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A B S T R A C T

Propagation of a disease through a spatially varying population poses complex questions about disease spread
and population survival. We consider a spatio-temporal predator–prey model in which a disease only affects
the predator. Diffusion-driven instability conditions are analytically derived for the spatio-temporal model.
We perform numerical simulation using experimental data given in previous studies and demonstrate that
travelling waves, periodicity and chaotic patterns are possible. We show that the introduction of disease in
the predator species makes the standard Rosenzweig–MacArthur model capable of producing Turing patterns,
which is not possible without disease. However, in the absence of infection, both species can coexist in spiral
non-Turing patterns. It follows that disease persistence may be predictable, while eradication may not be.
1. Introduction

Infectious diseases pose enormous challenges in nature, at almost
every trophic level [1,2]. External factors such as climate change or
environmental contaminants are likely to exacerbate such outbreaks in
marine mammals, for example [3,4], while infectious agents can disrupt
the structure, functioning and stability of food webs [5]. Humans are
continually at risk of emerging infectious diseases due to changing envi-
ronmental patterns [6–8]. Propagation of an infectious disease through
a population can have profound effects on both species interaction and
also the nature of the disease spread [9].

Mathematical models can provide insights into such intertwined
phenomena by mixing both ecological and epidemiological factors [10–
12], although such models can be complex. Eco-epidemic models have
been used, for example, to understand whether attacking a diseased
prey increases the chances of epidemic spreading in a predator or
not [13–15]. As per predator–prey interactions, many modelling ap-
proaches are prevalent, including various forms of functional responses
such as Holling types I, II and III, Ivlev type, Beddington–DeAngelis
type, ratio-dependent, et cetera [16]. Compartment models (SIR, SIER,
MSEIR, et cetera) are commonly formulated to study epidemic dis-
eases [17], which can be included in predator–prey modelling, with
disease in either or both species [18,19].

Examples of infectious diseases affecting land-based predator hosts
include rabies infecting foxes; Sarcoptes spp. affecting both foxes and
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coyotes; Yersinia pestis infecting prairie dogs; Stomoxys calcitrans af-
fecting lions; and Aeromonas hydrophila infecting alligators. In the
marine environment, we mention Phocine distemper virus affecting
both the common seal and the striped dolphin [20].

Spatio-temporal pattern formation has been studied for ecological
and epidemiological problems as well as combinations of the two.
The spread of a disease within either a single-species population or in
multi-species populations may require the disease to be considered on
a spatial domain [21]. Due to the spatial heterogeneity, populations
tend to localize on the spatial domain, resulting in pattern emergence.
Some patterns can be ecologically interpreted as isolated patches of
high population density surrounded by low population densities in the
neighbouring areas or vice versa. Others are interlaced bands of high
or low population densities. Some are non-stationary with respect to
space and time, where the species populations move from one region
to another either periodically or aperiodically [22–26].

Reaction–diffusion equations are used to mathematically model
such eco-epidemiological scenarios [27]. These are continuous-space/
continuous-time models and can be single species, two species or
multispecies models; depending on instability conditions, various types
of patterns are generated [28]. Three-species population models include
two prey and one predator, one prey and two predators or predator–
prey/top-predator type, cyclic competitor etc. The disease may affect
one or more of these species; in the case of limited infections, a natural
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question is whether a particular disease will become an epidemic
through predator–prey interactions and how this might change the
structure of the species interactions. Modelling can help determine
whether the introduction of a new disease can lead to an epidemic due
to species interaction or, conversely, whether an existing epidemic will
come to an end [29].

Here, we consider an eco-epidemic model in which the predator
population is infected with a disease; the predator population consumes
its resources from non-diseased prey, although it has an additional
option for food as well. We examine this model in two spatial di-
mensions and study the pattern-formation possibilities for the entire
nonlinear spatio-temporal model. This paper is organized as follows.
In Section 2, we develop the spatio-temporal model and describe the
respective parameters and variables. In Section 3, we derive analytical
results, including diffusion-driven instability. In Section 4, we illustrate
our theoretical results with numerical simulations. We conclude with a
discussion.

2. The spatio-temporal eco-epidemic model

We consider a predator–prey model where the predator is infected
with a disease [30,31]. We assume that predators can spread the disease
amongst themselves but not amongst the prey. The prey population
is described using logistic growth and is subject to infections caused
by susceptible predators at rate 𝑀 and by infected predators at rate
𝑃 . Moreover, the species-interaction terms show a saturation effect
for both types of predators. which may have alternate food sources,
represented by parameter 𝐵 [32–34].

Consider a two-dimensional bounded spatial domain 𝛺 with bound-
ary 𝜕𝛺. Denote the prey population density by 𝑋(𝑥1, 𝑥2, 𝜏), the sus-
ceptible predator population by 𝑌 (𝑥1, 𝑥2, 𝜏) and the infected predator
population by 𝑍(𝑥1, 𝑥2, 𝜏). The time variable is 𝜏, and the space vari-
ables are (𝑥1, 𝑥2). Natural mortality 𝑞 and disease-induced mortality
𝛿 are also incorporated. We consider random diffusion of prey and
predator populations in the spatial domain. The spatio-temporal model
is then
𝜕𝑋
𝜕𝜏

= 𝐷1𝛥𝑋 +𝑋
(

𝑅 − 𝑏𝑋 − 𝑀𝑌
𝐴 +𝑋

− 𝑃𝑀𝑍
𝐴 +𝑋

)

, (1a)

𝜕𝑌
𝜕𝜏

= 𝐷2𝛥𝑌 + 𝑌
(

𝐸1𝑀𝑋
𝐴 +𝑋

− 𝐴1𝑍 − 𝑞 + 𝐵
)

, (1b)

𝜕𝑍
𝜕𝜏

= 𝐷3𝛥𝑍 +𝑍
(

𝐴1𝑌 +
𝐸1𝑀𝑃𝑋
𝐴 +𝑋

− 𝑞 − 𝛿
)

. (1c)

Here 𝑅 is the intrinsic growth rate of the prey, 𝑏 is the inverse of the
carrying capacity of prey population, and the half saturation constant
for predator population is given by 𝐴. Parameter 𝐴1 is the between-
predator transmissibility, and 𝐸1 is the conversion efficiency, which
describes prey biomass being converted to predator biomass. The diffu-
sion coefficients for the prey, susceptible predator and infected predator
populations are 𝐷1, 𝐷2 and 𝐷3, respectively, while the Laplacian is
given by 𝛥 ≡ 𝜕2

𝜕𝑥21
+ 𝜕2

𝜕𝑥22
.

We nondimensionalize this model using transformations 𝑑 ≡ 𝑞 + 𝛿
nd 𝜇 ≡ −𝑞+𝐵, which can be of either sign. The new variables are of the
orm 𝑋 = 𝐴𝑥, 𝑌 = 𝐴𝑦,𝑍 = 𝐴𝑧 and 𝜏 = 𝑡

𝐸1𝑀
. The nondimensionalized

model is then
𝜕𝑥
𝜕𝑡

= 𝑑1𝛥𝑥 + 𝑥
(

𝑟 −𝐻𝑥 −
𝑎𝑦

1 + 𝑥
−

𝑝𝑧
1 + 𝑥

)

, (2a)

𝜕𝑦
𝜕𝑡

= 𝑑2𝛥𝑦 + 𝑦
( 𝑎𝑥
1 + 𝑥

− 𝑚𝑧 + 𝑛
)

, (2b)

𝜕𝑧
𝜕𝑡

= 𝑑3𝛥𝑥 + 𝑒𝑧
(

𝑚𝑦 +
𝑝𝑥

1 + 𝑥
− 𝑑

)

, (2c)

where 𝑟 = 𝑅
𝐸1𝑀

, 𝐻 = 𝐴𝑏
𝐸1𝑀

, 𝑝 = 𝑃
𝑒𝐸1𝑀

𝑚 = 𝐴1𝐴
𝑒𝑀 , 𝑑 = 𝑑

𝑒𝐸1𝑀
and 𝑛 =

𝜇
𝐸1𝑀

. We impose initial conditions and zero-flux boundary conditions

as follows:

𝑥(𝑥 , 𝑥 , 0) ≥ 0, 𝑦(𝑥 , 𝑥 , 0) ≥ 0, 𝑧(𝑥 , 𝑥 , 0) ≥ 0 (𝑥 , 𝑥 ) ∈ 𝛺, (3a)
2

1 2 1 2 1 2 1 2
𝜕𝑥
𝜕𝜈

=
𝜕𝑦
𝜕𝜈

= 𝜕𝑧
𝜕𝜈

= 0, (𝑥1, 𝑥2) ∈ 𝜕𝛺, 𝑡 ≥ 0, (3b)

here �̄�1 = 𝑥1
√

𝑥21+𝑥
2
2

, �̄�2 = 𝑥2
√

𝑥21+𝑥
2
2

, 𝑑1 = 𝐷1
√

𝑥21+𝑥
2
2

, 𝑑2 = 𝐷2
√

𝑥21+𝑥
2
2

and

𝑑3 =
𝐷3

√

𝑥21+𝑥
2
2

. We remove the overbars without loss of generality. Here

is a closed rectangular region with boundary 𝜕𝛺 and the derivative
long the unit outward normal vector to 𝜕𝛺 is 𝜕

𝜕𝜈 .

3. Analytical results

3.1. Non-negativity of solutions

We first establish conditions for non-negativity of solutions.

Lemma 3.1. Assume that 𝑥(𝑥1, 𝑥2, 𝑡) satisfies
𝜕𝑥
𝜕𝑡

− 𝛥𝑥 = 𝑥 (𝑟 −𝐻𝑥) , (𝑥1, 𝑥2) ∈ 𝛺, 𝑡 > 0,

ubject to the boundary condition 𝜕𝑥
𝜕𝜈 = 0 for (𝑥1, 𝑥2) ∈ 𝜕𝛺 and initial

condition 𝑥(𝑥1, 𝑥2, 0) > 0, (𝑥1, 𝑥2) ∈ 𝛺. Then

lim
→∞

𝑥(𝑥1, 𝑥2, 𝑡) = 1.

Theorem 3.2. All solutions of system (2) with nonnegative initial con-
ditions are nonnegative for 𝑡 ≥ 0. Furthermore, the nonnegative solutions
𝑥, 𝑦, 𝑧) satisfy

im sup
𝑡→∞

𝑥 ≤ 𝑟
𝐻

, lim sup
𝑡→∞

𝑦 ≤ 𝐾1, lim sup
𝑡→∞

𝑧 ≤ 𝐾2.

Proof. Using the nonnegativity of 𝑥 and 𝑦 we have

𝑥
(

𝑟 −𝐻𝑥 −
𝑎𝑦

1 + 𝑥
−

𝑝𝑧
1 + 𝑥

)

≤ 𝑥 (𝑟 −𝐻𝑥) .

rom Lemma 3.1, there exists a 𝑇1 > 0 such that

𝑥 ≤ 𝑟
𝐻

+ 𝜖

in 𝛺 × [𝑇1,∞) for an arbitrary 𝜖 > 0. For the estimates of 𝑦 and 𝑧,
et ∫𝛺 𝑥(𝑋, 𝑡) = 𝑈1(𝑡), ∫𝛺 𝑦(𝑋, 𝑡) = 𝑈2(𝑡) and ∫𝛺 𝑧(𝑋, 𝑡) = 𝑈3(𝑡) where
≡ (𝑥1, 𝑥2). Then

𝑑𝑈1
𝑑𝑡

= ∫𝛺
𝜕𝑥
𝜕𝑡

𝑑𝑋 = ∫𝛺
𝑑1𝛥𝑥𝑑𝑋 + ∫𝛺

𝑥(𝑟 −𝐻𝑥)𝑑𝑋

− ∫𝛺
𝑎𝑥𝑦
1 + 𝑥

𝑑𝑋 − ∫𝛺
𝑝𝑥𝑧
1 + 𝑥

𝑑𝑋, (4a)

𝑑𝑈2
𝑑𝑡

= ∫𝛺
𝜕𝑦
𝜕𝑡

𝑑𝑋 = ∫𝛺
𝑑2𝛥𝑦𝑑𝑋 + 𝑛𝑈2 + ∫𝛺

𝑎𝑥𝑦
1 + 𝑥

𝑑𝑋 − ∫𝛺
𝑚𝑥𝑧𝑑𝑋, (4b)

𝑑𝑈3
𝑑𝑡

= ∫𝛺
𝜕𝑧
𝜕𝑡

𝑑𝑋 = ∫𝛺
𝑑3𝛥𝑧𝑑𝑋 − 𝑑𝑒𝑈3 + ∫𝛺

𝑒𝑝𝑥𝑧
1 + 𝑥

𝑑𝑋. (4c)

Adding ((4)a) to ((4)b) and using the Neumann boundary conditions,
we obtain
𝑑
𝑑𝑡

(𝑈1 + 𝑈2) = 𝑛𝑈2 + ∫𝛺
𝑥(𝑟 −𝐻𝑥)𝑑𝑋 − ∫𝛺

𝑝𝑥𝑧
1 + 𝑥

𝑑𝑋 − ∫𝛺
𝑚𝑥𝑧𝑑𝑋

≤ 𝑛𝑈2 + ∫𝛺
𝑥(𝑟 −𝐻𝑥)𝑑𝑋

≤ 𝑛(𝑈1 + 𝑈2) +
( 𝑟
𝐻

− 𝑛
)

𝑈1.

ince lim sup𝑡→∞ 𝑢1(𝑋, 𝑡) ≤ 𝑟
𝐻 , we have lim sup𝑡→∞ 𝑈1(𝑡) ≤

𝑟
𝐻 |𝛺|. Thus,

for small 𝜖 > 0, there exists 𝑇2 > 0 such that
𝑑
𝑑𝑡

(𝑈1 + 𝑈2) ≤ 𝑛(𝑈1 + 𝑈2) +
( 𝑟
𝐻

− 𝑛
)

(1 + 𝜖)|𝛺|

or 𝑡 > 𝑇2. Integration leads to

∫𝛺
𝑦(𝑋, 𝑡)𝑑𝑋 = 𝑈2(𝑡) < 𝑈1(𝑡) + 𝑈2(𝑡) ≤

( 𝑟
𝐻

− 𝑛
)

(1 + 𝜖)|𝛺|, 𝑡 > 𝑇3

or 𝑇3 > 𝑇2. This implies that

im sup 𝑦(𝑋, 𝑡)𝑑𝑋 ≤
( 𝑟 − 𝑛

)

(1 + 𝜖)|𝛺|.

𝑡→∞ ∫𝛺 𝐻
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Thus, any solution 𝑦(𝑋, 𝑡) satisfies an 𝐿1 a priori estimate 𝐾1𝑎 =
(

𝑟
𝐻 − 𝑛

)

(1 + 𝜖)|𝛺| for large 𝑡 which depends on 𝑟, 𝐻, 𝑛 and 𝛺. Fur-
hermore, we can use this 𝐿1 bound to obtain an 𝐿∞ bound 𝐾1𝑏 for
arge 𝑡 > 0. (See Theorem 3.1 of Alikakos [35].) Using Lemma 4.7 of
antrall et al. [36], we can prove that when 𝑑2 > 𝑑2∗, an 𝐿∞ bound
1𝑐 occurs depending on 𝐾1𝑎. Therefore, there exists 𝐾1 > 0 depending
nly on a lower bound of 𝑑2, such that

im sup
𝑡→∞

𝑦 ≤ 𝐾1.

ultiplying ((4)a) by 𝑒, ((4)b) by 𝑒 and adding them to ((4)c), and using
he Neumann boundary conditions, we get
𝑑
𝑑𝑡

(𝑈3 + 𝑒𝑈2 + 𝑒𝑈1) = 𝑒∫𝛺
𝑢1(𝑟 −𝐻𝑥)𝑑𝑋 + 𝑛𝑒𝑈2 − 𝑑𝑒𝑈3 − ∫𝛺

𝑚𝑥𝑧𝑑𝑋

≤ 𝑒𝑈1 + 𝑛𝑒𝑈2 − 𝑑𝑒𝑈3

= (𝑈3 + 𝑒𝑈2 + 𝑒𝑈1) − (1 + 𝑑𝑒)𝑈3 + (𝑛 − 1)𝑒𝑈2

≤ (𝑈3 + 𝑒𝑈2 + 𝑒𝑈1) + 𝑛𝑒𝑈2.

We know that lim sup𝑡→∞ 𝑈1(𝑡) ≤ 𝑟
𝐻 |𝛺| and lim sup𝑡→∞ 𝑈2(𝑡) ≤

(

𝑟
𝐻 − 𝑛

)

(1 + 𝜖)|𝛺|. Thus, for small 𝜖 > 0, there exists 𝑇4 > 0 such that

𝑑
𝑑𝑡

(𝑈3 + 𝑒𝑈2 + 𝑒𝑈1) ≤ (𝑈3 + 𝑒𝑈2 + 𝑒𝑈1) + 𝑛𝑒
( 𝑟
𝐻

− 𝑛
)

(1 + 𝜖)|𝛺|

holds for 𝑡 > 𝑇4. Integration leads to

∫𝛺
𝑢3(𝑋, 𝑡)𝑑𝑋 = 𝑈3(𝑡) < 𝑈3(𝑡) + 𝑒𝑈2(𝑡) + 𝑒𝑈1(𝑡),

≤ 𝑛𝑒
( 𝑟
𝐻

− 𝑛
)

(1 + 𝜖)|𝛺|

for 𝑇5 > 𝑇4. Thus, any solution 𝑧(𝑋, 𝑡) satisfies an 𝐿1 a priori estimate

𝐾2𝑎 = 𝑛𝑒
( 𝑟
𝐻

− 𝑛
)

(1 + 𝜖)|𝛺|

for large 𝑡, which depends on 𝑏1, 𝑏2, 𝑎2, 𝑎4 and 𝛺. Furthermore, we
can use this 𝐿1 bound to obtain an 𝐿∞ bound 𝐾2𝑏 for large 𝑡 > 0. (See
Theorem 3.1 of Alikakos [35].) Using Lemma 4.7 of Cantrell et al. [36]
again, we can prove that when 𝑑3 > 𝑑3∗, an 𝐿∞ bound 𝐾2𝑐 occurs
depending on 𝐾2𝑎. Therefore, there exists 𝐾2 > 0 depending only on
a lower bound of 𝑑3, such that

lim sup
𝑡→∞

𝑧 ≤ 𝐾2. □

3.2. Diffusion-drive instability conditions

Diffusion-driven instability occurs when the stable homogeneous
steady-state becomes unstable due to small perturbations. We take
𝑥(𝑥1, 𝑥2, 𝑡) ≡ 𝑥∗, 𝑦(𝑥1, 𝑥2, 𝑡) ≡ 𝑦∗, 𝑧(𝑥1, 𝑥2, 𝑡) ≡ 𝑧∗ to be the homo-
geneous steady state for (2). By applying small perturbations to the
homogeneous steady state, we have

⎛

⎜

⎜

⎝

𝑥
𝑦
𝑧

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑥∗
𝑦∗
𝑧∗

⎞

⎟

⎟

⎠

+ 𝜖
⎛

⎜

⎜

⎝

�̂�1
�̂�2
�̂�3

⎞

⎟

⎟

⎠

exp(𝜆𝑡 + 𝑖𝐤 ⋅ 𝐫) + 𝑐.𝑐.

≡
⎛

⎜

⎜

⎝

𝑥∗
𝑦∗
𝑧∗

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝑢(𝑥1, 𝑥2, 𝑡)
𝑣(𝑥1, 𝑥2, 𝑡)
𝑤(𝑥1, 𝑥2, 𝑡)

⎞

⎟

⎟

⎠

,

where 0 < 𝜖 ≪ 1, 𝜆 is the perturbation growth rate, 𝐫 ≡ (𝑥, 𝑦)
is the position vector and 𝑐.𝑐. represents the complex conjugate. The
wave number vector is 𝐤, with the wave number given by 𝑘 = |𝐤|.
The characteristic equation for the growth rate 𝜆 is determined from
det(𝐉1) = 0, where

𝐉1 =
⎛

⎜

⎜

⎝

𝐹1 − 𝑑1𝑘2 − 𝜆 𝐹2 𝐹3
𝐺1 0 − 𝑑2𝑘2 − 𝜆 𝐺3
𝐻1 𝐻2 0 − 𝑑3𝑘2 − 𝜆

⎞

⎟

⎟

⎠

,

with

𝐹1 = −𝐻𝑥∗ +
𝑎𝑥∗𝑦∗ +

𝑝𝑥∗𝑧∗ , 𝐺1 =
𝑎𝑦∗ −

𝑎𝑥∗𝑦∗ ,
3

(1 + 𝑥∗)2 (1 + 𝑥∗)2 (1 + 𝑥∗) (1 + 𝑥∗)2
𝐹2 = −
𝑎𝑥∗

(1 + 𝑥∗)
, 𝐺3 = −𝑚𝑦∗,

𝐹3 = −
𝑝𝑥∗

(1 + 𝑥∗)
,

𝐻1 = 𝑒𝑧∗

(

𝑝
(1 + 𝑥∗)

−
𝑝𝑥∗

(1 + 𝑥∗)2

)

,

𝐻2 = 𝑒𝑧∗𝑚.

The characteristic equation is

𝜆3 + 𝐴(𝑘2)𝜆2 + 𝐵(𝑘2)𝜆 + 𝐶(𝑘2) = 0, (5)

here

𝐴(𝑘2) = 𝑑2𝑑3𝑘
4 + 𝑘2(𝑑1 + 𝑑2 + 𝑑3) − 𝐹1,

𝐵(𝑘2) = 𝑘4(𝑑1𝑑3 + 𝑑1𝑑2) − 𝑘2(𝑑3 + 𝑑2)𝐹1 − 𝐺3𝐻3 − 𝐹2𝐺1 − 𝐹3𝐻1,

(𝑘2) = 𝑑1𝑑2𝑑3𝑘
6 − 𝑑2𝑑3𝐹1𝑘

4 − 𝑘2(𝑑1𝐺3𝐻3 + 𝑑2𝐹3𝐻1 + 𝑑3𝐹2𝐺1)

− 𝐹2𝐺3𝐻1 − 𝐹3𝐺1𝐻3 + 𝐹1𝐺3𝐻3.

In order to have ℜ(𝜆) < 0, we require the Routh–Hurwitz criterion to
e satisfied, given by:

(𝑘2) > 0, 𝐶(𝑘2) > 0, 𝐴(𝑘2)𝐵(𝑘2) − 𝐶(𝑘2) > 0.

If this occurs, the homogeneous steady state will be stable. Diffusion-
driven instability will manifest when ℜ(𝜆max) > 0. Therefore, if 𝜆1, 𝜆2,
𝜆3 are the roots of (5), then we have

𝜆1 + 𝜆2 + 𝜆3 = −𝐴(𝑘2),

𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1 = 𝐵(𝑘2),

𝜆1𝜆2𝜆3 = −𝐶(𝑘2),

−(𝜆1 + 𝜆2)(𝜆2 + 𝜆3)(𝜆3 + 𝜆1) = 𝐴(𝑘2)𝐵(𝑘2) − 𝐶(𝑘2).

At the bifurcation threshold 𝑘 = 𝑘𝑇 , one of the eigenvalues is zero, say
𝜆1. Hence

𝜆1
|

|

|

|𝑘2=𝑘2𝑇

= 0, ℜ

(

𝜆2
|

|

|

|𝑘2=𝑘2𝑇

)

< 0 and ℜ

(

𝜆3
|

|

|

|𝑘2=𝑘2𝑇

)

< 0. (7)

It follows that 𝐶(𝑘2𝑇 ) = 0. Due to the conditions of diffusion-driven
instability given in (7), we get 𝐴(𝑘2𝑇 ) > 0, 𝐵(𝑘2𝑇 ) > 0 and 𝐴(𝑘2𝑇 )𝐵(𝑘

2
𝑇 ) −

𝐶(𝑘2𝑇 ) > 0. It follows that we have stability if 𝐶(𝑘2) > 0 ∀ 𝑘 and
instability if ∃ 𝑘 such that 𝐶(𝑘2) < 0. The expression can be rewritten
as

𝐶(𝑘2) = 𝐶1(𝑘2)3 + 𝐶2(𝑘2)2 + 𝐶3(𝑘2) + ℎ,

where 𝐶1 > 0, since the self-diffusion coefficients are positive and
ℎ > 0 from the second condition of (3.8). When 𝑘 = 𝑘𝑇 , 𝐶 reaches
a minimum, where

𝑘2𝑇 =
−𝐶2 + (𝐶2

2 − 3𝐶1𝐶3)
1
2

3𝐶1

nd 𝑑𝐶(𝑘2𝑇 )

𝑑(𝑘2𝑇 )
= 0 and 𝑑2𝐶(𝑘2𝑇 )

𝑑(𝑘2𝑇 )
2 > 0. Finally, 𝑘2𝑇 is positive if 𝐶3 < 0 or

𝐶2 < 0 and 𝐶2
2 > 3𝐶1𝐶3. The bifurcation boundary is thus described by

𝐶3
2 − 9𝐶1𝐶2𝐶3 − 2(𝐶2

2 − 3𝐶1𝐶3)
3
2 + 27𝐶2

1ℎ = 0.

his derives the conditions for diffusion-driven instability.

. Numerical simulations

.1. Eco-epidemiological model

In this section, we perform numerical simulations of system (1) us-
ng experimental data from Tanner [31]. Tanner calculated the intrinsic
rowth rates of some predator and prey populations1 and divided them

1 For details, see Page 861.
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Table 1
Growth rates per year of some predator–prey interactions [31].

Species Observed growth rate Maximum growth rate

(a) Muskrat 0.806 ≤ 𝑟 ≤ 1.068 1.101 ≤ 𝑟 ≤ 1.366
Mink 0.022 ≤ 𝛿 ≤ 0.185 0.378 ≤ 𝛿 ≤ 0.531

(b) Moose 0.100 ≤ 𝑟 ≤ 0.127 0.171 ≤ 𝑟 ≤ 0.202
Wolf 0.232 ≤ 𝛿 ≤ 0.321 0.431 ≤ 𝛿 ≤ 0.524

(c) Snowshoe hare 0.545 ≤ 𝑟 ≤ 0.810 0.769 ≤ 𝑟 ≤ 0.1033
Lynx 𝛿 ≤ 0.855 𝛿 ≤ 1.012

into three categories: (a) the prey has a higher growth rate than the
predator; (b) the predator has a higher growth rate than the prey and
(c) both the prey and the predator have approximately equal growth
rates as shown in Table 1. Here ‘‘observed’’ means the highest rates
reported in the literature and ‘‘maximum’’ means the rates that Tanner
judged likely in an optimal environment. In each case, the lower bound
is under ‘‘observed’’ fertility and the upper bound is under ‘‘maximum’’
fertility. We have taken the birth rate of the species from the table and
keep their variations with this experimental range.

We performed numerical simulations of the model on a square
lattice mesh with 𝛥𝑥1 = 𝛥𝑥2 = 1 and 𝛥𝑡 = 0.01 using the forward Euler
method for the temporal part and a five-point stencil finite-difference
scheme for the diffusion part. The results were verified using other
choices of 𝛥𝑥1, 𝛥𝑥2 and 𝛥𝑡, and no meaningful changes were observed.

Ideally, with the initial conditions as random perturbation to the
homogeneous steady state, we should get stationary or non-stationary
patterns. However, with the parameter sets we use here, only periodic
solutions with respect to space and time are observed, with the ho-
mogeneous solution oscillating between two values. By changing the
initial conditions, we observe some inhomogeneous spatial patterns.
The initial conditions are

𝑥(𝑥1, 𝑥2, 0) = 𝑥∗ − (2 × 10−9)(𝑥1 − 50)(𝑥2 − 30)

− (3 × 10−5)(𝑥1 − 50)(𝑥2 − 30),

𝑦(𝑥1, 𝑥2, 0) = 𝑦∗ − (1.2 × 10−4)(𝑥1 − 100) − (6 × 10−4)(𝑥2 − 100),

𝑧(𝑥1, 𝑥2, 0) = 𝑧∗ − (1.2 × 10−4)(𝑥1 − 100) − (6 × 10−4)(𝑥2 − 100).

The parameter set is 𝑒 = 0.00001, 𝑟 = 0.89,𝐻 = 0.05, 𝑚 = 0.99, 𝑛 =
0.05, 𝑝 = 2.15, 𝑑 = 3.5, 𝑑1 = 1, 𝑑3 = 0.5, Diffusion-driven instability
conditions are satisfied by this parameter set. We vary 𝑎 and 𝑑3 to get
the bifurcation curve as shown in Fig. 1. Below the curve, the steady
state prevails and no patterns exist, whereas patterns start emerging for
parameter values above the curve.

As seen in Fig. 2, with particular initial conditions, travelling-wave
solutions appear, which form a continuous peak of high population
density, travel through the domain and break into two. They again
join as time evolves, giving the travelling wavefront solution. It follows
that, depending on the diffusivities and initial conditions, the disease
can oscillate periodically over time. The patterns in 𝑥 and 𝑦 are more
prominent than those for 𝑧 because of the parameter 𝑒 associated with
Eq. (2)(c). Due to the low value of 𝑒, the patterns are barely visible
for 𝑧. Otherwise, if 𝑒 is not included in the model, the diffusivity 𝑑3
needs to be much higher than that of 𝑑1 and 𝑑2, which is not feasible
for numerical simulations, nor is it biologically sensible.

As the value of 𝑑3 increases (keeping other parameter values the
same), spiral solutions appear and move out of the system. They can
also eventually reappear. The spirals form and break continuously,
giving an irregular nature to the solutions. Fig. 3(d) shows the pe-
riodic solutions converting to chaotic solutions as 𝑑3 increases. In
eco-epidemiological terms, the disease spread becomes unpredictable,
unlike the previous case. This model is capable of producing only
non-stationary patterns as a result of diffusive instability.
4

Fig. 1. Bifurcation diagram in the 𝑎-𝑑3 plane showing the diffusion-driven instability
curve.

4.2. Disease-free model

Finally, we consider the special case of the model in the absence
of disease. In this case, the eco-epidemiological model reduces to an
epidemiological one alone. For the disease-free population, we have
𝜕𝑥
𝜕𝑡

= 𝑑1𝛥𝑥 + 𝑥
(

𝑟 −𝐻𝑥 −
𝑎𝑦

1 + 𝑥

)

, (9a)

𝜕𝑦
𝜕𝑡

= 𝑑2𝛥𝑦 + 𝑦
( 𝑎𝑥
1 + 𝑥

+ 𝑛
)

. (9b)

Model (9) is unable to produce any Turing patterns, with the popula-
tions driven to extinction in most cases. However, it produces Turing
patterns under cross-diffusions [37].

The perturbations in the corresponding temporal model are de-
scribed by
(

𝑥
𝑦

)

=
(

𝑥∗
𝑦∗

)

+
(

𝐶1
𝐶2

)

𝑒𝜆𝑡, (10)

where 0 < 𝐶1, 𝐶2 ≪ 1 and 𝜆 is the growth rate of perturbations.
Substituting (10) into (9), the characteristic equation for the growth
rate 𝜆 is found from det(𝐉1) = 0, where

𝐉1 =
(

𝑎11 − 𝜆 𝑎12
𝑎21 −𝜆

)

. (11)

Here

𝑎11 = −𝐻𝑥∗ +
𝑎𝑥∗𝑦∗

(1 + 𝑥∗)2
, 𝑎12 = −

𝑎𝑥∗
(1 + 𝑥∗)

,

𝑎21 =
𝑎𝑦∗

(1 + 𝑥∗)
−

𝑎𝑥∗𝑦∗
(1 + 𝑥∗)2

, 𝑎22 = 0.

The necessary condition for Turing instability is when all the entries of
the Jacobian have non-zero entries, with signs given by
(

+ +
− −

)

,
(

− −
+ +

)

,
(

+ −
+ −

)

and
(

− +
− +

)

.

Since 𝑎22 = 0, the general Turing instability condition for two species
model is not satisfiable. Thus it is impossible to get any Turing patterns
for model (1). However, numerical simulations demonstrate that the
model is capable of showing non-Turing patterns for lower ranges of
diffusivity as shown in Fig. 4. Interacting spiral chaos is observed for
the chosen parameter set for low diffusion coefficients. As the range of
diffusivities increase, populations are driven to extinction. Introducing
the infected predator population into the system, the spirals are lost,
but periodic and aperiodic waves are observed, as in the previous cases.

5. Discussion

Eco-epidemic models merge features of two phenomena: the de-
mographics of interacting species and the evolution of epidemics in a
composite environment. We considered a spatiotemporal extension to a
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Fig. 2. (a) Plot of 𝑥 after 𝑡 = 700,000 time units. (b) Plot of 𝑦 after 𝑡 = 700,000 time units. (a) Plot of 𝑧 after 𝑡 = 700,000 time units. (d) Plot of spatial averages of 𝑥, 𝑦 and 𝑧. The
data are 𝑒 = 0.00001, 𝑟 = 0.89,𝐻 = 0.05, 𝑚 = 0.99, 𝑛 = 0.05, 𝑝 = 2.15, 𝑑 = 3.5, 𝑎 = 0.32, 𝑒1 = 1, 𝑒2 = 1 and 𝑒3 = 20.

Fig. 3. (a) Plot of 𝑥 after 𝑡 = 700,000 time units. (b) Plot of 𝑦 after 𝑡 = 700,000 time units. (a) Plot of 𝑧 after 𝑡 = 700,000 time units. (d) Plot of spatial averages of 𝑥, 𝑦 and 𝑧. The
parameter set is as in Fig. 2 except with 𝑒3 = 80.
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Fig. 4. Spirals in the disease-free model. The parameter set is as in Fig. 2 except with 𝑒3 = 80. (a) Plot of 𝑥 after 𝑡 = 700,000 time units; (b) Plot of 𝑦 after 𝑡 = 700,000 time units.
predator–prey population in which some of the predators are infected
and the remainder are susceptible using reaction–diffusion equations.
We found diffusion-driven instability conditions for the model and
generated numerically simulated patterns such as periodic travelling
waves and interacting spiral chaos patterns. We also compared the
results to the disease-free model and showed that Turing patterns did
not occur in this case. It follows that the introduction of a disease in
a predator species may bring more complex dynamics to the standard
Rosenzweig–MacArthur model.

Due the introduction of the control parameter 𝑒, we see 𝑧 showing
almost no Turing patterns. If 𝑒 is not considered, then the diffusivity of
𝑧 is too high to see any detailed patterns. The travelling-wave solutions
show that the waves of the disease will arrive, peak and then ultimately
move out of the spatial domain with time. In this case, the infected
predator population will ultimately convert to susceptible and will not
lead to an epidemic. The disease will also not spread through the prey
population. The disease-free model shows interacting spiral patterns
with dynamic predator–prey interactions in which both species co-exist.
However, introducing an infected predator changes the course of the
dynamics, resulting in travelling wave solutions and chaos.

Note that the high prey population areas correspond to low predator
population zones, both for susceptible and infected predator popula-
tions. This means that the predator population will attempt to catch
the prey from the boundary of prey-rich zones.

Spiral patterns and spiral waves are commonplace in nature, occur-
ring both in biological systems and chemical reactions. The emergence
of such spiral patterns suggests that spatial order can emerge from tem-
poral disorder. Fig. 4 demonstrates that the disease-free Rosenzweig–
MacArthur model shows spiral patterns. These spiral patterns can be
analysed with respect to their characteristic spatial sizes and orien-
tations of the populations. Despite the model having no particular
rotational symmetries, we observe spiral patterns; however, these pat-
terns are lost once the disease is introduced into the predator species.
Earlier studies [38–40] showed that the preservation of spiral patterns
can occur with small differences between either the growth rates or the
diffusion coefficients; here, however, we noticed that the spiral patterns
can be prevented completely by introducing a transmissible disease in
one species.

Due to the complexity of the dynamics, very little work has been
done on diffusive eco-epidemic models in three dimensions. The models
discussed here can be used to study other eco-epidemic scenarios,
with extensions to patchy landscape invasions or chaos in multi-species
models [41]. Temporal models demonstrate interesting dynamics, but
spatial models are more suited to ecological scenarios. Future work
will extend our models to more nuanced situations in eco-epidemiology
such as food webs and competitor-mediated coexistence.

Our model has some limitations, which should be acknowledged.
Modelling a full eco-epidemiological system is challenging, due to the
6

number of factors involved. We assumed mass-action transmission for
the infection between predators. Only the susceptible predator was able
to find additional sources of food, on the assumption that the infected
predator was too sick to do so; this may not hold in all cases. We also
assumed that spatial movement of all three populations was through
diffusion, when the reality is much more complex.

Our work illustrates the utility of combining epidemiological models
with ecological models in order to gain more insight into the spread
of disease through time while populations simultaneously diffuse spa-
tially. Periodic patterns may sustain the disease, although this at least
may be predictable. Conversely, chaotic patterns may cause the disease
to become eradicated, although it is important to note that this scenario
loses predictability.
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