Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?

Robert Smith?

The University of Ottawa
HIV now infects 40 millions adults worldwide
An HIV vaccine represents the best hope of controlling the disease
$682 million is spent on HIV vaccine research annually.
Cytotoxic T Lymphocytes (CTLs)

• Cells with the ability to identify and destroy virally infected cells in the body
• Activated via specific recognition of viral fragments
• One of the body’s best natural defence mechanisms.
CTL vaccines

• If CTLs can be boosted at regular intervals, they can attack infected T-helper cells
• A vaccine that stimulates the CTL response has been described as the best hope for control of HIV
• Such a post-infection “vaccine” would be administered regularly and indefinitely
• Results from clinical trials expected by 2011.
Infected CD4$^+$ T cells

- Die at death rate d
- Cleared by CTLs at rate p, proportional to the density of both types

Key approximation:
- We assume the production rate of infected cells is constant, π
 (thus we use a steady-state viral load approximation when estimating parameters).
CTLs

- Proliferate at rate α, proportional to density of both CTLs and infected T cells
- Die at death rate δ.

Three CTLs (blue) annihilate target cells (red)
The model without vaccination

Thus the model (without vaccination) is

\[
\frac{dT}{dt} = \pi - dT - pCT \\
\frac{dC}{dt} = \alpha CT - \delta C.
\]

\(T=\text{infected } T \text{ cells} \quad \pi=\text{production rate} \quad d,\delta=\text{death rates} \quad C=\text{CTLs} \quad \alpha=\text{proliferation rate} \quad p=\text{clearance rate}
Steady states

Two steady states:

• trivial
 (no CTLs)

 \[(\hat{T}, \hat{C}) = \left(\frac{\pi}{d}, 0 \right) \]

• nontrivial
 (coexistence)

 \[(\bar{T}, \bar{C}) = \left(\frac{\delta}{\alpha}, \frac{\alpha \pi - \delta d}{p\delta} \right) \].

\(T = \) infected T cells \(\pi = \) production rate \(d, \delta = \) death rates
\(C = \) CTLs \(\alpha = \) proliferation rate \(p = \) clearance rate
Stability

• For the trivial steady state, the Jacobian is

\[J \big|_{(\hat{T},\hat{C})} = \begin{bmatrix} -d & 0 \\ 0 & \frac{\alpha \pi}{d} - \delta \end{bmatrix} \]

Thus unstable iff \(\bar{C}' = (\alpha \pi - \delta d)/p \delta > 0 \)

• For the nontrivial steady state, the characteristic polynomial is

\[\det(J \big|_{(\bar{T},\bar{C})} - \lambda I) = \lambda^2 + (d + p\bar{C})\lambda + \alpha p\bar{C}^2 \]

Thus stable whenever \(\bar{C} > 0 \).

\[T=\text{infected } T \text{ cells} \quad \pi=\text{production rate} \quad d,\delta=\text{death rates} \]
\[C=\text{CTLs} \quad \alpha=\text{proliferation rate} \quad p=\text{clearance rate} \]
Hence:

• the trivial steady state is unstable iff the nontrivial steady state exists in the positive plane

• the nontrivial steady state is asymptotically stable whenever it exists in the positive plane.
Nontrivial eq^m absent \iff trivial eq^m stable
Nontrivial eq^m stable in the positive plane
Vaccination

- A fixed boost of CTLs, C^i
- Given at regular times, t_k
- We assume the vaccine effect is instantaneous...
 ...this results in a series of impulsive differential equations.
According to impulsive theory, we can describe the nature of the impulse at time r_k via the difference equation:

$$\Delta y \equiv y(r_k^+) - y(r_k^-) = f(r_k, y(r_k^-))$$
Impulsive DEs

- Solutions are continuous for $t \neq r_k$
- Solutions undergo an instantaneous change in state when $t = r_k$.

Thousands of HIV particles emerging from an infected T-cell

r_k = impulse time
Putting it together

- The model thus consists of a system of ODEs (infected T cells and CTLs) together with a difference equation (CTL boost).
Impulsive interruption

• The impulsive effect “interrupts” the continuous trajectories
• The cycle is restarted
• It continues until the next “interruption”.

Infectected T cells

CTLs
The model (with vaccination)

- Thus, the impulsive model is

\[
\begin{align*}
\frac{dT}{dt} &= \pi - dT - pCT \\
\frac{dC}{dt} &= \alpha CT - \delta C \\
\Delta C &= C^i
\end{align*}
\]

\(t \neq t_k \)

\(t = t_k \).

\(T = \) infected \(T \) cells \quad \pi = \) production rate \quad d, \delta = \) death rates \quad C^i = \) vaccine strength

\(C = \) CTLs \quad \alpha = \) proliferation rate \quad p = \) clearance rate \quad t_k = \) vaccination time
Implicit solution within a cycle

• Since

\[C' = C(\alpha T - \delta) \]

\(T = \) infected cells \(C = \) CTLs
\(\alpha = \) proliferation rate \(\delta = \) death rate
Implicit solution within a cycle

- Since

\[
C' = C(\alpha T - \delta)
\]

\[
\int_0^t \frac{dC}{C} = \int_0^t (\alpha T(u) - \delta)\,du
\]

\(T=\text{infected cells} \quad C=\text{CTLs} \quad \alpha=\text{proliferation rate} \quad \delta=\text{death rate}\)
Implicit solution within a cycle

Since

\[C' = C(\alpha T - \delta) \]

\[
\int_0^t \frac{dC}{C} = \int_0^t (\alpha T(u) - \delta) \, du
\]

\[C(t) = C(0) e^{\int_0^t (\alpha T(u) - \delta) \, du} \]

\[T=\text{infected cells} \quad C=\text{CTLs} \]
\[\alpha=\text{proliferation rate} \quad \delta=\text{death rate} \]
Defining T_{int}

• Define

$$T_{\text{int}} = e^{\int_0^\tau (\alpha T(u) - \delta) du}$$

where $\tau = t_{k+1} - t_k$ is the vaccine administration interval (assumed constant)

• T_{int} is a measure of the ratio of the number of CTLs at the end of an impulsive cycle to those at the beginning.

$T =$ infected T cells \hspace{1em} $\alpha =$ proliferation rate \hspace{1em} $\delta =$ death rate \hspace{1em} $t_k =$ vaccination time
An impulsive periodic orbit

- In particular, if $C(0^+) = \frac{C^i}{1-T_{\text{int}}}$

T_{int}=cell ratio measure \hspace{1em} C=CTLs
\hspace{1em} C'=vaccine strength \hspace{1em} \tau=\text{vaccination period}$
An impulsive periodic orbit

- In particular, if $C(0^+) = \frac{C^i}{1-T_{\text{int}}}$

$$C(\tau^-) = \frac{C^i T_{\text{int}}}{1 - T_{\text{int}}}.$$
An impulsive periodic orbit

- In particular, if $C(0^+) = \frac{C_i}{1 - T_{\text{int}}}$

$$C(\tau^-) = \frac{C_i T_{\text{int}}}{1 - T_{\text{int}}}$$

$$C(\tau^+) = \frac{C_i T_{\text{int}}}{1 - T_{\text{int}}} + C_i$$

T_{int}=cell ratio measure $C=$CTLs
C'=vaccine strength $\tau=$vaccination period
An impulsive periodic orbit

In particular, if \(C(0^+) = \frac{C^i}{1 - T_{\text{int}}} \)

\[
C(\tau^-) = \frac{C^i T_{\text{int}}}{1 - T_{\text{int}}}
\]

\[
C(\tau^+) = \frac{C^i T_{\text{int}}}{1 - T_{\text{int}}} + C^i
\]

\[
= \frac{C^i}{1 - T_{\text{int}}}
\]

\(T_{\text{int}} = \) cell ratio measure \(C = \) CTLs
\(C^i = \) vaccine strength \(\tau = \) vaccination period
An impulsive periodic orbit

- In particular, if $C(0^+) = \frac{C^i}{1-T_{\text{int}}}$

$$C(\tau^-) = \frac{C^i T_{\text{int}}}{1 - T_{\text{int}}}$$

$$C(\tau^+) = \frac{C^i T_{\text{int}}}{1 - T_{\text{int}}} + C^i$$

$$= \frac{C^i}{1 - T_{\text{int}}}$$

$$= C(0^+).$$

$T_{\text{int}}=$ cell ratio measure \(C=\text{CTLs} \)

$C^i=$ vaccine strength \(\tau=\text{vaccination period} \)
The orbit, with endpoints

• Thus we have an impulsive periodic orbit

\[C'(t) = \frac{C^i e^{\int_0^t (\alpha T(u) - \delta) du}}{1 - T_{int}} \]

for \(0 < t < \tau \)

• Endpoints of the impulsive orbit are

\[C(0^+) = \frac{C^i}{1 - T_{int}} \quad \text{and} \quad C(\tau^-) = \frac{C^i T_{int}}{1 - T_{int}}. \]

\(T_{int} = \text{cell ratio measure} \quad C = \text{CTLs} \quad C^i = \text{vaccine strength} \)
\(\alpha = \text{proliferation rate} \quad \delta = \text{death rate} \quad \tau = \text{vaccination period} \)
From the impulsive DEs, define

\[P(T, C) = \pi - dT - pCT \]
\[Q(T, C) = \alpha CT - \delta C \]
\[a(T, C) = 0 \]
\[b(T, C) = C^i, \]

with the (differentiable) function \(\phi \) defined implicitly by

\[\{ \phi(T(t), C(t)) = 0 : t = t_k \} \]

Impulsive effects

\(\pi = \) production rate
\(\delta, d = \) death rates
\(p = \) production rate
\(\alpha = \) proliferation rate
\(C^i = \) vaccine strength
\(t_k = \) impulse times
Impulsive Floquet Theory

- Let \((\xi, \eta)\) define the periodic orbit
- Then

\[
\xi(t_k^-) = \xi(t_k^+) = T(\tau)
\]

\(T=\) infected \(T\) cells \(\quad C=\) vaccine strength
\(\tau=\) vaccination period \(\quad t_k=\) impulse times
Impulsive Floquet Theory

• Let \((\xi, \eta)\) define the periodic orbit
• Then

\[
\begin{align*}
\xi(t_k^-) &= \xi(t_k^+) = T(\tau) \\
\eta(t_k^-) &= \frac{C^iT_{\text{int}}}{1 - T_{\text{int}}}
\end{align*}
\]

No impulse in T

\(T=\text{infected } T \text{ cells} \quad C^i=\text{vaccine strength} \quad \tau=\text{vaccination period} \quad t_k=\text{impulse times}\)
Impulsive Floquet Theory

- Let \((\xi, \eta)\) define the periodic orbit
- Then

\[
\xi(t^-_k) = \xi(t^+_k) = T(\tau)
\]
\[
\eta(t^-_k) = \frac{C^i T_{int}}{1 - T_{int}}
\]
\[
\eta(t^+_k) = \frac{C^i}{1 - T_{int}}
\]

Legends:
- \(T\) = infected T cells
- \(C^i\) = vaccine strength
- \(\tau\) = vaccination period
- \(t_k\) = impulse times
The nontrivial Floquet multiplier is

\[
\mu_2 = \Delta_1 \exp \left[\int_0^T \left(\frac{\partial P}{\partial T}(\xi(t), \eta(t)) + \frac{\partial Q}{\partial C}(\xi(t), \eta(t)) \right) dt \right]
\]

where

\[
\Delta_1 = \frac{P_+ \left(\frac{\partial b}{\partial C} \frac{\partial \phi}{\partial T} - \frac{\partial b}{\partial T} \frac{\partial \phi}{\partial C} + \frac{\partial \phi}{\partial T} \right) + Q_+ \left(\frac{\partial a}{\partial T} \frac{\partial \phi}{\partial C} - \frac{\partial a}{\partial C} \frac{\partial \phi}{\partial T} + \frac{\partial \phi}{\partial C} \right)}{P \frac{\partial \phi}{\partial T} + Q \frac{\partial \phi}{\partial C}};
\]

\((\xi, \eta) = (T, C)\) periodic orbit \(t_k =\) impulse times \(P, Q =\) differential equations \(a, b =\) impulsive effects \(\phi =\) implicit impulse function
Nontrivial 2D Floquet multiplier

- The nontrivial Floquet multiplier is

\[
\mu_2 = \Delta_1 \exp \left[\int_0^\tau \left(\frac{\partial P}{\partial T}(\xi(t), \eta(t)) + \frac{\partial Q}{\partial C}(\xi(t), \eta(t)) \right) dt \right]
\]

- where

\[
\Delta_1 = \frac{P_+ \left(\frac{\partial a}{\partial C} - \frac{\partial b}{\partial T} \frac{\partial \phi}{\partial T} + \frac{\partial \phi}{\partial C} \right) + Q_+ \left(\frac{\partial b}{\partial C} - \frac{\partial a}{\partial T} \frac{\partial \phi}{\partial T} + \frac{\partial \phi}{\partial C} \right)}{P \frac{\partial \phi}{\partial T} + Q \frac{\partial \phi}{\partial C}}
\]

\(P, Q, \frac{\partial a}{\partial T}, \frac{\partial b}{\partial T}, \frac{\partial a}{\partial C}, \frac{\partial b}{\partial C}, \frac{\partial \phi}{\partial T}\) and \(\frac{\partial \phi}{\partial C}\) are computed at the point \((\xi(t_k^-), \eta(t_k^-))\) and \(P_+ = P(\xi(t_k^+), \eta(t_k^+)), Q_+ = Q(\xi(t_k^+), \eta(t_k^+))\).

\((\xi, \eta) = (T, C)\) periodic orbit \(t_k =\) impulse times
\(P, Q =\) differential equations \(a, b =\) impulsive effects
\(\phi =\) implicit impulse function
P and Q explicitly

- Since \(\xi(t_k^+) = \xi(t_k^-) \),

\((\xi, \eta) = (T, C)\) periodic orbit \(t_k = \text{impulse times}\)

\(P, Q = \text{differential equations}\)

\(d, \delta = \text{death rates}\) \quad \alpha = \text{proliferation rate}\)

\(\pi = \text{production rate}\) \quad \(p = \text{production rate}\)
P and Q explicitly

• Since $\xi(t^+_k) = \xi(t^-_k)$,

\[P = \pi - d\xi(t^-_k) - p\eta(t^-_k)\xi(t^-_k) \]

\[(\xi, \eta) = (T, C) \text{ periodic orbit } t_k = \text{impulse times} \]
\[P, Q = \text{differential equations} \]
\[d, \delta = \text{death rates} \quad \alpha = \text{proliferation rate} \]
\[\pi = \text{production rate} \quad p = \text{production rate} \]
P and Q explicitly

- Since \(\xi(t_k^+) = \xi(t_k^-) \),

\[
P = \pi - d\xi(t_k^-) - p\eta(t_k^-)\xi(t_k^-)
\]

\[
P_+ = \pi - d\xi(t_k^-) - p\eta(t_k^+)\xi(t_k^-)
\]

\((\xi, \eta) = (T, C) \) periodic orbit \(t_k = \) impulse times

\(P, Q = \) differential equations

\(d, \delta = \) death rates \hspace{1cm} \(\alpha = \) proliferation rate

\(\pi = \) production rate \hspace{1cm} \(p = \) production rate
P and Q explicitly

- Since \(\xi(t_k^+) = \xi(t_k^-) \),

 \[
 P = \pi - d\xi(t_k^-) - p\eta(t_k^-)\xi(t_k^-)
 \]

 \[
 P_+ = \pi - d\xi(t_k^-) - p\eta(t_k^+)^\prime\xi(t_k^-)
 \]

 \[
 Q = \alpha\xi(t_k^-)^\prime\eta(t_k^-) - \delta\eta(t_k^-)
 \]

(\(\xi, \eta \))=(T,C) periodic orbit \(t_k=\)impulse times
\(P,Q=\)differential equations
\(d,\delta=\)death rates \(\alpha=\)proliferation rate
\(\pi=\)production rate \(p=\)production rate
P and Q explicitly

- Since \(\xi(t_k^+) = \xi(t_k^-) \),

\[
\begin{align*}
P &= \pi - d\xi(t_k^-) - p\eta(t_k^-)\xi(t_k^-) \\
P_+ &= \pi - d\xi(t_k^-) - p\eta(t_k^+)\xi(t_k^-) \\
Q &= \alpha \xi(t_k^-)\eta(t_k^-) - \delta\eta(t_k^-) \\
Q_+ &= \alpha \xi(t_k^-)\eta(t_k^+) - \delta\eta(t_k^+) .
\end{align*}
\]

\((\xi, \eta) = (T,C)\) periodic orbit \(t_k = \text{impulse times} \)

\(P, Q = \text{differential equations} \)

\(d, \delta = \text{death rates} \quad \alpha = \text{proliferation rate} \)

\(\pi = \text{production rate} \quad p = \text{production rate} \)
Calculating Δ_1

- Since $\eta(t_k^-) = \eta(t_k^+) T_{\text{int}}$ and $T_{\text{int}} < 1$,
Calculating Δ_1

- Since $\eta(t_k^-) = \eta(t_k^+)T_{\text{int}}$ and $T_{\text{int}} < 1$,

$$Q = T_{\text{int}}Q_+$$

$(\xi, \eta) = (T, C)$ periodic orbit $t_k =$ impulse times $P, Q =$ differential equations

$\phi =$ implicit impulse function $d =$ death rate $\pi =$ production rate $p =$ production rate
Calculating Δ_1

• Since $\eta(t^-_k) = \eta(t^+_k)T_{\text{int}}$ and $T_{\text{int}} < 1$,

$$Q = T_{\text{int}} Q_+$$

$$P_+T_{\text{int}} = (\pi - d\xi(t^-_k))T_{\text{int}} - p\eta(t^+_k)T_{\text{int}}\xi(t^-_k)$$

(ξ, η)=(T,C) periodic orbit t_k=impulse times P,Q=differential equations ϕ=implicit impulse function d=death rate π=production rate p=production rate
Calculating Δ_1

- Since $\eta(t^-_k) = \eta(t^+_k)T_{\text{int}}$ and $T_{\text{int}} < 1$,

\[
Q = T_{\text{int}} Q_+ \\
P_+ T_{\text{int}} = (\pi - d\xi(t^-_k))T_{\text{int}} - \rho\eta(t^+_k)T_{\text{int}}\xi(t^-_k) \\
= (\pi - d\xi(t^-_k))T_{\text{int}} - \rho\eta(t^-_k)\xi(t^-_k)
\]

$(\xi, \eta) = (T, C)$ periodic orbit $t_k =$ impulse times $P, Q =$ differential equations
$\phi =$ implicit impulse function $d =$ death rate
$\pi =$ production rate $p =$ production rate
Calculating Δ_1

- Since $\eta(t_k^-) = \eta(t_k^+) T_{int}$ and $T_{int} < 1$,

\[
Q = T_{int} Q_+
\]

\[
P_+ T_{int} = (\pi - d \xi(t_k^-)) T_{int} - p \eta(t_k^+) T_{int} \xi(t_k^-)
\]

\[
= (\pi - d \xi(t_k^-)) T_{int} - p \eta(t_k^-) \xi(t_k^-)
\]

\[
< P
\]
Calculating Δ_1

- Since $\eta(t_k^-) = \eta(t_k^+)T_{\text{int}}$ and $T_{\text{int}} < 1$,

\[
Q = T_{\text{int}} Q_+
\]

\[
P_+T_{\text{int}} = (\pi - d\xi(t_k^-))T_{\text{int}} - \rho\eta(t_k^+)T_{\text{int}}\xi(t_k^-)
\]

\[
= (\pi - d\xi(t_k^-))T_{\text{int}} - \rho\eta(t_k^-)\xi(t_k^-)
\]

\[
< P
\]

- It follows that

$(\xi, \eta) = (T, C)$ periodic orbit $t_k=$ impulse times

$P, Q=$ differential equations

$\phi =$ implicit impulse function $d=$ death rate

$\pi =$ production rate $p =$ production rate
Calculating Δ_1

- Since $\eta(t_k^-) = \eta(t_k^+)T_{\text{int}}$ and $T_{\text{int}} < 1$,

\[
Q = T_{\text{int}}Q_+
\]
\[
P_+T_{\text{int}} = (\pi - d\xi(t_k^-))T_{\text{int}} - p\eta(t_k^+)T_{\text{int}}\xi(t_k^-)
\]
\[
= (\pi - d\xi(t_k^-))T_{\text{int}} - p\eta(t_k^-)\xi(t_k^-)
\]
\[
< P
\]

- It follows that

\[
\Delta_1 = \frac{P + \frac{\partial \phi}{\partial T} + Q + \frac{\partial \phi}{\partial C}}{P \frac{\partial \phi}{\partial T} + Q \frac{\partial \phi}{\partial C}}
\]

$(\xi, \eta) = (T, C)$ periodic orbit $t_k =$ impulse times
$P, Q =$ differential equations
$\phi =$ implicit impulse function $d =$ death rate
$\pi =$ production rate $p =$ production rate
Calculating Δ_1

- Since $\eta(t_k^-) = \eta(t_k^+) T_{int}$ and $T_{int} < 1$,

$$Q = T_{int} Q_+$$

$$P + T_{int} = (\pi - d\xi(t_k^-)) T_{int} - p\eta(t_k^+) T_{int} \xi(t_k^-)$$

$$= (\pi - d\xi(t_k^-)) T_{int} - p\eta(t_k^-) \xi(t_k^-)$$

$$< P$$

- It follows that

$$\Delta_1 = \frac{P + \frac{\partial \phi}{\partial T} + Q + \frac{\partial \phi}{\partial C}}{P \frac{\partial \phi}{\partial T} + Q \frac{\partial \phi}{\partial C}}$$

$$< \frac{1}{T_{int}}.$$

$(\xi, \eta) = (T, C)$ periodic orbit $t_k = \text{impulse times}$

$P, Q = \text{differential equations}$

$\phi = \text{implicit impulse function}$

$d = \text{death rate}$

$\pi = \text{production rate}$

$p = \text{production rate}$
Calculating the nontrivial Floquet multiplier

\[\mu_2 < \frac{1}{T_{\text{int}}} \exp \int_0^\tau \left(\frac{\partial P}{\partial T}(\xi(t), \eta(t)) + \frac{\partial Q}{\partial C}(\xi(t), \eta(t)) \right) dt \]

(\xi, \eta)=(T, C) periodic orbit \quad \tau = \text{vaccination frequency} \quad d = \text{death rate}

P, Q = \text{differential equations} \quad \pi = \text{production rate} \quad p = \text{production rate}
Calculating the nontrivial Floquet multiplier

\[\mu_2 < \frac{1}{T_{\text{int}}} \exp \int_0^\tau \left(\frac{\partial P}{\partial T}(\xi(t), \eta(t)) + \frac{\partial Q}{\partial C}(\xi(t), \eta(t)) \right) dt \]

\[= \frac{1}{T_{\text{int}}} \exp \int_0^\tau (-d - p\eta(t) + \alpha\xi(t) - \delta) dt \]

(\(\xi, \eta\) = (T, C) periodic orbit \(\tau\) = vaccination frequency \(d\) = death rate
\(P, Q\) = differential equations \(\pi\) = production rate \(p\) = production rate)
Calculating the nontrivial Floquet multiplier

\[\mu_2 < \frac{1}{T_{\text{int}}} \exp \int_0^\tau \left(\frac{\partial P}{\partial T}(\xi(t), \eta(t)) + \frac{\partial Q}{\partial C}(\xi(t), \eta(t)) \right) dt \]

\[= \frac{1}{T_{\text{int}}} \exp \int_0^\tau (-d - p\eta(t) + \alpha \xi(t) - \delta) dt \]

\[= \frac{1}{T_{\text{int}}} \exp \left(- \int_0^\tau (d + p\eta(t)) dt \right) \exp \left(\int_0^\tau (\alpha \xi(t) - \delta) dt \right) \]

\((\xi, \eta) = (T, C) \) periodic orbit \(\tau = \)vaccination frequency \(d = \)death rate

\(P, Q = \)differential equations \(\pi = \)production rate \(p = \)production rate
Calculating the nontrivial Floquet multiplier

\[
\mu_2 < \frac{1}{T_{\text{int}}} \exp \int_0^\tau \left(\frac{\partial P}{\partial T}(\xi(t), \eta(t)) + \frac{\partial Q}{\partial C}(\xi(t), \eta(t)) \right) dt
\]

\[
= \frac{1}{T_{\text{int}}} \exp \int_0^\tau (-d - p\eta(t) + \alpha\xi(t) - \delta) dt
\]

\[
= \frac{1}{T_{\text{int}}} \exp \left(-\int_0^\tau (d + p\eta(t)) dt \right) \exp \left(\int_0^\tau (\alpha\xi(t) - \delta) dt \right)
\]

\[
= \frac{1}{T_{\text{int}}} \exp \left(-\int_0^\tau (d + p\eta(t)) dt \right) T_{\text{int}}
\]

\((\xi, \eta) = (T, C)\) periodic orbit \quad \tau = \text{vaccination frequency} \quad d = \text{death rate}

\(P, Q = \text{differential equations} \quad \pi = \text{production rate} \quad p = \text{production rate}\)
Calculating the nontrivial Floquet multiplier

\[\mu_2 < \frac{1}{T_{\text{int}}} \exp \left(\int_0^\tau \left(\frac{\partial P}{\partial T} (\xi(t), \eta(t)) + \frac{\partial Q}{\partial C} (\xi(t), \eta(t)) \right) \, dt \right) \]

\[= \frac{1}{T_{\text{int}}} \exp \left(\int_0^\tau (-d - p\eta(t) + \alpha \xi(t) - \delta) \, dt \right) \]

\[= \frac{1}{T_{\text{int}}} \exp \left(- \int_0^\tau (d + p\eta(t)) \, dt \right) \exp \left(\int_0^\tau (\alpha \xi(t) - \delta) \, dt \right) \]

\[= \frac{1}{T_{\text{int}}} \exp \left(- \int_0^\tau (d + p\eta(t)) \, dt \right) T_{\text{int}} \]

\[< 1. \]

(\(\xi, \eta \))=(T,C) periodic orbit \(\tau \) =vaccination frequency \(d \)=death rate

\(P,Q \)=differential equations \(\pi \)=production rate \(p \)=production rate
Orbital asymptotic stability

• Hence, the nontrivial impulsive Floquet multiplier lies inside the unit circle
• Thus, the impulsive periodic orbit is
 a) orbitally asymptotically stable and
 b) has the property of asymptotic phase.
A caveat

- Although this orbit exists and is stable it might not be unique
- In particular, there might be impulsive orbits with more than one impulse per period
- However, this does not appear to be the case, for the parameter ranges under consideration.
Average # of infected T cells

- The average number of infected T cells during a single cycle of the impulsive periodic orbit is

\[T_{av} \equiv \frac{1}{\tau} \int_0^\tau T(u)\,du . \]

A CTL recognising a tumour

\(T = \) infected cells \(\tau = \) vaccination period
Infected T cell minimum

- Easy to show:

\[\frac{dT}{dt}(t_k^+) < \frac{dT}{dt}(t_k^-) \]

\[\frac{dT}{dt} = 0 \text{ only once per cycle} \]

- Denote this turning point by \((T_{tp}, C_{tp})\)

- Clearly this turning point is a minimum.

\(T=\text{infected } T\text{ cells} \quad C=\text{CTLs} \quad t_k=\text{vaccination time}\)
Estimating the vaccination period

Since $T_{tp} < T_{av}$, $C_{tp} > C(\tau^\sim)$ and $T_{int} = e^{\alpha \tau T_{av} - \delta \tau}$,

$T =$ infected T cells \hspace{1em} \pi =$ production rate \hspace{1em} \delta =$ death rate \hspace{1em} C^i =$ vaccine strength \hspace{1em} T_{av} =$ av # cells
C =$ CTLs \hspace{1em} \alpha =$ proliferation rate \hspace{1em} p =$ clearance rate \hspace{1em} \tau =$ vaccination period \hspace{1em} (T_{tp}, C_{tp}) =$ T-cell min
Estimating the vaccination period

Since $T_{tp} < T_{av}$, $C_{tp} > C(\tau^-)$ and $T_{int} = e^{\alpha \tau T_{av} - \delta \tau}$,

$$
\frac{dT}{dt} (T_{tp}, C_{tp}) = \pi - dT_{tp} - pC_{tp} T_{tp} = 0
$$

$T =$ infected T cells $\pi =$ production rate $\delta =$ death rate $C =$ vaccine strength $T_{av} =$ av # cells
$C =$ CTLs $\alpha =$ proliferation rate $p =$ clearance rate $\tau =$ vaccination period $(T_{tp}, C_{tp}) =$ T-cell min
Estimating the vaccination period

Since $T_{tp} < T_{av}$, $C_{tp} > C(\tau^-)$ and $T_{int} = e^{\alpha \tau T_{av} - \delta \tau}$,

$$\frac{dT}{dt}(T_{tp}, C_{tp}) = \pi - dT_{tp} - pC_{tp}T_{tp} = 0$$

$$\pi - \left(d + \frac{pC_{tp}T_{int}}{1 - T_{int}}\right)T_{av} < 0$$

$T = \text{infected T cells}$ $\pi = \text{production rate}$ $\delta = \text{death rate}$ $C_i = \text{vaccine strength}$ $T_{av} = \text{av \# cells}$

$C = \text{CTLs}$ $\alpha = \text{proliferation rate}$ $p = \text{clearance rate}$ $\tau = \text{vaccination period}$ $(T_{tp}, C_{tp}) = \text{T-cell min}$
Estimating the vaccination period

Since $T_{tp} < T_{av}$, $C_{tp} > C(\tau^{-})$ and $T_{int} = e^{\alpha \tau T_{av} - \delta \tau}$,

$$\frac{dT}{dt} (T_{tp}, C_{tp}) = \pi - dT_{tp} - pC_{tp}T_{tp} = 0$$

$$\pi - \left(d + \frac{pC^{i}T_{int}}{1 - T_{int}} \right) T_{av} < 0$$

$$\pi - \left(d + \frac{pC^{i}e^{\alpha \tau T_{av} - \delta \tau}}{1 - e^{\alpha \tau T_{av} - \delta \tau}} \right) T_{av} < 0$$

T=infected T cells π=production rate δ=death rate C^{i}=vaccine strength T_{av}=av # cells
C=CTLs α=proliferation rate p=clearance rate τ=vaccination period (T_{tp}, C_{tp})=T-cell min
Estimating the vaccination period

Since $T_{tp} < T_{av}$, $C_{tp} > C(\tau^{-})$ and $T_{int} = e^{\alpha \tau T_{av} - \delta \tau}$,

$$\frac{dT}{dt} (T_{tp}, C_{tp}) = \pi - d T_{tp} - p C_{tp} T_{tp} = 0$$

$$\pi - \left(d + \frac{p C^i T_{int}}{1 - T_{int}}\right) T_{av} < 0$$

$$\pi - \left(d + \frac{p C^i e^{\alpha \tau T_{av} - \delta \tau}}{1 - e^{\alpha \tau T_{av} - \delta \tau}}\right) T_{av} < 0$$

Thus

T=infected T cells π=production rate δ=death rate C^i=vaccine strength T_{av}=av # cells C=CTLs α=proliferation rate p=clearance rate τ=vaccination period (T_{tp}, C_{tp})=T-cell min
Estimating the vaccination period

Since $T_{tp} < T_{av}$, $C_{tp} > C(\tau^-)$ and $T_{int} = e^{\alpha \tau T_{av} - \delta \tau}$,

$$\frac{dT}{dt} (T_{tp}, C_{tp}) = \pi - dT_{tp} - pC_{tp}T_{tp} = 0$$

$$\pi - \left(d + \frac{pC_i T_{int}}{1 - T_{int}} \right) T_{av} < 0$$

$$\pi - \left(d + \frac{pC_i e^{\alpha \tau T_{av} - \delta \tau}}{1 - e^{\alpha \tau T_{av} - \delta \tau}} \right) T_{av} < 0$$

Thus

$$\tau < \frac{1}{\delta - \alpha T_{av}} \ln \left(1 + \frac{pC_i T_{av}}{\pi - dT_{av}} \right).$$

$T =$infected T cells $\pi =$production rate $\delta =$death rate $C_i =$vaccine strength $T_{av} =$av # cells
$C =$CTLs $\alpha =$proliferation rate $p =$clearance rate $\tau =$vaccination period $(T_{tp}, C_{tp}) =$T-cell min
Infected T cells can be kept arbitrarily low

- It follows that the average number of infected T cells can be kept as low as desired, by appropriate choice of \(\tau \) and \(C^i \)
- In particular,

\[
\lim_{T_{av} \to 0} \left[\frac{1}{\delta - \alpha T_{av}} \ln \left(1 + \frac{C^i T_{av}}{\pi - d T_{av}} \right) \right] = 0^+ .
\]

\(\pi = \text{production rate} \quad \delta, d = \text{death rates} \quad C^i = \text{vaccine strength} \)

\(\alpha = \text{proliferation rate} \quad \tau = \text{vaccination period} \quad T_{av} = \text{av # cells} \)
Clearance is theoretically possible

Thus, infection could theoretically be cleared...

...for a sufficiently strong vaccine or sufficiently frequent vaccinations

(ignoring latently infected cells and other reservoirs)

(although the impulsive assumptions break down as the limit approaches zero).
Parameters

- Realistic parameters were simulated
- Desired average: $T_{av} = 2.6$ cells μL^{-1} (instead of 3 cells μL^{-1})
- Parameter estimates:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>1.5</td>
<td>cells day$^{-1}$ μL^{-1}</td>
<td>de Boer & Perelson (1998)</td>
</tr>
<tr>
<td>d</td>
<td>0.5</td>
<td>day$^{-1}$</td>
<td>Essunger & Perelson (1994)</td>
</tr>
<tr>
<td>p</td>
<td>0.05</td>
<td>μL cells$^{-1}$ day$^{-1}$</td>
<td>Bonhoeffer et al. (2000)</td>
</tr>
<tr>
<td>α</td>
<td>0.067</td>
<td>μL cells$^{-1}$ day$^{-1}$</td>
<td>de Boer & Perelson (1998)</td>
</tr>
<tr>
<td>δ</td>
<td>0.2</td>
<td>day$^{-1}$</td>
<td>de Boer & Perelson (1998)</td>
</tr>
</tbody>
</table>

π = production rate, $\delta,d = death$ rates, p = production rate, α = proliferation rate, τ = vaccination period, T_{av} = av # cells
\[\tau < \frac{1}{\delta - \alpha T_{av}} \ln \left(1 + \frac{pC^i T_{av}}{\pi - dT_{av}} \right). \]
How strong and how often?

A CTL boost of 35 cells μL$^{-1}$ that was applied every 122 days or fewer would ensure the average infected T cell count remained below 2.6 cells μL$^{-1}$.
\(C^i = 35 \text{ cells } \mu \text{L}^{-1}, \tau = 120 \text{ days} \)
An overestimate

• The inequality is an overestimate
• A CTL boost of 35 cells administered every 120 days produced an actual average of 2.02 cells μL^{-1} (better than the desired 2.6 cells μL^{-1}).

\begin{align*}
\text{CTL count} \\
0 & \quad 5 & \quad 10 & \quad 15 & \quad 20 & \quad 25 & \quad 30 & \quad 35 & \quad 40 \\
0 & \quad 200 & \quad 400 & \quad 600 \\
\text{Infected T cells / \mu L} \\
0 & \quad 0.5 & \quad 1 & \quad 1.5 & \quad 2 & \quad 2.5 & \quad 3 \\
0 & \quad 200 & \quad 400 & \quad 600
\end{align*}
$C^i = 10 \text{ cells } \mu\text{L}^{-1}, \tau = 240 \text{ days}$
Infrequent vaccination

- Low or infrequent vaccination has minimal effect on the infected T cell counts.
- A CTL boost of 10 cells administered every 240 days produced an actual average of 2.65 cells μL^{-1} (worse than the desired 2.6 cells μL^{-1}).
How accurate is the approximation?

- Modelling the change in CTL numbers by an instantaneous change is obviously an approximation.
- In reality, CTLs take \(\sim 14 \) days to reach peak values.
- This might be too coarse for an impulsive approximation...
- ...so we ran numerical simulations to test the accuracy of the results.
A reasonable approximation
An overestimate

• Thus, the impulsive approximation overestimates the average number of infected cells.
• It follows that the actual average will be lower if our recommendations are implemented.
Sensitivity of parameters

- All parameters may vary, to some extent
- We used the most up-to-date estimates, but individuals will have different characteristics
- To calculate sensitivity, we varied each parameter individually, while holding all others at median values
- Our output parameter is the vaccination frequency.
Sensitivity of parameters

\(\pi = \) production rate

\(p = \) clearance rate

\(\delta = \) CTL death rates

\(d = \) infected T cell death rate

\(\alpha = \) proliferation rate

\(\tau = \) vaccination frequency

\(\tau \) vs variation in \(\pi \)

\(\tau \) vs variation in \(d \)

\(\tau \) vs variation in \(\delta \)

\(\tau \) vs variation in \(p \)

\(\tau \) vs variation in \(\alpha \)

\(\pi = \) production rate

\(p = \) clearance rate

\(\delta = \) CTL death rates

\(d = \) infected T cell death rate

\(\alpha = \) proliferation rate

\(\tau = \) vaccination frequency
Limitations

• The impulsive orbit is orbitally asymptotically stable, but may not necessarily attract all trajectories
• There may be higher order impulsive orbits
• Estimates are only reasonable during the asymptomatic phase of infection
• Results may be sensitive to parameter variation
• Impulsive Floquet theory is not easily extendable to higher-order models.
Implications for weak vaccines

- A small increase in the vaccine strength may result in a significantly larger range of possible vaccination intervals when the boost is low.
- Thus, CTL vaccines whose strength is too low would be less desirable, even if the frequency could be tolerated.
Attractiveness of such vaccines

- Currently, the only treatment option is antiretroviral drugs
- Such drugs have harsh side effects, lead to drug resistance and require frequent daily administration
- A CTL vaccine would offset the daily pill burden.
Potential drawbacks

- Logistical difficulties in administering regular vaccines to large populations
- The consequences of missing a single vaccination are more severe than missing a single drug dose.
Future work

• Adherence to a regular CTL vaccine
• The effects of fluctuations in the vaccination time, even if administered quasi-regularly
• Consequences of vaccine “resistance”.
Summary

• A CTL vaccine pulsed at regular intervals can keep the average number of infected CD4⁺ T cells arbitrarily low, by choosing appropriate vaccination intervals and strength of the vaccine.

• The estimate is overconservative, so this will actually result in a lower average number of infected T cells than theoretically predicted.
Conclusions

• A post-infection CTL vaccine would be highly desirable, assuming perfect patient adherence

• Such a vaccine would offer a realistic alternative to the daily pill burden of antiretroviral drug therapy

• We recommend that such a vaccine should be available for self-administration by patients.
Key reference

- R.J. Smith and E.J. Schwartz, Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: how often should you vaccinate and how strong should the vaccine be? (*Mathematical Biosciences, in revision*)