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Abstract
Releasing infectious pests could successfully control and eventuallymaintain the num-
ber of pests below a threshold level. To address this from amathematical point of view,
two non-smooth microbial pest-management models with threshold policy are pro-
posed and investigated in the present paper. First, we establish an impulsivemodelwith
state-dependent control to describe the cultural control strategies, including releasing
infectious pests and spraying chemical pesticide. We examine the existence and sta-
bility of an order-1 periodic solution, the existence of order-k periodic solutions and
chaotic phenomena of thismodel by analyzing the properties of the Poincarémap. Sec-
ondly, we establish and analyze a Filippov model. By examining the sliding dynamics,
we investigate the global stability of both the pseudo-equilibria and regular equilib-
ria. The findings suggest that we can choose appropriate threshold levels and control
intensity to maintain the number of pests at or below the economic threshold. The
modelling and control outcomes presented here extend the results for the system with
impulsive interventions at fixed moments.
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1 Introduction

Agricultural pests—including small insects, animals and weeds—cause serious eco-
logical and economic problems, so it remains a key issue for government and scientists
to effective manage pests. Integrated pest management (IPM) is an environmentally
sound long-term pest-control strategy that combines biological, cultural and chemical
tactics (Lenteren 1995; Tang and Cheke 2005; Tang et al. 2015, 2010). Chemical pes-
ticides delivered by planes, handheld units or trucks carrying spraying equipment can
reduce a considerable fraction of pest population in a short period. However, chemical
control is recognized as a major hazard to human health and some beneficial insects
(Sasmal et al. 2016; Gao et al. 2013). In addition, overuse of pesticides has led to more
than 500 species’ resistance to pesticides (Liang et al. 2013).

Biological control is another effective method in the IPM (Wang et al. 2010; Tang
and Liang 2013), which has a relatively low risk to human health and the environ-
ment (Lenteren and Woets 1988). The use of virus, fungi and bacteria are effective
biological control methods (Cai et al. 2015; Bhattacharyya and Bhattacharya 2006).
There is evidence that viral infection might accelerate the termination of susceptible
prey blooms (Jacquet et al. 2002; Gastrich et al. 2004) . It suggests that disease infec-
tion accelerates to terminate pests. Infective pests are usually bred in laboratories and
released with the expectation of triggering considerable infection in the pest popula-
tion. For example, parasitic wasps that deliver a lethal virus to crop pests have been
used in agriculture (Peng 2005). The virus is attached to the wasps’ offspring when
they hatch, which leads to the crop pests’ infection and greatly increased death rate.

The essential target of IPM is to maintain the pest population below a threshold
called the economic injury level (EIL) (Lenteren and Woets 1988; Liang et al. 2015).
Based on the IPM strategy, a number of mathematical models have been proposed to
evaluate the impact of biological and chemical control on pest management (Sasmal
et al. 2016; Wang et al. 2010; Liang et al. 2015; Liu et al. 2015; Tang et al. 2012; Jiao
et al. 2009; Kar et al. 2012). Besides the continuous control strategy (Sasmal et al.
2016; Kar et al. 2012), impulsive IPM strategies—including spraying pesticides and
releasing natural enemies or infective pests at critical times—are modelled by impul-
sive differential equations (Wang et al. 2010; Liang et al. 2015; Jiao et al. 2009). Jiao
et al. (2009) modelled an infectious disease spreading in the pest population due to
the application of microbial pathogen. They investigated the effect of releasing infec-
tive pests with spraying pesticides on pest management and developed the following
mathematical model with fixed-instant impulsive control measures:

dS(t)

dt
= bS(t)

(
1 − S(t) + ηI (t)

K

)
− βS(t)I (t)

1 + α I (t)
,

d I (t)

dt
= βS(t)I (t)

1 + α I (t)
− μI (t),

⎫⎪⎪⎬
⎪⎪⎭

t �= nT ,

�S(t) = −pS(t),
�I (t) = −q1 I (t) + τ

}
t = nT , n = 1, 2, . . . ,

(1)

where S(t) and I (t) are the density of susceptible and infective pests, respectively;
�S(t) = S(t+)−S(t),�I (t) = I (t+)− I (t). In their model, b stands for the intrinsic
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growth rate of pests; K represents the carrying capacity; η is the competing ability
of infective pests with the susceptible pests; μ is the death rate of infected pests. A
saturated incidence rate βS(t)I (t)/(1 + α I (t)) is taken in this model, which tends
to the saturation level β/α when I is large. Here β I represents the infection force of
the disease, and 1/(1+ α I ) describes an inhibition effect as the size of infected pests
increases. They denote p and q1 as, respectively, the proportion of susceptible and
infective pests removed by spraying chemical pesticides at time t ; τ is the amount of
infective pests released at time t . The authors show that the pests can be controlled by
choosing optimal releasing periods or optimal dosage of pesticides.

A common assumption for model (1) is that the control behaviour occurs in regular
pulses. However, there is an important concept in IPM, the economic threshold (ET ),
which guides whether the control measure is introduced or suspended. This results in
a state-dependent control strategy. The first aim of our work is to improve model (1)
and propose a new model with the following control strategies: when the number of
susceptible pests reaches the ET , the control strategies are implemented; otherwise it is
suspended. State-dependent impulsive differential equations have gained considerable
attention (Xiao et al. 2013a; O’Rourke and Jones 2011; Lakshmikantham et al. 1989;
Simeonov and Bainov 1988; Li and Wu 2016) and have been widely employed in
variety of fields, such as neural network control (Touboul and Brette 2009; Li et al.
2018), diabetes mellitus and tumor control (Huang et al. 2012; Tang et al. 2016), HIV
antiviral therapy (Smith and Wahl 2004; Lou et al. 2012; Yang et al. 2013) and pulse
control in epidemics (Nie et al. 2013). To contain the number of susceptible pests below
the ET , we will focus on two issues: 1. How can the IPM strategy involving releasing
infectious pests and spraying chemical pesticides be applied to effectively control the
pest population? 2. Canwe determine the frequency of implementing controlmeasures
to effectively prevent an intolerable build-up of pests?

In state-dependent impulsive models, the core of the control is that once the number
of susceptible pests reaches the ET , one implements the control measures instanta-
neously and immediately reduces it below the ET , which can hardly be achieved
in practice. The control activities cannot be implemented instantaneously, and they
always take time. The second object of this study is then to formulate a Filippov
model to describe the non-instantaneous control policy: once the number of suscep-
tible pests exceeds the ET , the control strategy is carried out; no control strategies
are applied otherwise. Filippov systems have important application in many fields,
including ecosystem maintenance (Křivan et al. 2016), disease control (Xiao et al.
2012, 2013b, 2015; Chong et al. 2016) and pest management (Tang et al. 2012). To
explore how this type of control policy affects pest management, we would like to
consider the following questions: Can this type of threshold policy contain the pest
numbers below the EIL? What is the difference between implementing the impulsive
control measure and the non-instantaneous control measure?

Our paper is structured as follows. First, we propose and analyze a model with
state-dependent feedback control. We initially examine the analytic properties of a
Poincaré map and then discuss the complexity of the domain for the existence of
a positive equilibrium. We investigate the stability of an order-1 periodic solution
as well as order-k periodic solutions. Second, we extend our model with impulsive
control to a Filippov model. We examine the existence of sliding mode region as well

123



1392 A. Wang et al.

as its dynamics. The global behaviour is then addressed to show the control outcome
guided by the threshold level. Finally, wemake some concluding remarks on the results
obtained in this study, which can be used in practical decision-making.

2 Impulsive microbial pest managementmodel with economic
threshold

Wewill extendmodel (1) to an impulsivemodel with state-dependent feedback control
measures. To this end, we initially show the dynamics of the ordinary differential
equation model

dS(t)

dt
= bS(t)

(
1 − S(t) + ηI (t)

K

)
− βS(t)I (t)

1 + α I (t)
,

d I (t)

dt
= βS(t)I (t)

1 + α I (t)
− μI (t).

(2)

The equilibria E0 = (0, 0) and E10 = (K , 0) always exist for model (2) while the
positive equilibrium satisfies

b(αμ + βη)S2 + (βμK − αbμK − bμη)S − μ2K = 0

I = βS − μ

αμ
.

Denote

f (S) = b(αμ + βη)S2 + (βμK − αbμK − bμη)S − μ2K .

A unique positive equilibrium E11 = (S11, I11) exists for model (2) if and only if

f (μ/β) < 0 ⇐⇒ R10 ≡ βK

μ
> 1,

where

S11 = μ(bη + αbK − βK ) + μ
√

(βK − bη − αbK )2 + 4K (αμb + bηβ)

2(αμb + bηβ)
,

I11 = βS11 − μ

αμ
.

The equilibrium E0 is a saddle and hence not stable. The equilibrium E10 is locally
asymptotically stable for R10 ≤ 1 and unstable for R10 > 1; the positive equilibrium
E11 is locally asymptotically stable for R10 > 1. The equilibrium E10 is a node for
R10 ≤ 1 and a saddle for R10 > 1; the equilibrium E11 is a node for δ0 ≥ 0, while it
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Fig. 1 The topological trajectory map of system (2). Parameters are as follows: b = 3; η = 6; K = 20; β =
0.4;α = 0.01; and μ = 8.5 (a), μ = 1 (b)

is a focus for δ0 < 0, where

δ0 =
(
b

K
S11 + αμI11

1 + α I11

)2

− 4 det(J (S11, I11))

and

J (S, I ) =
⎛
⎜⎝
b

(
1 − 2S + ηI

K

)
− β I

1 + α I
−bη

K
S − βS

(1 + α I )2
β I

1 + α I

βS

(1 + α I )2
− μ

⎞
⎟⎠ .

Denote

P(S, I ) = bS

(
1 − S + ηI

K

)
− βSI

1 + α I
, Q(S, I ) = βSI

1 + α I
− μI .

Choosing a Dulac function as B(S, I ) = 1/(SI )), it follows that

∂(BP)

∂S
+ ∂(BQ)

∂ I
= − b

K I
− αβ

(1 + α I )2
,

which indicates that no closed orbit exists for system (2); i.e., we have the following
main result, as illustrated in Fig. 1.

Theorem 1 For model (2), the boundary equilibrium E10 is globally asymptotically
stable when R10 ≤ 1; while the positive equilibrium E11 is globally asymptotically
stable when R10 > 1.

When a combination of biological and chemical tactics are applied to reduce pests to
a tolerable level, the control strategy is implemented once the number of susceptible
pests reaches an ET , which is denoted by Sc in the rest of this paper, so that the
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economic injury level (EIL) is not exceeded (Lenteren 1995; Tang and Cheke 2005;
Tang et al. 2010; Lenteren and Woets 1988). We assume that the chemical pesticides
have an impact on both susceptible and infective pests while an amount of infective
pests are simultaneously released into the population. Taking this threshold control
strategy into account, system (2) becomes:

dS(t)

dt
= bS(t)

(
1 − S(t) + ηI (t)

K

)
− βS(t)I (t)

1 + α I (t)
,

d I (t)

dt
= βS(t)I (t)

1 + α I (t)
− μI (t),

⎫⎪⎪⎬
⎪⎪⎭

S < Sc,

S(t+) = (1 − p)S(t),

I (t+) = q I (t) + τ

}
S = Sc,

(3)

where S(t+) and I (t+) represent the numbers of susceptible and infective pests after
the strategy (i.e., spraying pesticides and releasing infective pests) is implemented at
time t . In particular, S(0+) and I (0+) represent the initial densities of susceptible and
infected pests. In this section,we always assume that S(0+) < Sc, I (0+) > 0 and Sc <

K . Otherwise, the initial values are chosen after the control strategy is implemented
once. Inmodel (3),q = q2+(1−q1) and p, q1, q2, τ are all positive.Here, p represents
the proportion of susceptible pests removed by spraying chemical pesticides at time t .
q I (t)+τ stands for the number of infective pests after implementing the IPM strategy
once at time t . If τ = 0, then q is the increase of infective pests due to carrying out
the IPM strategy once. In particular, q1 denotes the fraction of infective pests that is
removed due to the pesticides and q2 I (t) + τ denotes the amount of infective pests
after release.

In this section, we will make a rigorous study of the model to examine the com-
plicated dynamical behaviour and suggest some interesting biological implications,
based on the newly developed theory related to the density-dependent impulsive semi-
dynamical system (Touboul andBrette 2009; Bainov and Simeonov 1993). To this end,
we present some preliminaries in the following.

We will briefly introduce some notations and definitions related to planar impulsive
semi-dynamical systems with state-dependent feedback control. The system can be
described as follows

dx

dt
= P(x, y),

dy

dt
= Q(x, y), (x, y) /∈ M

�x = ψ1(x, y), �y = ψ2(x, y), (x, y) ∈ M,
(4)

where (x, y) ∈ R2,�x = x+ − x,�y = y+ − y, M denotes the impulsive set and
P, Q, ψ1, ψ2 are continuous functions from R2 into R. The point z+ = (x+, y+) is
the impulsive image of z = (x, y), and ψ(x, y) = (ψ1(x, y), ψ2(x, y)) defines the
impulsive function.

Let N ≡ ψ(M) = {z+|z+ = ψ(z), z ∈ M} be the phase set and N ∩ M = φ.
Let (X ,�,R+) be a semi-dynamical system (Lakshmikantham et al. 1989) with X
a metric space and R+ the set of nonnegative numbers. The function �z = �(z, t) :
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X × R+ → X satisfies �(z, 0) = z. We have �(�(z, t), s) = �(z, t + s) for all
z ∈ X and t, s ∈ R+, so �(z, t) is a continuous map. The set

C+(z) = {�(z, t)|t ∈ R+}

is called the positive orbit of z. For any subset M ⊂ X and z ∈ X , define

M+(z) = C+(z) ∩ M − {z}, M−(z) = G(z) ∩ M − {z},

where

G(z) = ∪{G(z, t)|t ∈ R+}, G(z, t) = {ω|�(ω, t) = z}.

We set M(z) = M+(z) ∪ M−(z).
It is worth noting that three possible properties exist for the trajectory of any point

z0 ∈ R2 for model (4) (Bainov and Simeonov 1993).

1. The trajectory of z0 has infinitely many discontinuities and experiences infinitely
many impulses if z+k is defined well and M+(z+k ) �= ∅ for any k ≥ 1.

2. If there is an integer k0 > 0 such that zk is defined well for k = 1, 2 . . . , k0,
M+(zk) �= ∅ for k < k0 and M+(zk0) = ∅, the orbit of z0 has finite discontinuities
and experiences finitely many impulses.

3. If M+(z) = M+(z0) = ∅ for any z ∈ �z0 , no discontinuities exist for the
trajectory of z0; i.e., the trajectory experiences no impulses in such case.

Definition 1 A planar impulsive semi-dynamical system (R2,�; M, ψ) refers to a
semi-dynamic system (R2,�) with a nonempty closed subset M ⊂ R2 and a con-
tinuous function ψ : M → R2 such that, for any z ∈ M , there is a δz > 0 such
that

G(z, (0, δz)) ∩ M = ∅, �(z, (0, δz)) ∩ M = ∅.

We denote the points of discontinuity of �z by {z+n } and call z+n the impulsive image
of zn throughout this paper. A function ι is defined fromR2 intoR+ ∪{∞} as follows:
for any z ∈ X , set ι(z) = s if s satisfies �(z, s) ∈ M , �(z, t) /∈ M for 0 < t < s,
and ι(z) = ∞ if M+(z) = ∅.
Definition 2 Let �z be a trajectory in (R2,�; M, ψ). If there are non-negative inte-
gers m and k such that k is the smallest integer satisfying z+m = z+m+k , �z is said to be

periodic of period Tk and order k with Tk = ∑m+k−1
i=m ι(zi ) = ∑m+k−1

i=m si .

For simplification, a periodic trajectory of period Tk and order k is called an order-k
periodic solution in the rest of this paper. If an order-k periodic solution is isolated,
it is said to be an order-k limit cycle. Finally, we provide the following analogue of
the Poincaré criterion to determine the local stability of order-k periodic solutions
(Simeonov and Bainov 1988).
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1396 A. Wang et al.

Lemma 1 Let χ(x, y) be a sufficiently smooth function such that χ(x, y) = 0 if and
only if (x, y) ∈ M. The order-k periodic solution (ξ(t), η(t)) of model (4) is orbitally
asymptotically stable and enjoys the property of asymptotic phase if the multiplier μ2
satisfies the condition |μ2| < 1, where

μ2 =
q∏

k=1

�k exp

[ ∫ T

0

(∂P

∂x
(ξ(t), η(t)) + ∂Q

∂ y
(ξ(t), η(t))

)
dt

]

�k =
P+

(
∂ψ2
∂ y

∂χ
∂x − ∂ψ2

∂x
∂χ
∂ y + ∂χ

∂x

)
+ Q+

(
∂ψ1
∂x

∂χ
∂ y − ∂ψ1

∂ y
∂χ
∂x + ∂χ

∂ y

)

P ∂χ
∂x + Q ∂χ

∂ y

,

where P, Q,
∂ψ1
∂x ,

∂ψ1
∂ y ,

∂ψ2
∂x ,

∂ψ2
∂ y ,

∂χ
∂x ,

∂χ
∂ y are calculated at the point (ξ(tk), η(tk)),

P+ = P(ξ(t+k ), η(t+k )) and Q+ = Q(ξ(t+k ), η(t+k )) with t+k = ι(ξ(t+k−1), η(t+k−1)).

2.1 Properties of the Poincarémap for impulsive system (3)

In this subsection, we will construct a Poincaré map based on impulsive points in
phase set, which plays an important role in addressing the dynamics of system (4). We
initially address the isoclines for system (2), which can be defined as

l1 = {
(S, I ) ∈ R2+ : I = g1(S)

}
, l2 = {

(S, I ) ∈ R2+ : I = g2(S)
}
,

where

g1(S) = β

αμ
S − 1

α

g2(S) = αb(K − S) − bη − βS +
√
[(β + αb)S + bη − αbK ]2 + 4αb2η(K − S)

2αbη
.

Define

l3 =
{
(S, I ) ∈ R2+ : S = Sc

}
, l4 =

{
(S, I ) ∈ R2+ : S = (1 − p)Sc

}
.

The intersection points of the curves l2 and li (i = 3, 4) are (Sc, Is2) and ((1 −
p)Sc, Ips2), respectively, where Is2 = g2(Sc), Ips2 = g2((1 − p)Sc), as shown in
Fig. 1. Similarly, the intersection points of curves l1 and li (i = 3, 4) are (Sc, Is1) and
((1 − p)Sc, Ips1), respectively, where Is1 = g1(Sc), Ips1 = g1((1 − p)Sc). Denote
the region in the first quadrant to the left of l3 as �1 = {(S, I ) ∈ R2+ : S < Sc}.

To clearly address the properties of Poincaré map and the global behaviour of
system (3), we consider the following two cases: (C1) R10 < 1 and (C2) R10 > 1.

We initially examine the properties of Poincaré map for case (C1). In this scenario,
no positive equilibrium exists for system (2), and the equilibrium (K , 0) is globally
asymptotically stable. This implies that every trajectory initiating from �1 of system
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(2) will ultimately reach the line l3, so the impulsive set of system (3) in such scenario
takes the form

M =
{
(Sc, I ) ∈ R2+ : 0 ≤ I ≤ Is2

}
. (5)

The impulsive function for model (3) reads

ψ(S, I ) = (ψ1(S, I ), ψ2(S, I )) = ( − pSc, (q − 1)I (t) + τ
)

and so the phase set takes the form

N = {
((1 − p)Sc, I ) ∈ R2+ : τ ≤ I ≤ q Is2 + τ

}
. (6)

Let �(t, S0, I0) = (S(t, S0, I0), I (t, S0, I0))T be the solution of system (2) sat-
isfying S(t0, S0, I0) = S0, I (t0, S0, I0) = I0. Then (R2+,�; M, ψ) is an impulsive
semi-dynamical system. We assume the initial point Z0 = (S0, I0) ∈ N and denote
the impulsive image of Zk as Z

+
k in the rest of this paper unless specified otherwise.

Denote

X psc =
{
((1 − p)Sc, I ) ∈ R2+ : I ≥ 0

}
, Xsc =

{
(Sc, I ) ∈ R2+ : I ≥ 0

}
.

For any point Z+
0 ((1− p)Sc, I0) ∈ X psc, the trajectory�(t, (1− p)Sc, I0)must reach

the impulsive set in a finite time, denoted by t1. Thenwe have S(t1, (1−p)Sc, I0) = Sc.
Denote the intersection point as Z1 = (S1, I1). Then

S1 = Sc, I1 = I (t1, (1 − p)Sc, I0),

S+
1 = (1 − p)Sc, I+

1 = q I1 + τ.

Performing the above procedure repeatedly yields a sequence {I+
k }, where

I+
k+1 = q Ik+1 + τ, Ik+1 = I

(
tk+1, (1 − p)Sc, I

+
k

) .= F (
I+
k

)
, k = 0, 1, . . .

Select X psc as the Poincaré section, then the Poincaré map φ can be defined as

I+
k+1 = qF (

I+
k

) + τ ≡ φ
(
I+
k

)
. (7)

Theorem 2 Assume that R0 < 1 and Sc < K. Then the Poincaré map φ satisfies the
following properties:

(i) The domain and range of φ are [0,+∞) and [τ, q Is2 + τ), respectively. The
Poincaré map φ is increasing on [0, Ips2] and decreasing on (Ips2,+∞).

(ii) φ is continuously differentiable.
(iii) φ is concave down on [0, Ips2).
(iv) A unique fixed point exists for φ.
(v) There is a horizontal asymptote for φ as I+

k → +∞.
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Fig. 2 The Poincaré map φ and φ2. The parameter values are b = 3, η = 6, K = 20, β = 0.4, α =
0.01, μ = 8.5, Sc = 12, p = 0.2, τ = 0 and q = 6 (a), q = 12 (b)

Proof (i) Based on the vector field of system (2), the domain of φ is [0,+∞). For any
I1, I2 ∈ [0, Ips2] with I1 < I2, since dS/dt > 0 below the isocline l2, as shown in
Fig. 1a, and there is no intersection between the trajectories �(t, (1 − p)Sc, I1) and
�(t, (1 − p)Sc, I2), we have F(I1) < F(I2). Thus φ(I1) < φ(I2).

For Ik ∈ (Ips2,+∞)(k = 1, 2) with I1 < I2, since dS/dt < 0 above the isocline
l2 and dS/dt > 0 below the isocline l2, the orbit �(t, (1 − p)Sc, Ik) (k = 1, 2) will
cross the line S = (1 − p)Sc once before it hits the line S = Sc. Denote the vertical
coordinate of the intersection point between the trajectory �(t, (1 − p)Sc, Ik) and
line l4 as Ik1. Then the order of the two new positions I11 and I21 is inverted (i.e.,
I11 > I21). A similar process to the previous case yields

φ(I1) = φ(I11) > φ(I21) = φ(I2).

Hence, φ is increasing on [0, Ips2] and decreasing on (Ips2,+∞); the range of φ takes
the form [τ, qF(Ips2) + τ ], as shown in Fig. 2.

(ii) It follows from the theorem of regularity of the solution of an ordinary dif-
ferential equation with respect to its initial condition that every solution of system
(2) initiating from the first quadrant is continuous and differentiable since both func-
tions P(S, I ) and Q(S, I ) are continuous and differentiable in the first quadrant.
Hence, F(I+

k ) is continuous and differentiable with respect to I+
k , which yields that

the Poincaré map φ in (7) is continuously differentiable. It is easy to show that φ is
regular.

(iii) System (3) can be rewritten as the following form in the phase plane

d I

dS
=

βSI
1+α I − μI

bS
(
1 − S+ηI

K

)
− βSI

1+α I

≡ g(S, I )

I ((1 − p)Sc) = I0.

(8)
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For model (8), we only focus on the region

�2 =
{
(S, I ) ∈ R2+ : I < g2(S)

}
.

The function g(S, I ) is continuously differentiable in �2, and the solution of (8) is

I (S, I0) = I0 −
∫ (1−p)Sc

S
g(S, I (S, I0))dS.

For convenience, we take x instead of I0, which results in the solution

I (S, x) = x −
∫ (1−p)Sc

S
g(S, I (S, x))dS. (9)

Hence the Poincaré map takes the form

φ(x) = q I (Sc, x) + τ. (10)

Note that

∂g

∂ I
=

[
βS

(1+α I )2
− μ

]
P(S, I ) +

[
βS

(1+α I )2
+ bηS

K

]
Q(S, I )

[
bS

(
1 − S+ηI

K

)
− βSI

1+α I

]2

∂2g

∂ I 2
=

2αβS
(1+α I )3

[
μI − bS

(
1 − S+ηI

K

)]
P(S, I ) + 2

[
bηS
K + βS

(1+α I )2

]
P2(S, I ) ∂g(S,I )

∂ I[
bS

(
1 − S+ηI

K

)
− βSI

1+α I

]3 .

(11)

Next,wewill determine the signof formulae (11),whichwill be useful in the discussion
of concavity of the Poincaré map φ. Since S ≤ Sc < K and I < Ips2, we obtain
P(S, I ) > 0, Q(S, I ) < 0 and

βS

(1 + α I )2
− μ <

1

(1 + α I )I
Q(S, I ) < 0,

so
∂g

∂ I
< 0.
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By P(S, I ) > 0, Q(S, I ) < 0, the second equation of (11) can be written as

∂2g

∂ I 2
<

{
2αβS

(1+α I )3

[
μI − bS

(
1 − S+ηI

K

)]
+ 2

[
bηS
K + βS

(1+α I )2

] [
βS

(1+α I )2
− μ

]}
P(S, I )

[
bS

(
1 − S+ηI

K

)
− βSI

1+α I

]3

<

{
2αβS

(1+α I )3

[
μI − bS

(
1 − S+ηI

K

)]
+ 2βS(1+α I )

(1+α I )3

[
βSI

(1+α I )2
− μI

]}
P(S, I )

[
bS

(
1 − S+ηI

K

)
− βSI

1+α I

]3

<

2αβS
(1+α I )3

[
βSI

(1+α I )2
− bS

(
1 − S+ηI

K

)]
P(S, I )

[
bS

(
1 − S+ηI

K

)
− βSI

1+α I

]3
< 0.

It follows from the theorem of Cauchy and Lipschitz that

∂ I (S, x)

∂x
= exp

(∫ S

(1−p)Sc

∂

∂ I

(
Q(u, I (u, x))

P(u, I (u, x))

)
du

)
> 0

∂2 I (S, x)

∂x2
= ∂ I (S, x)

∂x

∫ S

(1−p)Sc

∂2

∂ I 2

(
Q(u, I (u, x))

P(u, I (u, x))

)
∂ I (u, x)

∂x
du.

(12)

Further calculation yields that
∂2 I (S, x)

∂x2
< 0, so the Poincaré map is increasing and

concave down for I < Ips2, as shown in Fig. 2.
(iv) Note that φ is decreasing on (Ips2,+∞), so there exists Ĩ ∈ (Ips2,+∞) such

that φ( Ĩ ) < Ĩ . Further, since φ(0) = τ > 0, there exists I ∗ ∈ (0, Ĩ ) such that
φ(I ∗) = I ∗; that is, there is a fixed point on [0,+∞) for φ.

If φ(Ips2) < Ips2, then the fixed point is I ∗ ∈ (0, Ips2), as shown in Fig. 2a. On
the one hand, since φ is decreasing on (Ips2,+∞), we have φ(I ) < φ(Ips2) < Ips2
for I ∈ (Ips2,+∞), which indicates no fixed point exists for φ on (Ips2,+∞). On
the other hand, φ is concave down on [0, Ips2], so a unique fixed point exists for φ on
[0, Ips2].

If φ(Ips2) > Ips2, no fixed point exists for φ on [0, Ips2] due to the concavity and
φ(0) > 0; on the other hand, since φ is decreasing on (Ips2,+∞), there is a unique
fixed point for φ on (Ips2,+∞), as shown in Fig. 2b.

(v) Let

�2 = {(S, I ) : I ≤ g2(S), S ≥ 0, I ≥ 0} .

We will prove that �2 is an invariant set of system (2). The set defined by R2+ =
{(S, I ) : S, I ≥ 0} is an invariant set of system (2), since

dS

dt

∣∣∣∣
S=0

= 0,
d I

dt

∣∣∣∣
I=0

= 0.

To examine the invariability of set�2, it is necessary to show every trajectory initiating
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from some point out of �2 will flow into it ultimately. This is confirmed by

(P(S, I ), Q(S, I )) · (g′
2(S),−1

) ∣∣∣
I=g2(S)

= P(S, g2(S))
(−αb − β)

√
C2
0 + 4αb2η(K − S) − 2αb2η + (β + αb)C0

2αbη
√[(β + αb)S + bη − αbK ]2 + 4αb2η(K − S)

− Q(S, g2(S))

= − Q(S, g2(S)) > 0,

whereC0 = (β +αb)S+bη−αbK and · represents the scalar product of two vectors.
Thus, the trajectory�(t, (1− p)Sc, x)will enter into the invariant set�2 and approach
the unique equilibrium (K , 0), which implies that the trajectory �(t, (1 − p)Sc, x)
intersects with the line l3 for any x ∈ [0,+∞). We claim that limx→+∞ I (T , (1 −
p)Sc, x) = 0, where T satisfies limx→+∞ S(T , (1 − p)Sc, x) = Sc. Otherwise, if
limx→+∞ I (T , (1 − p)Sc, x) = C1 > 0, the solution of the backward system of (3),

denoted by
(
X1(T , Sc,

C1

2
), X2(T , Sc,

C1

2
)
)
, satisfies

X1

(
T , Sc,

C1

2

)
= (1 − p)Sc, X2

(
T , Sc,

C1

2

)
> +∞.

This is impossible and so

lim
x→+∞ φ(x) = lim

x→+∞ I (T , (1 − p)Sc, x) + τ = τ,

which indicates that φ(x) is bounded and converges to a finite value τ as x → +∞.
Hence, there does exist a horizontal asymptote I = τ for the Poincaré map I = φ(x)
as shown in Fig. 2. This completes the proof.

Now we turn to case (C2). In this scenario, we have R10 > 1, and there is a positive
equilibrium E11 = (S11, I11) for model (2), which is globally asymptotically stable.
We will study different cases where there are no impulses, finite impulses or infinite
impulses for the solutions starting from ((1 − p)Sc, I

+
0 ). The domain of φ may vary

as the variation of impulses. There are two cases to consider according to whether or
not the threshold level Sc is greater than the critical value S11.

We first consider the case Sc ≤ S11. It follows that (1− p)Sc < S11 and any solution
starting from the point ((1− p)Sc, I

+
0 )will experience infinite impulses, which results

in the domain of the Poincaré map φ being [0,+∞). Further, the Poincaré map φ has
the same property as in Theorem 2.

Now, we focus on the case where Sc > S11. In this scenario, there is a trajectory
tangent to the impulsive set M (or line l3) at the point (Sc, Is2), denoted by L . Denote
the smallest abscissa of all the intersection points between L and the isocline l2 as
Smin. If (1 − p)Sc ≤ Smin, the Poincaré map φ is defined well and has the same
characteristics as described in Theorem 1, so we only examine the property of φ for
(1− p)Sc > Smin in the next. Denote the largest coordinate of the intersection points
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of lines l4 and L as Imax and the smallest one as Imin. Any trajectory initiating from
(Imin, Imax) cannot hit the impulsive set S = Sc, so it is free from impulses, and
M+(I+

0 ) = ∅ for I+
0 ∈ (Imin, Imax). Otherwise, any orbit starting from [0, Imin] will

reach the impulsive set S = Sc in finite time, and any orbit initiating from [Imax,+∞)

will cross the line l4 once and then hits the impulsive set. We summarize the above
result as follows.

Lemma 2 If Sc ≤ S11 or Sc > S11 and (1− p)Sc ≤ Smin, the domain of the Poincaré
map φ is [0,+∞) and all properties listed in Theorem 2 are true. If Sc > S11 and
(1 − p)Sc > Smin, the definition of Poincaré map φ is Dφ = Dφ1 ∪ Dφ2, where
Dφ1 = [0, Imin], Dφ2 = [Imax,+∞).

To address the properties of the Poincaré map φ in detail, we distinguish the possi-
bilities where φ(Imin) ≤ Imin, φ(Imin) ≥ Imax and Imin < φ(Imin) < Imax. The main
result is as follows.

Theorem 3 (i) If φ(Imin) ≤ Imin, any trajectory of model (3) initiating from Dφ

experiences infinite impulses, and a stable order-1 periodic solution exists for
model (3).

(ii) Ifφ(Imin) ≥ Imax, any trajectory ofmodel (3) initiating from Dφ experiences either
finite or infinite impulses, and a fixed point I ∈ Dφ2 may exist for the Poincaré
map.

(iii) If Imin < φ(Imin) < Imax, the orbit of model (3) experiences only finite impulses.

Proof (i) It follows from the direction of the vector field of model (2) that φ(Dφ2) ⊂
φ(Dφ1) ⊂ Dφ1. Since Imin < Ips2 and φ(Imin) ≤ Imin, any trajectory of model
(3) initiating from Dφ1 experiences infinitely many impulses. If φ(Imin) = Imin or
φ(Imin) < Imin, φ(I+

0 ) > I+
0 , then I+

k = φk(I+
0 ) is monotonically increasing for

k = 1, 2, . . . If φ(Imin) < Imin and φ(I+
0 ) < I+

0 , then I+
k = φk(I+

0 ) is monotonically
decreasing for k = 1, 2, . . . Consequently, {I+

k } is convergent; i.e., there is a stable
order-1 periodic solution for model (3) in this case.

(ii) If φ(Imin) ≥ Imax, we distinguish three possibilities: φ(0) ≥ Imax, Imin ≤
φ(0) < Imax and φ(0) < Imin.

If the first case is true, φ(Dφ2) ⊂ φ(Dφ1) ⊂ Dφ2. For any I+
0 ∈ Dφ , we have

M+(I+
0 ) �= ∅ and M+(I+

k ) �= ∅ with I+
k = φk(I+

0 ), so any trajectory of model
(3) initiating from Dφ experiences infinitely many impulses. By Theorem 1, there is a
unique fixed point I ∈ Dφ2 for φ in such scenario, so a stable order-1 periodic solution
exists for model (3).

If the second case holds, the continuity of the Poincaré map φ on Dφ1 together
with φ(Imin) ≥ Imax, φ(0) < Imax leads to the existence of 0 < Ic ≤ Imin such that
φ(Ic) = Imax. In such case, any orbit starting from the point ((1 − p)Sc, I

+
0 ) with

I+
0 ∈ (0, Ic) is free from impulse after one impulse, while those orbits initiating from

((1 − p)Sc, I
+
0 ) with I+

0 ∈ (Ic, Imin) experience infinite impulses.
For the third case, similar discussion yields two points Ic1, Ic2 ∈ Dφ1 satisfying

φ(Ic1) = Imin, φ(Ic2) = Imax. Then any trajectory initiating from the point ((1 −
p)Sc, I

+
0 ) with Ic1 < I+

0 < Ic2 is also free from impulsive effect after one impulse,
and other trajectories with I+

0 ∈ (0, Ic1) ∪ (Ic2, Imin) experience infinite impulses.
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(iii) If Imin < φ(Imin) < Imax, performing a similar process to Theorem 1 yields
that φ is continuous, increasing and concave down on Dφ1. Since φ(Imin) > Imin, no
fixed point exists for φ on Dφ1. For any I+

0 ∈ Dφ1, there exist a positive integer k such
that I+

j = φ j (I+
0 ) ∈ Dφ1, j = 1, 2, . . . , k−1 and I+

k = φk(I+
0 ) ∈ (Imin, Imax). This

indicates that any trajectory initiating from ((1− p)Sc, I
+
0 )will be free from impulses

after finite impulses, where I+
0 ∈ Dφ1, which is also true for any orbit initiating from

((1− p)Sc, I
+
0 ) with I+

0 ∈ Dφ2 due to φ(Dφ2) ⊂ φ(Dφ1). This completes the proof.
��

It is important to emphasize that the fixed point of the Poincaré map φ corresponds to
an order-one periodic solution of system (4), which we address in detail in the next
section. The order-k periodic solutions will be examined in the following section.

2.2 Dynamic properties of impulsive system (3)

In this subsection, we will focus on the existence and stability of periodic solutions
for Case (C1). For Case (C2), according to the previous subsection, the domain of the
Poincaré map and impulses will result in complicated dynamic behaviour, which can
be examined by implementing a similar procedure. We omit it here.

According to Sect. 2.1, there is an infinite sequence {I+
n } for any I0 ∈ [0,+∞) for

Case (C1), where I+
n = φn(I0). In this subsection,we examine the globally asymptotic

stability of {I+
n }, which refers to the order-k (k ≥ 1) periodic solutions of system (3).

We initially investigate the global stability of order-1 periodic solution.

Theorem 4 If R10 < 1, Sc < K andφ(Ips2) ≤ Ips2, there is a unique order-1 periodic
solution of system (3), and it is globally asymptotically stable.

Proof By Sect. 2.1, there is a unique fixed point for the Poincaré map φ, which we
denote by I . This suggests that a unique order-1 periodic solutionwith initial condition
S(t0) = (1 − p)Sc, I (t0) = I exists for system (4), denoted by (ξ(t), η(t)).

For any I ∈ [0, Ips2], we have φ(I ) ∈ [0, Ips2], which is equivalent to
φ([0, Ips2]) ⊂ [0, Ips2], so the fixed point theorem guarantees I ∈ [0, Ips2]. More-
over, φ is decreasing on (Ips2,+∞), and so one obtains φ(I ) ≤ φ(Ips2) ≤ Ips2 for
I ∈ (Ips2,+∞). Thus φ((Ips2,+∞)) ⊂ [0, Ips2]. Therefore, it is sufficient to prove
that the sequence {I+

n } converges on [0, Ips2].
Next, we will examine the global stability of the solution (ξ(t), η(t)). We consider

the following two cases.
(i) For I+

0 ∈ [0, Ips2], we have I+
1 = φ(I+

0 ). The result is obvious for I+
1 = I+

0 ,
so there are the following two possibilities to consider: (a) I+

1 > I+
0 and (b) I+

1 <

I+
0 . For possibility (a), it follows from the increasing property of φ on [0, Ips2] that
I+
2 = φ(I+

1 ) > φ(I+
0 ) = I+

1 . A repeated procedure shows that I+
n = φn(I+

0 )(n ≥ 1)
is monotonically increasing and bounded, so the sequence {I+

n } converges to the fixed
point I ; i.e.,

lim
n→+∞ I+

n = lim
n→+∞ φn (I+

0

) = I ,
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Fig. 3 The Poincaré maps φ and φ2 with the stability of order-1 periodic solutions (shown in a and b),
order-2 periodic solution (shown in c) and order-4 periodic solution (shown in d). The parameter values are
b = 3, η = 6, K = 20, β = 0.4, α = 0.01, μ = 8.5, Sc = 12, p = 0.2, τ = 0 and q = 3.6 (a), q = 12
(b), q = 26 (c), q = 36 (d)

as shown in Fig. 3a. For possibility (b), we get I+
2 = φ(I+

1 ) < φ(I+
0 ) = I+

1 since φ

is increasing. A similar analysis to (a) yields that the sequence {I+
n } converges to I .

Hence, the order-1 periodic solution (ξ(t), η(t)) is globally asymptotically stable in
this case.

(ii) For I+
0 ∈ (Ips2,+∞), we have I+

1 ∈ [0, Ips2], so case (i) yields that I+
n also

converges to I and the globally asymptotic stability of the solution (ξ(t), η(t)) is
derived. This completes the proof.

Remark 1 For the critical case φ(Ips2) = Ips2, Ips2 is the unique fixed point of the
Poincaré map φ. This indicates a unique order-1 periodic solution exists for model
(3), which is globally asymptotically stable in this scenario.

Theorem 5 If R10 < 1, Sc < K and φ(Ips2) > Ips2, then the order-1 periodic
solution for model (3) is globally asymptotically stable if and only if φ2(I+) > I+ for
all I+ with Ips2 ≤ I+ < I , where I represents the fixed point of the Poincaré map φ.

Proof By Theorem 2, a unique fixed point I > Ips2 exists for the Poincaré map φ if
φ(Ips2) > Ips2, where φ has the following properties:
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• φ(I+) > I+ for 0 ≤ I+ < I and φ(I+) < I+ for I+ > I ;
• φ(I+) is increasing for 0 ≤ I+ ≤ Ips2 and decreasing for I+ > Ips2.

(Sufficiency.) We focus our discussion on the following three possibilities: (a)
Ips2 ≤ I+ < I , (b) 0 ≤ I+ < Ips2 and (c) I+ > I .

(a) For any Ips2 < I+
0 < I , the decreasing property of φ on [Ips2,+∞) yields

I+
1 = φ(I+

0 ) > I . It follows that I+
2 = φ(I+

1 ) < I and I+
2 = φ2(I+

0 ) > I+
0 , which

implies that

I+
0 < I+

2 < I .

Further, we have I+
3 = φ(I+

2 ) > I and I+
3 = φ(I+

2 ) < φ(I+
0 ) = I+

1 , so

I < I+
3 < I+

1 .

Performing the above procedure repeatedly, we see that {I+
2k} is increasing ,{I+

2k+1} is
decreasing and

Ips2 < I+
2k < I < I+

2k+1 < I+
1 , k = 1, 2, . . .

Denote

lim
k→+∞ I+

2k = I∗, lim
k→+∞ I+

2k+1 = I ∗.

We claim I∗ = I ∗ = I . In fact, if I∗ < I , we easily get

I∗ ≡ φ(I∗) > φ(I ) = I ⇐⇒ I∗ > I ,

since φ is decreasing on (Ips2,+∞). It follows that I∗ ≡ φ(I∗) < I . Then there are

two possibilities to consider: (a) I∗ > I∗; (b) I∗ ≤ I∗; If possibility (a) holds, we
then have φ2(I∗) �= I∗, which contradicts the assumption that I∗ = limk→+∞ I+

2k . If
possibility (b) holds, since we have Ips2 < I∗ < I in this scenario, it contradicts with
the condition that φ2(I+) > I+ for all Ips2 < I+ < I . Hence, I∗ = I holds.

If I ∗ > I , we get

I ∗ ≡ φ(I ∗) < φ(I ) = I ⇐⇒ I ∗ < I

ononehand.On theother hand, since I < I ∗ < I2k+1 and Ips2 < I2k+2 = φ(I2k+1) <

I for k = 1, 2, . . . , we have I ∗ ≡ φ(I ∗) > I2k+2 > Ips2. As a result, we get

Ips2 < I ∗ < I . (13)

Note that I ∗ = limk→+∞ I+
2k+1, so

I ∗ ≡ φ(I ∗) = φ2(I ∗) = I ∗,
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which leads to
φ2(I ∗) = φ(I ∗) = I ∗. (14)

Thus another contradiction occurs between (13)–(14) and the condition that φ(I+) >

I+ for all Ips2 < I+ < I . Hence I ∗ = I in this scenario.
Therefore we have limk→+∞ I+

2k = limk→+∞ I+
2k+1 = I in such case.

(b) For any 0 ≤ I+
0 < Ips2, there is a positive integer k1 such that I

+
k1

= φk1(I+
0 ) ∈

[Ips2, I ) or I+
k1

> I . If the former case is true, it follows from case (a) that {I+
k1+k}

converges to I ; i.e., limk→+∞ I+
k1+k = I . If the latter case holds, Theorem 2 implies

that there exists Ĩ ∈ [Ips2, I ) such that φ( Ĩ ) = φk1(I+
0 ), as shown in Fig. 3b. Again

from case (a), {I+
k1+k} converges to I .

(c) For every I+
0 > I , we have I+

1 = φ(I+
0 ) < I since φ(I+) is decreasing on

(I ,+∞), so I+
1 ∈ [0, Ips2) or I+

1 ∈ [Ips2, I ). Thus it follows from case (b) or case
(a) that {I+

1+k} converges to I .
(Necessity.) We need to prove φ2(I+

0 ) > I+
0 for every I+

0 ∈ [Ips2, I ). Assume
that there is an Ǐ0 ∈ [Ips2, I ) such that φ2( Ǐ0) < Ǐ0. Since {I+

k } converges to I with

I+
k = φk(I+

0 ), there is an Î ∈ (I − ε, I + ε) such that φ2( Î ) > Î for a sufficiently
small positive number ε. Thus the differentiability of the Poincaré map φ leads to the
existence of Ĩ between Ǐ and Î with φ2( Ĩ ) = Ĩ , which suggests the existence of an
order-2 periodic solution initiating from ((1− p)Sc, Ĩ ) for model (3). That contradicts
the global stability of order-1 periodic solution. This completes the proof.

Theorem 6 If R10 < 1, Sc < K and τ < Ips2, there is a threshold value μc for μ

such that the unique order-1 periodic solution is globally asymptotically stable for
μ > μc.

Proof It is worth noting that R10 < 1 if and only if μ > βK , which implies that there
exists a threshold value μc1 ≡ βK such that R10 < 1 for μ > μc1. According to
Theorem 4, it is enough to seek a threshold value μc such that the Poincaré map φ(I )
satisfies φ(Ips2) ≤ Ips2 for μ > μc. Since P(S, I ) > 0 and Q(S, I ) < 0 in region
�2, system (8) can be rewritten as

d I

dS
=

βSI
1+α I − μI

bS
(
1 − S+ηI

K

)
− βSI

1+α I

<
βSI − μI

bS
(
1 − S

K

) .

Consider the following system

⎧⎪⎨
⎪⎩

dV

dU
= βUV − μV

bU
(
1 − U

K

)
V ((1 − p)Sc) = Ips2.

(15)

Solving (15) with respect to V yields that

V (U ) = Ips2

[
(1 − p)Sc

U

]μ
b
[

K −U

K − (1 − p)Sc

]μ−βK
b

, U ∈ [(1 − p)Sc, Sc],
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so we obtain

V (Sc) = Ips2(1 − p)
μ
b

[
K − Sc

K − (1 − p)Sc

]μ−βK
b

.

By the comparison theorem, the solution of system (8) satisfies

I (Sc; Ips2) ≤ Ips2(1 − p)
μ
b

[
K − Sc

K − (1 − p)Sc

]μ−βK
b

.

It follows that

lim
μ→+∞ I (Sc; Ips2) ≤ 0,

so there exists μc ≥ μc1 such that

φ(Ips2) = I (Sc; Ips2) + τ ≤ Ips2

for μ ≥ μc. This completes the proof.

Theorem 7 If R10 < 1, Sc < K , φ(Ips2) > Ips2 and φ2(Ips2) ≥ Ips2, there is a
stable order-1 or order-2 periodic solution of system (3).

Proof We claim that, for I+
0 ∈ [0,+∞), there is an integer k such that I+

k = φk(I+
0 ) ∈

[Ips2, φ(Ips2)]. In fact, for I+
0 ∈ [0, Ips2], no fixed point exists on [0, Ips2], and φ

is increasing on [0, Ips2], so there is an integer k such that I+
k−1 = φk−1(I+

0 ) < Ips2
and I+

k = φk(I+
0 ) ≥ Ips2. It follows that I

+
k = φ(I+

k−1) ≤ φ(Ips2) and so I+
k ∈

[Ips2, φ(Ips2)]. For I+
0 ∈ (Ips2,+∞), since φ is decreasing on (Ips2,+∞), I+

1 =
φ(I+

0 ) ≤ φ(Ips2). If, additionally, I
+
1 ≥ Ips2, set k = 1 and I+

k ∈ [Ips2, φ(Ips2)].
Otherwise, if I+

1 < Ips2, following the above discussion, there is an integer k > 1
such that I+

k = φk(I+
0 ) ∈ [Ips2, φ(Ips2)].

Since φ is decreasing on [Ips2, φ(Ips2)], φ2 is increasing on [Ips2, φ(Ips2)] and

φ
([
Ips2, φ(Ips2)

]) =
[
φ2(Ips2), φ(Ips2)

]
⊂ [

Ips2, φ(Ips2)
]
.

For I+
0 ∈ [Ips2, φ(Ips2)], denote I+

n = φn(I+
0 ). Suppose neither an order-1 nor an

order-2 periodic solution exists for model (3) in such scenario. It follows that I+
1 �= I+

0
and I+

2 �= I+
0 . If I+

1 > I+
0 , we then have

I+
2 = φ

(
I+
1

)
< φ

(
I+
0

) = I+
1 ,

due to the decreasing nature of φ on the interval [Ips2, φ(Ips2)]. On the other hand,
we have

I+
2 ≡ φ2 (I+

0

)
> φ2(Ips2) ≥ Ips2

123



1408 A. Wang et al.

due to the increasing nature of φ2 on the interval [Ips2, φ(Ips2)]. So there are two
possibilities: (i) I+

1 > I+
0 > I+

2 ≥ Ips2 and (ii) I+
1 > I+

2 > I+
0 .

If I+
1 < I+

0 , it follows from the monotonicity of φ and φ2 on [Ips2, φ(Ips2)] that

I+
2 = φ

(
I+
1

)
> φ

(
I+
0

) = I+
1

I+
2 ≡ φ2 (I+

0

)
> φ2(Ips2) ≤ φ(Ips2),

so there are another two possibilities to consider: (iii) I+
1 < I+

2 < I+
0 ; (iv) I+

1 <

I+
0 < I+

2 .
Concluding the above discussion, there are four possibilities to consider.

(i) I+
1 > I+

0 > I+
2 . We have I+

3 = φ(I+
2 ) > φ(I+

0 ) = I+
1 and I+

4 = φ(I+
3 ) <

φ(I+
1 ) = I+

2 , so I+
3 > I+

1 > I+
0 > I+

2 > I+
4 . Repeating the above procedure

yields

· · · > I+
2n+1 > I+

2n−1 > · · · > I+
3 > I+

1 > I+
0 > I+

2 > I+
4 > · · · > I+

2n > I+
2n+2 > · · · (16)

(ii) I+
1 > I+

2 > I+
0 . In this case, we get that φ(I+

1 ) = I+
2 < I+

3 = φ(I+
2 ) <

φ(I+
0 ) = I+

1 and φ(I+
2 ) = I+

3 > I+
4 = φ(I+

3 ) > φ(I+
1 ) = I+

2 , which suggests
I+
1 > I+

3 > I+
4 > I+

2 > I+
0 . Again, we derive the inequalities by induction

I+
1 > I+

3 > · · · > I+
2n−1 > I+

2n+1 > · · · > I+
2n+2 > I+

2n > · · · > I+
4 > I+

2 > I+
0 . (17)

(iii) I+
1 < I+

2 < I+
0 . Implementing a similar process to (ii) gives

I+
1 < I+

3 < · · · < I+
2n−1 < I+

2n+1 < · · · < I+
2n+2 < I+

2n < · · · < I+
4 < I+

2 < I+
0 .

(18)
(iv) I+

1 < I+
0 < I+

2 . Performing a similar process to (i), we derive

· · · < I+
2n+1 < I+

2n−1 < · · · < I+
3 < I+

1 < I+
0 < I+

2 < I+
4 < · · · < I+

2n < I+
2n+2 < · · · (19)

For cases (ii) and (iii), there are two possibilities:

(a) there exists I ∈ [Ips2, φ(Ips2)] such that {I+
n } converges to I , as shown in Fig. 3b;

(b) there are two distinct numbers I 1 < I 2 such that the sequence {I+
2n+1} converges

to I 1 while the sequence {I+
2n} converges to I 2, as shown in Fig. 3c.

For cases (i) and (iv), only the latter holds true. Hence, there is an order-1 or order-
2 stable periodic solution for system (3), as shown in Fig. 4a–b. This completes the
proof. ��

Remark 2 It follows from Theorem 7 that if φ(Ips2) > Ips2, φ2(Ips2) ≥ Ips2, then a
stable order-1 or order-2 periodic solution exists for system (3). If we strengthen the
second inequality of Theorem 7 as φ2(I+) ≥ I+, Ips2 ≤ I+ ≤ I , then the global
stability of the order-1 periodic solution is feasible, as shown in Theorem 5. In fact,
the condition required in Theorem 5 is more rigid than the one in Theorem 7, so the
globally stable order-1 periodic solution is available in Theorem 5 but it is not available
in Theorem 7. Theorem 7 is more general than Theorem 5.

123



Using non-smooth models to determine thresholds for… 1409

9.5 10 10.5 11 11.5 12 12.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I

S

(a)

6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

I

S

(b)

3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12

S

I

(c)

2 4 6 8 10 12 14
0

2

4

6

8

10

12

I

S

(d)

Fig. 4 Existence of an order-1 periodic solution for q = 3.6 (a), an order-2 periodic solution q = 20 (b),
an order-4 periodic solution q = 40 (c) and an order-8 periodic solution q = 43 (d). The other parameter
values are b = 3, η = 6, K = 20, β = 0.4, α = 0.01, μ = 8.5, Sc = 12, p = 0.2, τ = 0

Theorem 8 If R10 < 1, Sc < K , φ(Ips2) > Ips2, φ2(Ips2) < Ic1 with Ic1 = min{I :
φ(I ) = Ips2}, a nontrivial order-3 periodic solution exists for system (3), and so there
are nontrivial order-k(k ≥ 3) periodic solutions for system (3).

Proof It follows fromφ(Ips2) > Ips2 that a unique fixed point I exists for the Poincaré
map φ, where I satisfies I > Ips2.

Define G(I ) = φ3(I ) − I . Then G(I ) is continuous on [0,+∞) and

G(0) = φ3(0) − 0 = φ2(τ ) > 0

G(Ic1) = φ3(Ic1) − Ic1 = φ2(φ(Ic1)) − Ic1 = φ2(Ips2) − Ic1 < 0,

so there exists a number Ĩ ∈ (0, Ic1) satisfying G( Ĩ ) = 0; i.e., φ3( Ĩ ) = Ĩ .
We now examine the equality of I and Ĩ . We claim that I �= Ĩ . In fact, we have

Ic1 < Ips2 according to the definition of Ic1. On the other hand, the above discussion
yields I > Ips2. Hence, the two fixed points of the Poincaré map (I and Ĩ ) are distinct.
Therefore, initiating from ((1− p)Sc, Ĩ ), a nontrivial order-3 periodic solution exists
for system (3). By Sarkovskii’s theorem (Devaney 2003), an order-k periodic solution
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Fig. 5 Bifurcation diagrams with respect to q for the case of nonexistence of an interior equilibrium. The
parameter values are b = 3, η = 6, K = 20, β = 0.4, α = 0.01, μ = 8.5, Sc = 12, p = 0.2, τ = 0

exists for system (4) for any integer k ≥ 3, as shown in Figs. 3d and 4c–d. This
completes the proof. ��

According to the above discussion, for any positive integer k, the possible order-k
periodic solutions exist for model (3). To further illustrate the complexity, we choose
the parameter q (i.e., the increasing proportion of infective pests when τ = 0 due
to carrying out the IPM strategy once) as the bifurcation parameter and fix all other
parameters. Figure 5 shows how the susceptible pest sizes and the impulsive out-
break periods vary as q varies. The bifurcation diagrams with respect to q suggest
the complexity of the dynamics of model (3). It follows from Fig. 5 that there is a
stable order-1 periodic solution for relatively small q, as shown in Fig. 4a. A stable
order-2 periodic solution occurs as q increases, which is also illustrated in Fig. 4b.
Stable order-4 and order-8 periodic solutions appear as q increases further, which
can also be seen from Fig. 4c, d. Moreover, the order-3 periodic solution exists for
a certain range of q, which separates the window of chaos. It is worth emphasizing
that the periodic solutions relate to the regular variation of the pest population, while
the chaotic behaviour relates to their irregular variation. For the existence of stable
periodic solutions, the IPM can be implemented at every time T without evaluating
the pest amount, where T stands for the period of periodic solutions. However, for the
existence of chaotic solutions, evaluating pest quantities is difficult, so initiating the
IPM strategy is complicated.

3 Filippovmicrobial pest management model with economic
threshold

In this section, we further extend the state-dependent impulsive controlmeasures to the
following non-instantaneous control policy: the control measure is implemented only
when the amount of susceptible pests exceed the threshold level Sc; if this amount is
less than Sc, the controlmeasure is suspended.We use Filippov systems to characterize
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this type of non-instantaneous control strategy. The model takes the form

dS

dt
= bS(t)

(
1 − S(t) + ηI (t)

K

)
− βS(t)I (t)

1 + α I (t)
− ψ(S)pS(t)

d I

dt
= βS(t)I (t)

1 + α I (t)
− μI (t) + ψ(S) (q2 I (t) − q1 I (t)) ,

(20)

with

ψ(S) =
{
0, if S < Sc
1, if S > Sc,

(21)

where all the parameters take the same meaning as in model (4). We assume b >

p, q2 > q1 and μ + q1 > q2 in the rest of this study. Denote H(S) = S − Sc and
X = (S, I ), where H(S) is a smooth scale function. Thus system (20)–(21) can be
rewritten as

dX

dt
=

{
FS1(X), H(S) < 0
FS2(X), H(S) > 0,

(22)

with

FS1(X) =
(
bS(t)

(
1 − S(t) + ηI (t)

K

)
− βS(t)I (t)

1 + α I (t)
,
βS(t)I (t)

1 + α I (t)
− μI (t)

)T

FS2(X) =
(
bS(t)

(
1 − S(t) + ηI (t)

K

)
− βS(t)I (t)

1 + α I (t)
− pS(t) ,

βS(t)I (t)

1 + α I (t)
− μI (t) − q1 I (t) + q2 I (t)

)T

.

Before examining the dynamics of system (20)–(21), we introduce some techno-
logical definitions. Denote

� =
{
(S, I ) ∈ R2+ : S = Sc

}
,

which is indeed the switching boundary of system (22) and splits R2+ into two parts:

G1 =
{
(S, I ) ∈ R2+ : S < Sc

}
, G2 =

{
(S, I ) ∈ R2+ : S > Sc

}
.

For convenience, we call the subsystem defined on the subregionGi (i = 1, 2) system
SGi . Denote Xc = (Sc, I ), and we distinguish the following three regions on �:

• sliding region

�s = {
Xc ∈ � : 〈HX (Xc), FS1(Xc)〉 ≥ 0, 〈HX (Xc), FS2(Xc)〉 ≤ 0

} ;

• crossing region

�c = {
Xc ∈ � : 〈HX (Xc), FS1(Xc)〉〈HX (Xc), FS2(Xc)〉 > 0

} ;
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• escaping region

�e = {
Xc ∈ � : 〈HX (Xc), FS1(Xc)〉 ≤ 0, 〈HX (Xc), FS2(Xc)〉 ≥ 0

}
,

where HX (Xc) = (
∂H
∂S , ∂H

∂ I

)
.

Definition 3 (i) We call point X∗ a real equilibrium of system (22) if it satisfies
FS1(X∗) = 0 (FS2(X∗) = 0) and H(X∗) < 0(H(X∗) > 0), which is denoted by
Xr∗.

(ii) We can a point X∗ a virtual equilibrium of system (22) if it satisfies FS1(X∗) =
0(FS2(X∗) = 0) and H(X∗) > 0(H(X∗) < 0), which is denoted by Xv∗ .
Both the real equilibria and virtual equilibria are called regular equilibria.

Definition 4 If there is a point X∗ ∈ � satisfying λFS1(X∗) + (1 − λ)FS2(X∗) =
0, H(Z∗) = 0 with

λ = 〈HX (X∗), FS1(X
∗)〉

〈HX (X∗), FS1(X
∗) − FS2(X

∗)〉 ,

then X∗ is called a pseudo-equilibrium of system (22).

The dynamics of subsystem SG1 are examined in Sect. 2.We now address the dynamics
of subsystem SG2 . Denote q = q2 − q1, μ = μ − q and

R20 = βK (b − p)

bμ
.

Theorem 9 For system SG2 , the boundary equilibrium E20 = ((b− p)K/b, 0) is glob-
ally asymptotically stable when R20 ≤ 1. The positive equilibrium E21 = (S21, I21)
is globally asymptotically stable when R20 > 1, where S21 =

μ(bη + αbK − βK − Kpα) + μ
√

(bη + αbK − βK − Kpα)2 + 4bK (μα + βη)

2b(μα + βη)
,

I21 = βS22 − μ

μα
.

3.1 Sliding dynamics of the Filippov system (22)

We now explore the existence of sliding mode region �s for system (22). Since

〈HX , FS1〉 ≥ 0 ⇐⇒ αbηI 2 + [βK + bη − αb(K − Sc)] I − b(K − Sc) ≤ 0,

solving the last inequality with respect to I yields

I ≥ αb(K − Sc) − βK − bη + √[αb(K − Sc) − βK − bη]2 + 4αb2η(K − Sc)

2αbη
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≡ Ic1.

Similarly, we have

〈HX , FS2〉 ≤ 0 ⇐⇒
αbηI 2 + [βK + bη − αb(K − Sc) + α pK ] I − b(K − Sc) + pK ≤ 0.

(23)

There are two possibilities to consider: (A1) b(K − Sc) − pK ≤ 0 and (A2) b(K −
Sc)− pK > 0. If (A1) holds, then Sc ≥ (b− p)K/b and so (23) is assured for I ≥ 0.
If (A2) holds, then Sc < (b − p)K/b and and so (23) is true for I ≥ Ic2, where

Ic2 = αb(K − Sc) − βK − bη − α pK + √[αb(K − Sc) − βK − bη − α pK ]2 + 4αb2η(K − Sc) − pK

2αbη
.

Therefore, the sliding mode takes the form

�s1 ≡
{
(Sc, I ) : 0 ≤ I ≤ Ic1

}

for Sc ≥ (b − p)K/b and takes the form

�s2 ≡
{
(Sc, I ) : Ic2 ≤ I ≤ Ic1

}

for Sc < (b − p)K/b.
Direct calculation gives 〈HX , FS1〉 ≥ 〈HX , FS2〉, so there is no escaping region for

the Filippov system (22).
Next we examine the sliding mode dynamics of system (22) on�s1 or�s2 by using

the equivalent control method. Since

dH

dt
= dS

dt
= bS(t)

(
1 − S(t) + ηI (t)

K

)
− βS(t)I (t)

1 + α I (t)
− ψ(S)pS(t),

solving dH/dt = 0 with respect to ψ(S) yields

ψ(S) = b

p

(
1 − S + ηI

K

)
− β I

p(1 + α I )
.

Substituting S = Sc and ψ(S) into the second equation of system (20) gives

d I

dt
= βSc I

1 + α I
− μI + q I

[
b(K − Sc − ηI )

pK
− β I

p(1 + α I )

]
, (24)

where I ∈ �s1 or I ∈ �s2. Equation (24) is the sliding mode dynamics for system
(20).
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There always exists a root I = 0 for Eq. (24), so a pseudo-equilibrium Es0(Sc, 0)
always exists for the Filippov system (22). If I �= 0, letting d I/dt = 0 in Eq. (24)
gives

αbqηI 2 + [αμpK + qβK − αqb(K − Sc) + qbη] I

+ [μpK − β pK Sc − qb(K − Sc)] = 0.
(25)

Denote

ϒ1 = αμpK + qβK − αqb(K − Sc) + qbη, ϒ2 = μpK − β pK Sc − qb(K − Sc).

Note thatϒ2 ≥ 0 �⇒ ϒ1 > 0, so no positive root exists for (25). Therefore no positive
pseudo-equilibrium exists for system (22). Ifϒ2 < 0, there is a unique positive root for
(24) and so a pseudo-equilibrium exists for the Filippov system (22). Further analysis
gives ϒ2 < 0 if one of the following conditions hold:

(C1) μp < qb < β pK ;

(C2) min
{
μp, β pK

}
> qb, Sc >

(μp − qb)K

β pK − qb
;

(C3) max
{
μp, β pK

}
< qb, Sc <

(qb − μp)K

qb − β pK
.

Therefore, if (C1)or (C2)or (C3)holds, there is a uniquenontrivial pseudo-equilibrium
Es = (Sc, Ic) for the Filippov system (22) with

Ic = −ϒ1 + √
ϒ2 − 4αbqηϒ2

2αbqη
.

Next, we examine whether Es ∈ �si (i = 1, 2). Note that

sgn(Ic1 − Ic) = A11 + A12

A11 = μpK
√

[αb(K − Sc) − βK − bη]2 + 4αb2η(K − Sc)

A12 = μpK [αb(K − Sc) − βK − bη] − 2bη[β pK Sc − μpK ].

We easily get that A11 > 0; while A12 ≥ 0 if

Sc ≤ μKαb + bμη − μβK

2bηβ + αbμ
. (26)

Denote

A13 ≡ μKαb + bμη − μβK

2bηβ + αbμ
.

Then we have

sgn {S11 − A13}
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= sgn

{
− αb[μ(bη + αbK − βK )]

+ (2bηβ + αbμ)

√
(βK − bη − αbK )2 + 4K (αμb + bηβ)

}

= sgn

{
− (αbμ)2(bη + αbK − βK )

+ (2bηβ + αbμ)2
[
(βK − bη − αbK )2 + 4K (αμb + bηβ)

]}

= 1.

It follows that A13 < S11. Similarly, we have A12 < 0 for Sc > A13. In this case, we
have

sgn
(
A2
11 − A2

12

)

= sgn
{
αbμ2(K − Sc) − bη(βSc − μ)2 + μ(βSc − μ)[(αbK − βK − bη) − αbSc]

}

= sgn
{
−(bβη + αbμ)S2c − (βμK − αbμK − bμK )Sc + μ2K

}
.

It is easy to get that

(bβη + αbμ)S2c + (βμK − αbμK − bμK )Sc − μ2K < 0

for Sc < S11. Then we have Ic1 > Ic if A13 < Sc < S11. Concluding the above
discussion, we get Ic < Ic1 for Sc < S11.

Similarly, we have

sgn(Ic − Ic2) = A21 + A22

A21 = 2bηβSc − μ[αb(K − Sc) − βK + bη − α pK ]
A22 = −μ

√
[αb(K − Sc) − βK − bη − α pK ]2 + 4αbη[b(K − Sc) − pK ].

Since

Sc >
μ(αbK − βK + bη − α pK )

αbμ + 2bηβ
�⇒ A21 > 0

and

S21 >
μ(αbK − βK + bη − α pK )

αbμ + 2bηβ
,

we get Ic > Ic2 for Sc > S21.
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Concluding the above analysis, the pseudo-equilibrium Es is well defined and
Es ∈ �s1 if the inequalities (C1) or (C2) or (C3) hold and

(b − p)K

b
< Sc < S11,

while Es ∈ �s2 if the condition (Ci ) (i = 1 or 2 or 3) holds and

S21 < Sc < min

{
(b − p)K

b
, S11

}
.

3.2 Global dynamics of the Filippov system (22)

Direct calculation yields that

R20 > R10 ⇐⇒ q

p
>

μ

b
.

If R20 > R10 (i.e., q/p > μ/b), only conditions (C1) and (C3) can be true. Then
the pseudo-equilibrium Es exists for the Filippov system (22). If R20 < R10 (i.e.,
q/p < μ/b), only condition (C2) can be true, and so Es also exists for (22). We
focus our attention on the case q/p > μ/b in the following and omit the dynamic
analysis for the case q/p < μ/b, which can be done similarly. (We ignore the case
q/p = μ/b.) Denote

B = qb − μp

qb − β pK
K

and we get that (b− p)K/b > B for R20 < 1 and (b− p)K/b < B for R20 > 1. After
some algebra, we have S21 < (b − p)K/b, while S11 > (b − p)K/b for R10 < 1. It
follows from R20 < 1 that bμ > β pK , so

S21 >
μ(bη + αbK − α pK )

b(μα + βη)

and

sgn

{
μ(bη + αbK − α pK )

b(μα + βη)
− (qb − μp)K

qb − β pK

}

= sgn
{
μ(qb − β pK )

[
bη + αK (b − p)

] + bK (μα + βη)
[
μp − (b − p)q

]}
= 1.

Therefore, we have S21 > B for R20 < 1.
We will now examine the global dynamics of the Filippov system (22). To this end,

we initially address the existence of the limit cycles. For system (22), there are the
following four types of possible limit cycles.
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• Standard limit cycles; i.e., limit cycles entirely in the subregionG1 orG2.We have
already excluded this class of limit cycles by using the Dulac function in Sects. 2.1
and 3.1.

• Crossing cycles without surrounding any sliding mode region; i.e., closed orbits
containing no sliding mode region in their interiors. These types of cycles are
composed of pieces of the orbits of subsystems SG1 , SG2 and pieces of the crossing
region. They can be easily precluded by analyzing the vector field for the system.

• Crossing cycles surrounding one slidingmode region; i.e., crossing cycles enclosed
one sliding mode region in its interior. The existence of these type of limit cycles
can be ruled out by using Green’s Formula and some analytic techniques. See
Wang and Xiao (2014) and Wang (2006) for a similar analysis.

• Canard cycles; i.e., limit cycles containing one point or part of the sliding mode
region. These type of limit cycles can be precluded by analyzing the vector field,
especially the flow direction along the sliding mode region. See Wang and Xiao
(2014) for similar details about this technique.

In conclusion, no limit cycles exist for the Filippov system (22). For the global
behaviour, we consider the following three cases according to relationship between
R10, R20 and the unit 1.

Case 1. R10 < R20 < 1.
According to the above analysis, we have B < S21 < (b − p)K/b < S11 < K

in this case. Considering the biological meaning, we only consider those thresholds
Sc with Sc < K . It is easy to get that only condition (C3) can be true to ensure
the existence of the pseudo-equilibrium Es . But it can be shown that Es /∈ �s2, so
there are three possible disease-free equilibria (E10, E20 and Es0) for the Filippov
system (22). For Sc > (b − p)K/b, the sliding mode region is �s1, and both regular
disease-free equilibria E10 and E20 are virtual (denoted by Ev

10 and Ev
20), so only the

pseudo-equilibrium Es0 is locally stable. It follows from the above analysis that there
are no limit cycles, so the pseudo-equilibrium Es0 is globally asymptotically stable
in this scenario, as shown in Fig. 6a. For Sc < (b − p)K/b, the sliding mode region
turns out to be �s2; no pseudo-equilibrium exists, and the disease-free equilibrium
E10 is virtual; E20 is real and locally stable, denote by Er

20. Hence, the nonexistence
of limit cycles leads to the global stability of Er

20, as shown in Fig. 6b.
In Fig. 6, the thick grey solid lines represent the sliding mode region; the thin grey

dashed lines denote the crossing region; the solid (hollow) diamond points denote the
real (virtual) disease-free equilibria; the square points denote the pseudo-equilibria;
the circles are the endemic equilibria. The black solid lines show asymptotic stability.

According to the above discussion, the pseudo-equilibrium Es can act as an attractor
provided it is defined on one of the sliding mode regions �s1 and �s2; conversely,
only real and locally stable regular equilibria can act as the attractors for the Filippov
system (22). So we only focus on the existence of possible attractors in the following.

Case 2. R10 < 1 < R20.
In this case, we have S21 < (b− p)K/b < min

{B, S11
}

< K . For min{S11,B} <

Sc < K , the sliding mode region is �s1, and the pseudo-equilibrium Es0 ∈ �s1
is globally asymptotically stable. For (b − p)K/b < Sc < min{S11,B}, the sliding
mode region is also�s1 and two pseudo-equilibria Es0 and Es coexist in this scenario.
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Fig. 6 Phase plane of the Filippov system (22), showing the sliding mode region and asymptotically
equilibria in parameter space. The parameter values are b = 3, η = 6, α = 0.01, μ = 10, p = 0.8, q = 5.8
β = 0.2, K = 20, Sc = 16 (a), β = 0.2, K = 20, Sc = 10 (b), β = 0.2, K = 45, Sc = 35 (c)
β = 0.2, K = 45, Sc = 26 (d). β = 0.2, K = 45, Sc = 15 (e) and β = 0.4, K = 45, Sc = 35 (f)
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However, only the pseudo-equilibrium Es is globally asymptotically stable and Es0 is
unstable, as shown in Fig. 6c. For S21 < Sc < (b − p)K/b, the sliding mode region
turns out to be �s2 and the pseudo-equilibrium Es ∈ �s2 is globally asymptotically
stable, as shown in Fig. 6d. For Sc < S21, the sliding mode region also appears as�s2;
while the regular endemic equilibrium E21 is real and globally asymptotically stable
(denoted by Er

21), as shown in Fig. 6e.
Case 3. R20 > R10 > 1.
In this case, we have S21 < min

{
S11, (b − p)K/b,B} < K . If we further have

S11 > (b − p)K/b, then we get S21 < (b − p)K/b < min
{
S11,B

}
< K . It follows

that for Sc > S11, the sliding mode region is �s1 and the endemic equilibrium E11 is
real and globally asymptotically stable, denoted by Er

11; and the pseudo-equilibrium
Es is globally asymptotically stable for (b − p)K/b < Sc < S11; the sliding mode
region turns out to be �s2 and Es is globally asymptotically stable for S21 < Sc <

(b − p)K/b; the sliding mode region is also �s2 and the real endemic equilibrium
Er
21 is globally asymptotically stable. However, if the inequality S11 < (b − p)K/b

holds instead, we have S21 < S11 < (b − p)K/b < B < K . In this case, the sliding
mode region is �s1 and the regular endemic equilibrium E11 is real and globally
asymptotically stable for Sc > (b − p)K/b (also denoted by Er

11), as shown in
Fig. 6f; the sliding mode region turns out to be �s2, and the real endemic equilibrium
Er
11 remains as the global attractor for S11 < Sc < (b − p)K/b; for S21 < Sc < S11,

the sliding mode region remains as �s2, and the pseudo-equilibrium Es is globally
asymptotically stable; for Sc < S21, the sliding mode is also �s2, and the regular
equilibrium E21 is real and globally asymptotically stable, denoted by Er

21.
Concluding the above result, we can get the following theorem.

Theorem 10 If q/p > μ/b, there are different attractors in different parameter
spaces.

(i) For R10 < R20 < 1, the disease cannot spread in the pests. In particular, the
pseudo-equilibrium Es0 is globally asymptotically stable for Sc > (b − p)K/b;
while the regular equilibrium Er

20 is globally asymptotically stable for Sc < (b −
p)K/b.

(ii) For R10 < 1 < R20, the disease spreads in the pest population when Sc <

min
{
S11,B

}
; it cannot spread when min

{
S11,B

}
< Sc < K. In particu-

lar, the pseudo-equilibrium Es0 (or Es) is globally asymptotically stable for
min

{
S11,B

}
< Sc < K (or S21 < Sc < min

{
S11,B

}
); while the endemic

equilibrium Er
21, which is real, is globally asymptotically stable for Sc < S21.

(iii) For R20 > R10 > 1, the disease always spreads in the pests. In particular, the
regular equilibrium Er

11 (or Er
21) is globally asymptotically stable for Sc > S11

(or Sc < S21); the pseudo-equilibrium Es is globally asymptotically stable for
S21 < Sc < S11.

For clarity, we list the results in Theorem 10 in Table 1.
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Table 1 Main results of the Filippov system

Values of R10, R20 Conditions Global attractors

1 > R20 > R10 Sc >
(b − p)K

b
Es0

Sc <
(b − p)K

b
E20

R20 > 1 > R10 min
{B, S11

}
< Sc < K Es0

S21 < Sc < min
{B, S11

}
Es

Sc < S21 E21
R20 > R10 > 1 Sc > S11 E11

S21 < Sc < S11 Es

Sc < S21 E21

4 Conclusion and biological implications

Pest control is still a worldwide problem for agricultural management due to the high
loss of agriculture and increasing demands for food and energy with the increasing
population (Kar et al. 2012). The main methods to control pests are application of
chemical pesticides, releasing natural enemies and introducingmicrobial pathogens to
the pests. However, the harmful effects of pesticides, high costs ofmicrobial pathogens
or unavailability of natural enemies are barriers to effective control (Gao et al. 2013;
Liu et al. 2015; Jiao et al. 2009). This resulted in the development of integrated
pest management (IPM). We extend the model developed by Jiao et al. (2009) by
considering the threshold policy and establish two types of non-smoothmodels: a state-
dependent impulsive model and a Filippov model. We determined threshold values
such that implementing the combined control strategy we can effectively control the
pest population.

By modifying the impulsive human intervention with fixed instants to the one with
non-fixed instants, we have established our non-smooth microbial model, which is a
state-dependent impulsive model. Theoretical analysis of the proposed model reveals
rich dynamics. For the model without control measure, there are two possible cases:
without positive equilibria or with a unique positive equilibrium. For the first case, the
Poincaré map of the phase set possesses several important properties, including mono-
tonicity, differentiability and concavity. When a positive equilibrium is possible for
the model without control, model (3) exhibits more complicated dynamic behaviour.
In this case, variation of the threshold value Sc leads to a variable domain and range
of the Poincaré map. For a sufficiently large threshold level Sc and sufficiently small
dosage of pesticide, the domain of the Poincaré map consists of two intervals. The
solution initiating from the phase set can experience infinite impulses or experience
finite impulses or be free from impulsive actions. All these characteristics indicate
that the dynamic behaviour of model (3) can exhibit various phenomena including the
existence of order-1 or order-2 or any order periodic solutions.

The regularity of the Poincaré map also allows us to provide a sharp condition for
global stability of the order-1 periodic solution. In particular, we derived the critical
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value of the parameter μ to ensure the existence of a globally stable order-1 peri-
odic solution. This indicates that, when the disease-induced mortality rate exceeds a
critical level, the final size of pests population varies periodically. The existence of
an order-3 periodic solution confirms that any order-k periodic solutions can occur.
Moreover, chaotic behavior occurs as the parameter q varies, which suggests that the
final size of the pest population becomes unpredictable as the artificial net increment
rate of infective pests varies. All of these situations can guide different control strate-
gies. The existence of the periodic solution indicates that periodic control could be
possible, where the control period can be determined analytically. For chaotic solu-
tions, the irregularity and unpredictability of variation of pest size causes difficulty in
quantifyingwhen to initiate the IPM strategy. In particular, if the order-1 periodic solu-
tion is globally asymptotically stable, the pests can be maintained below the threshold
level by periodically implementing the control strategies. Hence the density-dependent
impulsive control regime is converted into a fixed-time pulse-like control.

Taking the process of implementing the human intervention into account, we further
modify the instantaneous intervention into a non-instantaneous one and establish a
Filippov microbial pest model. We aim to describe the following control strategy:
once the amount of pests exceed the critical value, the combined control measures
are conducted; otherwise, they are suspended. We have examined the dynamics when
the ratio of the net increment rate of infective pests to the killing rate on susceptible
pests caused by humans is larger than the ratio of the death rate to the birth rate (i.e.,
q/p > μ/b). The main results demonstrate that when the basic reproduction number
for the case without human interventions—i.e., the average amount of new infections
produced by an infective pest in the early stage—is greater than 1 (i.e., R10 > 1),
the disease can spread in the pests. In particular, the regular equilibrium E11 or E21
or pseudo-equilibrium Es is globally asymptotically stable for Sc > S11 or Sc < S21
or S21 < Sc < S11. This suggests that if we carry out the interventions later (i.e.,
Sc > S11) or earlier (i.e. Sc < S21), the pest will be contained at the relatively high
level S11 or low level S21; while if we implement the interventions at the right time
(i.e., S21 < Sc < S11), the pest can be contained at the previously given level. When
the basic reproduction number for the case with human interventions is greater than
1 but is less than 1 without human interventions (i.e., R20 > 1 > R10), the disease
can spread for Sc < min

{B, S11
}
, but it cannot spread for Sc > min

{B, S11
}
. If we

further have Sc < S21, the final size of pests is relatively small (i.e., S21); if we have
Sc > S21, the pests can be contained at the given level Sc. When the basic reproduction
number either with human interventions or without interventions is less than 1, the
disease cannot spread in the pests. This is not biologically or economically desirable.

It is worth mentioning that the Filippov model in this work is formulated with
a control threshold value for the susceptible pest population. In practice, it is more
realistic to set the total number of susceptible and infective pests as the threshold
value. However, the analysis of such a model is difficult and would likely result in rich
dynamic phenomena; we will leave this for future work.

The interventions in the density-dependent impulsive modeling are assumed to be
implemented instantaneously; conversely, in the Filippov system, the control measure
is triggered once the amount of susceptible pests exceeds a critical value, and the inter-
ventions last for a duration until the next switch. For the density-dependent impulsive
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model, a globally asymptotically stable order-1 periodic solution, order-k (k ≥ 2)
periodic solution or chaos may occur under appropriate conditions; however, a regu-
lar equilibrium or pseudo-equilibrium is globally asymptotically stable for different
control parameters for the Filippov model. It follows that the Filippov model has
advantages over the impulsive model from the point of view of mathematical model-
ing; from the point of view of kinetics, their dynamics are qualitatively different. More
importantly, although both impulsive control measures and switching measures could
maintain the amount of pests below the economic threshold, there still exists obvious
difference in the final size of pests.Moreover, there is a large difference in the final size
of pests when implementing these two control measures. In particular, if R10 < 1, the
infectious disease cannot spread in the pests, and the carrying capacity K is the final
size of the pest population when no control measure is adopted. When implementing
the impulsive or switching control measures, the disease can successfully spread in
the pests, and its final size varies periodically below the scheduled level for the former
measure; while it stabilizes at the previously given level Sc for the latter measure. If
R10 > 1, the disease will spread in the pests if no control measures are used, but
the final size of pests (i.e., S11) is comparatively high. However, the pest population
varies periodically and is less than S11 if implementing a certain impulsive control
measure; if implementing a proper switching control measure, the final size of the
pest population can be the previously given level Sc or a lower level S12.

In thiswork,we focused on twonon-smoothmodelswith thresholds for pest control.
Note that the control strategies focus on how the pest population can be curbed in
applying microbial pathogens, so the modeling framework in this study is built on the
basis of general epidemic system. Our main results demonstrate that it is essential to
carefully choose the threshold level of susceptible pests before initiating the control
measures.
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