TG Sy

18

Using mathematics to
understand disease
eradication: Guinea Worm
Disease points the way forward

By Robert Smith?, The Department of Mathematics, The University of Ottawa
In recognition of the Mathematics of Planet Earth 2013, a French version of this article has also been featured

in Accromath (http://accromath.uqam.ca).

How can we actually eradicate
a disease? And why aren’t we

better at it? We have a very poor record

of disease eradication. In the entirety of human
history, we’ve successfully eradicated just two
diseases: smallpox and rinderpest (the latter a
cow disease, declared eradicated in 2011). Our
“model” for what it means to eradicate a disease
is thus based on what worked for these two
diseases: a successful vaccine.

Guinea Worm Disease tells a different story and
one that may illuminate a new way forward.
Guinea Worm Disease is a parasitic disease,
spread via drinking water, that has been with us
since antiquity (it’s mentioned in the Bible and
Egyptian mummies suffered from it). Essentially,
the parasite attaches itself to a water flea, you
drink the flea and your stomach acid dissolves
the flea, leaving the parasite free to invade your
body. Because of gravity, it usually makes its
way to the foot, where it lives for an entire year.
See Figure 1.
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Figure 1: The life cycle of Guinea Worm disease. /mage copyright the
United States Centers for Disease Control and Prevention.
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After a year, your foot is burning and itching, so
you put it in the water. If your village only has
one water source, then that often ends up being
the drinking water. At this point, the fully grown
worm bursts out of your foot, spraying forth
100,000 parasites and restarting the process.

See Figure 2.

Figure 2: A Guinea Worm.

In the 1950s, Guinea Worm Disease affected 50
million people across most of Africa, Asia and
the Middle East. Today it’s on the verge of being
eradicated, with less than 2000 cases, in just four
African countries. Ghana was declared worm-
free in 2011 and the disease primarily persists

in South Sudan, as a result of the Sudanese civil
war. This ancient scourge is almost gone.

See Figure 3.

So what happened? Before we reveal
the answer, let’s think about how you might
eradicate a water-borne disease (i.e., a disease
transmitted through contaminated water).



Issue 16

1000
N0 g
800 Cases

700
600
500
400

300

MMumber of Reported Cases (In Thousands)

200
130 5=
0

1959 1991
1990 1992

1993 1995 1997 1999
1994 1996 1998

~3,500,000  9,585*
1986

2000

007

2001 2003
2002

2005 2007
2004 2006
"Provisioml as of Zi0E

Figure 3: The decline in Guinea
Worm Disease cases over the
past 25 years.

Possibilities are a vaccine, drugs that treat
symptoms, chemicals that kill the parasite, better
hygiene or education that changes people’s
behaviour. Unfortunately, there is neither a drug
nor a vaccine to treat Guinea Worm Disease. So
let’s see what mathematics tells us.

Mathematical modelling of infectious diseases
is a fairly new topic that has had significant
success. It has been useful in programs dealing
with malaria control, smallpox eradication,
mosquito management, climate change and
emergency preparedness. Where modelling
works well is in quantifying measurable things,
like drugs, vaccines or insecticide. Where it has
more trouble is with messy and unpredictable
variables, like human beings.

Incorporating human behaviour into models is
complex and requires an understanding of

the ethical, sociological and biomedical
factors inherent in tackling a disease. This
requires interdisciplinary research across the
traditional boundaries of social, natural and
medical sciences.

To create a mathematical model, we need to
keep track of what comes in and what goes

out. In the case of Guinea Worm, we divide the
population of humans into three subcategories.
The first category is susceptible individuals;
three things can happen to them: they are born,
become infected or die. The second is infected
individuals, who either become infectious or die.
The third, infectious individuals, either recover
or die. We also have a population of worms: the
parasite is born when infectious individuals put
their foot in the drinking water (because fresh
water produces relief) and dies shortly thereafter.
Guinea Worm disease is not lethal, so each time
we speak of death rate, it is the usual death rate.

Combining these, we develop a system of
differential equations that describes the rates of
change of every variable. This system is kind of
an “engine of change.” With a starting key (the
initial conditions), we can then use our engine to
predict the future. This procedure works if we’ve
gotten the mechanics of the interactions right.

Modelling is like map-making.
You don’t want a map to be a perfect
representation of reality, because that would
be too cumbersome. Instead, you want the
salient features, scaled down to a usable size.
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So modelling isn’t trying to mimic reality, but
instead it’s providing a useful roadmap so you
can navigate the future. See Figure 4.

How do we know when we’ve eradicated a
disease? Or at least when we’re moving in the
right direction?

This issue vexed public health officials in the
early twentieth century when they were trying

to eliminate malaria from places like the United
States and Canada. Sir Ronald Ross won a Nobel
Prize for demonstrating that malaria was spread
by mosquitos (rather than toxic vapours, as was
previously thought). However, this led to some
despair, because it was realised that you couldn’t
eliminate all the mosquitos. Nor would you want
to, because they prop up our ecosystems.

Ross’s breakthrough came when he realised that
you didn’t have to kill every mosquito, but rather
just a critical number of them.

This is essentially the “tipping point” of a
disease: if each infected individual causes more
than one infection, then the disease will spread.

Figure 4: The mathematical model. Humans can be born, become infected or
die (from background reasons, not from the disease). Once infected, humans
carry the worm for a year, before becoming infectious (for a few hours). The
parasite’s birth is proportional to the number of infected individuals, while its
death rate is proportional to the size of the population.

However, if each infected individual results in
less than one infected individual, then the disease
will eventually die out.

This concept is called R, the basic reproductive
ratio (pronounced “R nought”). R, measures the
average number of secondary infections that

a single infectious individual will cause. So if
each infected individual infects three people,
they infect three each and so forth, meaning

the disease spreads like wildfire. On the other
hand, if R, < 1 (so that ten infected people infect
nine, those nine infect eight and so on), then the
disease will die out on its own.

If we can estimate R from our mathematical
model and then determine which parameters will
reduce it below one, then our job is done. With
those control measures in place, the disease will
eventually be eradicated. R helps us understand
which control measures will be helpful and how
intensely they should be applied.

In our case, the basic reproductive ratio is
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That isn’t the end of the story,
however. Although we have
identified the beneficial factors
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under our control, we don’t
I necessarily achieve eradication.
And every parameter will vary,

AN in practice, because some worms
will give birth to more parasites
than others or some people will
be more likely to be infected.
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So we need to account for variations in our
parameters. Fortunately, determining parameter
ranges is much easier than pinpointing a precise
value. The three parameters under our control are
7, B and u,, so let’s vary these over large ranges
while fixing all other parameters at their average
values. See Figure 5.

Killing the parasite isn’t terribly
effective. Why? Increasing the parasite
death rate involves moving along the p,, axis

to the rear left. But the level surface is very
shallow, so you need to move a long way to the
back corner to get under the surface. Reducing
transmissibility involves moving down the S
axis. But this is on a log scale, so that takes
much longer than it first appears. However, see
how steep the surface is for small y? This makes
it very easy to move under it by a small change
in y. This suggests that eradication should occur
if we stick to one strategy: reducing the parasite
birth rate.

How can we do that?

Through education, of course!

Encouraging people not to put their infected
limbs in the drinking water means that each
time a worm doesn’t burst into the water, that’s
100,000 parasites that aren’t released.

This means that, in the final push to eradication,
we should concentrate our efforts on reaching
remote communities, informing them about
the specifics of Guinea Worm Disease and its
transmission cycle.

In summary, eradicating a disease isn’t just a
matter of sitting around and waiting for someone
to invent a vaccine. We have vaccines for less
than 2% of all diseases. Both drugs and vaccines
are beholden to scientific breakthroughs that
consume millions of dollars but may never
happen. However, education is relatively cheap,
highly effective when done right and can begin
immediately.

The critical element of this is getting education
right. Done badly, it can look to developing
countries as though the West is telling them what
to do (e.g., people often reject messages about
safer sex due to histories of population control).

However, culturally specific education, carefully
targeted towards its audience, has the potential
to change entire societies, as it has with Guinea
Worm Disease.

Mathematical modelling can help us

determine what needs to be done in advance

and to determine which factors will have the
greatest impact on the outcome. We are close to
eradicating Guinea Worm Disease, one

of humanity’s oldest diseases, thanks to
behaviour changes and education alone. Once
Guinea Worm Disease 1s eradicated, its lessons
will apply to other diseases where education

can be effective, not least of which is HIV.
Messages need to be carefully positioned and
targeted, but if done right they have the potential
to do what no amount of treatment has managed:
turn a global epidemic around, using the power
of education.
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Figure 5: The level surface R, (y, 8, u,, ) = 1. If you are above the surface,
then R is greater than 1 and the disease will persist. If you are below, then R,
is less than 1 and the disease will be eradicated.
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