to identify subgroups and fit a disease-activity model to each
subgroup [31]. The fitted models can evaluate interventions
using cost-effectiveness analysis and could indicate which in-
tervention to use in a given subgroup.

Tracy Comans
The delivery of health-care services presents difficult prob-
lems that simulation modelling can address. We used
discrete-event simulation to model the most efficient way of
providing hospital orthopaedic outpatient services [32]. This
work was used to inform a service-delivery change at a local
hospital and has since been extended to a larger health district
with four hospitals.

BIG DATA

Yifei Ma
Emergent technologies such as big data and high-
performance-computing technologies offer the potential to
improve simulation systems such as modelling and simula-
tion of public-health policy for epidemic outbreaks. This al-
lows us to improve both social behaviour modelling flexibil-
ity and simulation efficiency [33]. With this improvement,
the latency of evaluating policies in the laboratory for real-
time epidemic control is reduced. We can also evaluate the
effectiveness of two strategies during an epidemic outbreak
— self-motivated prevention behaviours and community-led
interventions — by simulating the strategies in US cities dur-
ing an influenza outbreak [34].

PHARMACOKINETICS AND PHARMACODYNAMICS

Nieko Punt
Over the past decades, the relationship between the pharma-
cokinetic (PK) properties of antibiotics, minimum inhibitory
concentrations and clinical effects has been increasingly well
understood. Inter-patient variability in the PK profile, how-
ever, has only recently been recognised as a major factor
in predicting the outcome in individual patients and estab-
lishing breakpoints for clinical susceptibility. Most predic-
tions to date have used data from healthy volunteers [35].
One of the modelling tools we have developed is Edsim++
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[36]. Edsim++ is an object-oriented visual pharmacokinet-
ics/pharmacodynamics (PKPD) modelling tool used in re-
search and education. One of the unique feature of Edsim++
is its programmability (C# language) at multiple levels. These
include programming at the low-level PKPD active pharma-
ceutical ingredient for building new (web) applications, pro-
gramming new PKPD objects for visual use (or re-use) and
programming plugins for adding new functionality.

William Jusko
Drug regimens for treatment of pancreatic cancer primarily
include gemcitabine with its limited efficacy. The addition of
a second drug with a complementary mechanism offers the
possibility of synergistic effects. The search for improved
combination therapies typically starts with the use of pancre-
atic cancer cell cultures and xenografts in mice [37]. Cell-
culture studies have been improved by moving from single
time-point measurement to assessment of the time course of
cell growth, quantitation of cell-cycle kinetics and application
of mathematical models that recognize the sites and mecha-
nisms of drug action and interactions in causing either inhi-
bition of growth or enhanced cytotoxicity. Xenograft studies
have likewise become more quantitative in utilizing combined
population modelling and physiologically based models for
pharmacokinetics and in reflecting growth, specific mecha-
nisms of action and insightful drug-interaction relationships.

FUZZY LOGIC

Lucas Brotz
Fuzzy set theory and fuzzy logic, originally developed by
Zadeh [38], allow the representation of variables according to
a gradation or degree of membership, rather than the classic
true/false membership of conventional Boolean sets. Fuzzy
logic also allows a conclusion to be reached with an associ-
ated gradation or degree of belief. As such, fuzzy set theory
and logic provide a useful system for combining information
of variable cardinality and/or confidence. Fuzzy set theory
is firmly established in engineering and science, and is in-
creasingly being used for ecological applications [39]. Using
fuzzy logic, we developed a framework for the dynamics of
jellyfish populations around the globe. This allowed us to
combine data of different “types” together in order to evalu-
ate the underlying signals [40].

INTERDISCIPLINARITY

Ayaz Hyder
Determinants of human health — environmental, social, bi-
ological — operate at multiple levels (individual, neighbour-
hood, regional). We use systems-science thinking and com-
putational epidemiology to bring together theory, data and
methods from multiple disciplines. This has applications
in satellite-based air-pollution-exposure assessment and birth
outcomes [41], predictive validation of agent-based models
for influenza [42], testing hypothesis regarding social depri-
vation and burden of influenza [43] and modelling the natural
history of esophageal cancer with a cost-effectiveness analy-
sis [44]

DISCUSSION
The initial attempt to define the field of population modelling
as “Modelling a collection of entities with different levels
of heterogeneity” clearly falls short of a catch-all definition.
Through the use of a heterogeneous range of examples, in
both this paper and its predecessor, we hope to illustrate the
way the field has been conceptualised and evolved, while still
acknowledging that we are in no way at the limit of the field’s
potential. Some of these topics have overlap with the previous
paper (such as disease modelling, big data and agent-based
modelling), while others were not previously covered.

The content of this paper could of course be organised along
different application topics or by methodology. Table 1 gives
a different perspective on the content of this paper, with an
illustration of the overlapping nature of research areas, as well
as a list of the methods used to tackle these problems.

The various examples provided here demonstrate the wide
range of applications that population modelling has: from in-
fectious diseases to population growth, from health-care ser-
vices to cancer treatment, from policy to pharmacodynam-
ics. The modelling tools range from simulation-based (agent-
based models, artificial-life-simulated ecosystem) to the theo-
retical (difference, differential and impulsive equations). Yet
there is also unity, with a focus on the utilisation of computa-
tional and theoretical methods as useful tools for tackling the
wide range of problems that can be elucidated by advanced
techniques.

Nevertheless, many challenges still remain. As data become
increasingly available, questions of privacy and security be-
come more prominent. Big data are an excellent resource
but uncontrolled access can also result in big privacy vio-
lations, as seen with the recent Ashley Madison hack [45].
Like Wikileaks [46] or Edward Snowden’s NSA data release
[47], gathering large amounts of data in one place opens that
data up to susceptibility to hacking or wide release on a scale
that was unprecedented only a few years ago. This can be a
force for public good or a massive violation of privacy. As
scientists, it behooves us to consider the ethical and moral
implications of our work.

A growing challenge is the melding of the physical sciences
with the social sciences. If human behaviour is to be truly
understood, modelling must draw upon fields that have ex-
pertise in the qualitative understanding of social, cultural and
behavioural norms in order to improve our quantitative mod-
els [48].

This paper, in conjunction with its predecessor, is a cu-
mulative effort of all contributors who responded to the
population-modeller call. Each contributor sent text to the
mailing list. The editing process is documented in the list
archives [4]. Readers are welcome to read the longer ver-
sions in the archives and join this discussion on the mailing
list [3].
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Summary of Methods

Robert
Smith? x x x

Ordinary and impulsive differential equations,
Latin hypercube sampling, Monte Carlo

simulations
Bruce Y.

Lee x x Agent-based models

Aristides
Moustakas x Agent-based models

Andreas
Zeigler x Random forests, support-vector machines

Mélanie
Prague x x x Ordinary differential equations with nonlinear

mixed effect models, control theory
Romualdo

Santos x x Differential equations, difference equations,
Malthusian modelling

Matthias
Chung x Robust and efficient point estimator methods for

ordinary differential equations
Robin
Gras x x Agent-based models, fuzzy cognitive maps

Valery
Forbes x x

Matrix population models, individual-based
population models, dynamic energy budgets,

mechanistic effect models
Sixten
Borg x x x Finite mixtures of disease activity models,

cost-effectiveness analysis
Tracy

Comans x x Discrete-event simulation of health services,
cost-effectiveness analysis

Yifei
Ma x x x Network models, database simulation, diffusion

dynamics, multi-theory methodology
Nieko
Punt x Pharmacokinetics/pharmacodynamics modelling,

two-stage Bayesian parameter estimation
William
Jusko x x Pharmacokinetics/pharmacodynamics modelling,

ordinary differential equations
Lucas
Brotz x x Fuzzy logic analysis of population dynamics to

investigate trends

Ayaz
Hyder x x x x

Agent-based models, microsimulation models,
cost-effectiveness analysis, computational

exposure science
Table 1. A two-dimensional view of the organisational structure of this paper.
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