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Abstract

Mathematical models of HIV therapy have traditionally amalgamated the action of antiretroviral drugs, trading the complexity of the

situation in favour of simpler—and hence mathematically tractable—models. However, the effects of ignoring such dynamics remain

underexamined. In this paper, the traditional method of dosing (where the dose is modelled implicitly as a proportional inhibition of viral

infection and production) is compared to a model that accounts for drug dynamics via explicit compartments. Four limiting cases are

examined: frequent dosing of both major classes of drugs, absence of either drug, frequent dosing of one drug alone, or frequent dosing

of the other drug alone. When drugs are absent, both models predict that the virus will dominate and the uninfected T cell counts will be

low. When reverse transcriptase inhibitors are given frequently, both models predict that the virus will be theoretically eliminated and the

uninfected T cell counts will be high; this is true regardless of whether the reverse transcriptase inhibitors act alone or in conjunction with

protease inhibitors. However, if protease inhibitors alone are given frequently, then the implicit model predicts that the virus will be

eliminated and the uninfected T cell counts will be high, whereas the (more realistic) explicit model predicts that the reverse situation may

occur. In the latter case, critically, protease-only regimens may ultimately result in the death of the patient. It follows that the impact of

drug regimens consisting only of protease inhibitors must be urgently re-examined, if such outcomes have been based on overly simplistic

modelling.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Current HIV therapy consists primarily of a combina-
tion of antiretroviral drugs, primarily drawn from two
major classes, reverse transcriptase inhibitors (RTIs) and
protease inhibitors (PIs) (Department of Health and
Human Services, 2006). RTIs block transcription of viral
RNA into DNA, preventing the infection of new cells,
while PIs prevent protein cleavage in new virions, resulting
in infected cells producing only noninfectious virus
(Janeway et al., 2001). Historically, combination therapy
has combined drugs from both classes. However, in the
developing world, current antiretroviral rollout programs
are staggering the release of drugs, with RTIs being used
as first-line therapy and PIs held back for salvage
therapy (Carpenter, 2006). In the developed world, the

use of PI-only therapy has been advocated as a possible
alternative to current therapy, given that the over-reliance
on nucleoside RTIs has led to an increase in drug resistance
(Calmy et al., 2007).
Antiretroviral drugs are given frequently, with combina-

tion therapy that may result in up to 26 doses a day, as
outlined in therapy groups for men living with HIV (Prior,
2005). The effects of different drug classes have typically
been aggregated in mathematical models of HIV dynamics
(Calloway and Perelson, 2002; Nowak and May, 2000),
with some notable exceptions (Nelson and Perelson, 2002;
Perelson, 2002; Smith and Wahl, 2004). Many of these
models make the assumption that the drug is widely
available within the body and the (average) efficacy varies
between 0 (complete drug failure) and 1 (complete
inhibition of the virus). See, for example, Nelson et al.
(2000, 2001), Nowak and May (2000), Perelson and Nelson
(1999), and Wu and Ding (1999). This has the advantage of
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making models simpler, allowing for greater generalisa-
bility. The disadvantage is that the dynamics of drug
behaviour are ignored. In particular, the drug dynamics
may have a significant impact on certain outcomes;
ignoring these dynamics, while appealing for model
simplicity, may result in misleading conclusions.

Although there have been attempts to capture the precise
dynamics of drug behaviour (Huang et al., 2003; Smith and
Wahl, 2004; Wu et al., 2006), such models are significantly
more complex than those which approximate the drug
behaviour by a constant effectiveness. In order to
determine whether including drug dynamics makes a
qualitative difference, in this paper the same basic model
is examined, from two perspectives. The first models drug
dynamics by inhibiting viral infection and production
implicitly. In this model, T cells are either susceptible or
infected. This will be referred to as the implicit model. The
second model approximates drug dynamics by their long-
term mean value, but with the property that the magnitude
of the drug values is unbounded when the dosage is large or
the dosing is frequent. In this model, T cells may be
susceptible, inhibited by one or both drugs, or infected,
with or without the presence of drugs. This will be referred
to as the explicit model.

This paper is organised as follows: In Section 2, the
models are introduced. In Section 3, the implicit model
is analysed, demonstrating the stability of equilibria
when drugs are either absent or perfectly efficacious. In
Section 4, the explicit model is analysed, demonstrating the
long-term behaviour when drugs are either absent or in the
limiting case when the dosing interval shrinks to zero. In
Section 5, the outcomes of the two models are compared.
In Section 6, the predictions are illustrated with numerical
simulations, for more realistic drug efficacies and dosing
intervals. Finally, in Section 7, the implications with
regards to treatment plans are discussed, particularly the
plan to treat patients using a regimen of PIs alone.

2. The models

Let V I represent infectious virus, V NI represent non-
infectious virus, TS represent susceptible CD4þ T cells and
TI represent infected T cells. Then the implicit model is
given by

dV I

dt
¼ nIoð1� �PÞTI � dV VI � rI TSVI ,

dV NI

dt
¼ nI ð1� oÞTI � dV VNI þ nIo�PTI ,

dTS

dt
¼ l� rI ð1� �RÞTSV I � dSTS,

dTI

dt
¼ rI ð1� �RÞTSV I � dI TI . ð2:1Þ

Here, t is time in days, nI is the number of virions produced
per infected cell per day, o is the fraction of virions
produced by an infected T cell which are infectious, �P is
the PI efficacy, dV is the rate at which free virus is cleared,

rI is the infection rate of noninfected T cells, dS is the
noninfected CD4þ T cell death rate, dI is the infected
CD4þ T cell death rate, l represents a source of susceptible
cells and �R is the RTI efficacy. All parameters are positive,
except for the drug efficacies, which satisfy 0p�P; �Ro1.
The explicit model is given by

dV I

dt
¼ nIoTI � dV VI � rI TSVI � rI TPNI VI ,

dV NI

dt
¼ nI TPI þ nI ð1� oÞTI � dV VNI ,

dTS

dt
¼ l� rI TSVI � dSTS � rRTSRav � rPTSPav

þmRTR þmPTPNI ,

dTI

dt
¼ rI TSVI � dI TI � rPTI Pav þmPTPI ,

dTR

dt
¼ rRTSRav � dSTR þmPTRP �mRTR � rPTRPav,

dTRP

dt
¼ rRTPNI Rav � dSTRP �mPTRP �mRTRP þ rPTRPav,

dTPNI

dt
¼ rPTSPav � dSTPNI � rI TPNI V I � rRTPNI Rav

�mPTPNI þmRTRP,

dTPI

dt
¼ rI TPNI V I � dI TPI þ rPTI Pav �mPTPI . (2.2)

Here, additionally, TR represents (uninfected) cells inhib-
ited by RTIs alone, TRP represents (uninfected) cells
inhibited by both RTIs and PIs, TPNI represents uninfected
cells inhibited by PIs only, TPI represents infected cells
inhibited by PIs, mR is the rate at which RTIs are cleared
from the intracellular compartment, mP is the rate at which
PIs are similarly cleared, Rav represents RTIs and Pav

represents PIs. All parameters are positive, except Pav and
Rav, which are nonnegative.
Model (2.2) is a simplification of the impulsive differ-

ential equation model introduced in Smith and Wahl
(2004). In particular, the drug concentrations are given by

Rav ¼
1

2
ðRðtþÞ þ Rðt�ÞÞ

¼
Ri

2

1þ e�dRt

1� e�dRt

� �
,

Pav ¼
1

2
ðPðsþÞ þ Pðs�ÞÞ

¼
Pi

2

1þ e�dPs

1� e�dPs

� �
,

where rR is the rate at which RTIs inhibit the T cells, rP is
the rate at which PIs inhibit the T cells, dR is the rate at
which RTIs are cleared, dP is the rate at which PIs are
cleared, Ri is the RTI dose, Pi is the PI dose, t is the dosing
frequency of the RTIs and s is the dosing frequency of the
PIs (At the dose times, Ri and Pi resemble delta functions,
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due to the impulsive conditions.). The models are
illustrated in Fig. 1.

The value RðtþÞ represents the value of the RTI on the
impulsive periodic orbit immediately after a dose has been
taken, while Rðt�Þ represents the value of the RTI on the
impulsive periodic orbit immediately before a dose has
been taken. PðsþÞ and Pðs�Þ are defined similarly. Note in
particular that

lim
t!0

Rav ¼ lim
Ri!1

Rav ¼ 1,

lim
s!0

Pav ¼ lim
Pi!1

Pav ¼ 1. ð2:3Þ

Thus, although the drug dynamics in the explicit model are
modelled in a simplified manner (i.e., by constant values

derived from the mean of the peaks and troughs of the
impulsive periodic orbit from the model in Smith and
Wahl, 2004), they contain the property that sufficiently
frequent dosing, or a sufficiently high dose, will result in
unbounded drug levels.
Models (2.1) and (2.2) are not qualitatively different; in

particular, they are equivalent in the absence of drugs.
Model (2.1) represents the drug effects of RTIs and PIs via
the efficacy rates �R and �P, respectively. Conversely, model
(2.2) reclassifies cells inhibited by drugs into different
compartments, depending on whether a cell has been
inhibited by RTIs, PIs, or both.

3. Analysis of the implicit model

The trivial equilibrium of model (2.1) is

ðV I ;V NI ;TS;TI Þ ¼ 0; 0;
l

dS

; 0

� �
.

The nontrivial equilibrium satisfies

VI ¼
l

dV dI

nIoð1� �PÞð1� �RÞ � dI

1� �R

�
dS

rI ð1� �RÞ
, ð3:1Þ

VNI ¼
nI ð1� oÞ þ nIo�P

dV

�
l
dI

�
dV dS

rI ½nIoð1� �PÞð1� �RÞ � dI �

� �
, ð3:2Þ

TS ¼
dV dI

rI ½nIoð1� �PÞð1� �RÞ � dI �
, ð3:3Þ

TI ¼
l
dI

�
dV dS

rI ½nIoð1� �PÞð1� �RÞ � dI �
. ð3:4Þ

Note that the nontrivial equilibrium is only defined for
�Ra1. If �R ¼ �P ¼ 0 (i.e., in the absence of drugs), then
these equilibria are the same as those for model (2.2) in the
absence of drugs (Smith and Wahl, 2004).
Since the production of infectious virions is high, we can

assume nIo4dI . We also know that dSodI (Ho et al.,
1995). Since l and nIo are both large,

lrI ½nIo� dI �4dSdV dI . (3.5)

Theorem 3.1. In the absence of both drugs, the trivial

equilibrium of model (2.1) is unstable and the nontrivial

equilibrium is stable. Conversely, as either RTIs or PIs

approach perfect efficacy, the trivial equilibrium becomes

stable and the nontrivial equilibrium unstable.

Proof. The Jacobian is

J ¼

�dV � rI TS 0 �rI V I nIoð1� �PÞ

0 �dV 0 nI ð1� oÞ þ nIo�P

�rI ð1� �RÞTS 0 �rI ð1� �RÞV I � dS 0

rI ð1� �RÞTS 0 rI ð1� �RÞVI �dI

2
66664

3
77775.
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Fig. 1. Flowcharts of the models showing CD4þ T cell compartments. (A)

The implicit model consists of susceptible (TS) and infected (TI ) T cells.

Susceptible cells can be infected and infected T cells will produce both

infectious (VI ) and noninfectious (VNI ) virus. Drug action is implicitly

modelled by the inhibition effect on new infections (�R) for RTIs or

production of infectious virus (�P) for PIs. (B) The explicit model also

consists of susceptible and infectious T cells, but now the compartments

are divided into cells that are susceptible with no drug inhibition (TS),

susceptible and inhibited with RTIs alone (TR), susceptible and inhibited

with PIs alone (TPNI ), susceptible and inhibited with both drugs (TRP),

infected with no drug inhibition (TI ) or infected and inhibited with PIs

(TPI ). Cells inhibited with RTIs cannot become infected, cells inhibited

with PIs cannot produce infectious virus and drugs (R;P) are cleared at

rates mR;mP. (Note that (B) was previously published in Smith and Wahl,

2004.)
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At the trivial equilibrium,

Jjð0;0;l=dS ;0Þ

¼

�dV � rI TS 0 0 nIoð1� �PÞ

0 �dV 0 nI ð1� oÞ þ nIo�P

�rI ð1� �RÞTS 0 �dS 0

rI ð1� �RÞTS 0 0 �dI

2
666664

3
777775.

Thus, at the trivial equilibrium,

detðJ � lIÞ

¼ �ðdV þ lÞ

�det

�dV � rI TS � l 0 nIoð1� �PÞ

�rI ð1� �RÞTS �dS � l 0

rI ð1� �RÞTS 0 �dI � l

2
664

3
775

¼ ðdV þ lÞðdS þ lÞ det
�dV � rI TS � l nIoð1� �PÞ

rI ð1� �RÞTS �dI � l

" #
.

This last determinant satisfies

l2 þ ðdV þ rI TS þ dI Þlþ dV dI

þ rI ½dI � nIoð1� �RÞð1� �PÞ�TS ¼ 0.

Clearly, if �R ¼ 1 or �P ¼ 1, then the constant term of the
equation is positive and all eigenvalues will be negative.
Thus, if either drug is perfectly efficacious, then the trivial
equilibrium is stable. Conversely, if �R ¼ �P ¼ 0, then
(since nIo4dI ) the constant term of the equation is
negative. It follows that the trivial equilibrium will be
unstable in the absence of both drugs.

At the nontrivial equilibrium,

detðJ � lIÞ

¼ �ðdV þ lÞ

� det

�dV � rI TS � l �rI V I nIoð1� �PÞ

�rI ð1� �RÞTS �rI ð1� �RÞV I � dS � l 0

rI ð1� �RÞTS rI ð1� �RÞVI �dI � l

2
664

3
775.

The characteristic equation of this last determinant is

�l3 � al2 � blþ c ¼ 0,

where

a ¼ dI þ dV þ rI TS þ rI ð1� �RÞV I þ dS, ð3:6Þ

b ¼ dI dV þ dI rI TS þ dI rI ð1� �RÞV I

þ dI dS þ dV rI ð1� �RÞVI þ dV dS þ rI dSTS

� nI rIoð1� �PÞð1� �RÞTS, ð3:7Þ

c ¼ � dI dV rI ð1� �RÞVI � dI dSdV � dI dSrI TS

þ nIorI dSð1� �PÞð1� �RÞTS. ð3:8Þ

Substituting (3.1) and (3.3) into (3.6) gives

a ¼ dI þ dV þ
dV dI

nIoð1� �PÞð1� �RÞ � dI

þ
rIl½nIoð1� �PÞð1� �RÞ � dI �

dV dI

.

Thus,

lim
�R!0
�P!0

a ¼ dI þ dV þ
dI dV

nIo� dI

þ
lrI

dV dI

½nIo� dI �

40,

since nIo4dI .
Substituting (3.1) and (3.3) into (3.7) gives

b ¼ dI dV þ
d2

I dV

nIoð1� �PÞð1� �RÞ � dI

þ
lrI

dV

½nIoð1� �PÞð1� �RÞ � dI �

þ
lrI

dI

½nIoð1� �PÞð1� �RÞ � dI �

þ
dSdV dI

nIoð1� �PÞð1� �RÞ � dI

�
nIoð1� �RÞð1� �PÞdV dI

nIoð1� �PÞð1� �RÞ � dI

.

Thus,

lim
�R!0
�P!0

b ¼ dV dI þ
d2

I dV

nIo� dI

þ
lrI

dV

½nIo� dI � þ
dSdV dI

nIo� dI

þ
lrI

dI

½nIo� dI � �
nIodV dI

nIo� dI

¼
lrI

dV

½nIo� dI � þ
dSdV dI

nIo� dI

þ
lrI

dI

½nIo� dI �

40,

since nIo4dI .
Furthermore,

lim
�R!1
�P!1

b ¼ lim
�R!1
�P!0

b ¼ lim
�R!0
�P!1

b ¼ �
lrI dI

dV

� lrI � dSdVo0.

Substituting (3.1) and (3.3) into (3.8) gives

c ¼ � lrI ½nIoð1� �PÞð1� �RÞ � dI �

�
d2

I dSdV

nIoð1� �PÞð1� �RÞ � dI

þ
nIodSdV dI ð1� �PÞð1� �RÞ

nIoð1� �PÞð1� �RÞ � dI

.

Thus,

lim
�R!0
�P!0

c ¼ � lrI ½nIo� dI � �
d2

I dSdV

nIo� dI

þ
nIodSdV dI

nIo� dI

¼ � lrI ½nIo� dI � þ dSdV dIo0

using (3.5).
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Finally,

lim
�R!1
�P!1

c ¼ lim
�R!1
�P!0

c ¼ lim
�R!0
�P!1

c ¼ rIldI þ dI dV dS40.

Thus, in the absence of both drugs, the characteristic
polynomial has only roots with negative real part (since
a; b40; co0), whereas if either drug is perfectly efficacious,
then the characteristic polynomial has a root with positive
real part (since bo0 and c40). It follows that the nontrivial
equilibrium is stable in the absence of both drugs and
unstable if either drug is perfectly efficacious. &

Remarks. 1. Theorem 3.1 suggests that the virus could be
theoretically eliminated if either drug is perfectly effica-
cious. However, it should be noted that this applies to free
virus in plasma only; HIV has other reservoirs of virus,
such as follicular dendritic cells and latently infected cells.
While actual elimination is not possible using drug therapy,
elimination of free virus (or, in practice, reduction below
the level of detection) is obviously the most desirable
situation.

2. Perelson and Nelson (1999) analysed a similar model,
although they (usually) assumed TS was constant and did
not examine the limiting effects of drugs. However, they
reached similar conclusions; namely, that there is eradica-
tion if either �R or �P are sufficiently close to one.

4. Analysis of the explicit model

The following initial conditions are assumed:
V I ð0Þ ¼ V040, V NI ð0Þ ¼ 0, TI ð0Þ ¼ 0, TRð0Þ ¼ TRPð0Þ ¼
TPNI ð0Þ ¼ TPI ð0Þ ¼ 0. It is also assumed that (a) V0 is
small compared to the product nIl and (b) TSð0Þpl=dS,
which includes the possibility that the immune system may
not be operating at peak capacity when infection begins.
These initial conditions correspond to the very earliest
stages of infection, when the system is at the disease-free
equilibrium except for a small population of infectious
virus. It is therefore assumed that (1) the initial viral load is
low compared to the total viral load as the infection
progresses, (2) the initial (susceptible) T cell count is
usually at the uninfected equilibrium value before infection
(see Schacker et al., 1998), although the possibility that it
may be less is allowed for, and (3) no drugs are taken
before diagnosis.

The following lemma is straightforward, but will be used
quite frequently.

Lemma 4.1. Suppose x is a variable satisfying

x0ðtÞoc� qðfÞxðtÞ,

where c is a constant and qðfÞ is independent of x and t. Then

(a) If xð0Þoðc=qðfÞÞ, it follows that

xðtÞo
c

qðfÞ

for all t.

(b) If xð0Þoðc=qðfÞÞ and limf!0 qðfÞ ¼ 1, it follows that

xðtÞ ! 0

as f! 0 for all t.

Proof. See Smith and Wahl (2004, Lemma 4.1). &

Remark. Lemma 4.1(a) also holds if the inequalities are
reversed.
Let Ttot � TS þ TR þ TRP þ TPNI þ TI þ TPI . Then,

using Lemma 4.1,

T 0tot ¼ l� dSðTS þ TR þ TRP þ TPNI Þ � dI ðTI þ TPI Þ

pl� dSTtot,

TtotðtÞp
l

dS

(4.1)

for all t, since Ttotð0Þpl=dS and dSodI . Thus, the limiting
value of the total number of T cells with infection
is less than or equal to the number of T cells in the
uninfected immune system. If there is no infection, then
TI ¼ TPI ¼ 0 and there is equality in (4.1). In practice,
TtotðtÞ will be less than l=dS when infection is present. By
similar reasoning,

T 0tot ¼ l� dSðTS þ TR þ TRP þ TPNI Þ � dI ðTI þ TPI Þ

Xl� dI Ttot,

TtotðtÞX
l
dI

.

Thus,

l
dI

pTtotðtÞp
l

dS

. (4.2)

Lemma 4.2. The infectious virions in model (2.2) satisfy

VIo
nIol
dSdV

.

Proof. See Smith and Wahl (2004, Lemma 5.1). &

Lemma 4.3. The susceptible T cells in model (2.2) satisfy

TSðtÞ4
l

aðt; sÞ
,

where aðt; sÞ ! 1 as t! 0 or s! 0.

Proof. Using (2.3) and Lemma 4.2,

T 0S4l� rI TS

nIol
dSdV

� dSTS � rRTSRavðtÞ � rPTSPavðsÞ

¼ l� aðt;sÞTS ,

where

aðt;sÞ ¼
rI nIol
dSdV

þ dS þ rRRavðtÞ þ rPPavðsÞ

! 1

as t! 0 or s! 0.
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Since l and nI are large compared to the other constants,
it follows that ðl=aðt; sÞÞ is small in general. It is thus
reasonable to expect that TSð0Þ4ðl=aðt;sÞÞ, since the body
already has a sizable number of T cells when initially
infected. Thus, by the remark following Lemma 4.1:

TSðtÞ4
l

aðt;sÞ
: &

Remark. This establishes a lower limit on the number of
susceptible T cells, which approaches zero as treatment
becomes more effective.

For simplicity of notation, define m � mR þmP.

Lemma 4.4. 1. If Rava0, then, in model (2.2),

TSðtÞo
l 1þ

m

dS

� �
rRRav

þ dðt; t;sÞ,

where dðt; t;sÞ ! 0 as t!1 or t! 0 or s! 0.
2. If Pava0, then, in model (2.2),

TSðtÞo
l 1þ

m

dS

� �
rPPav

þ dðt; t;sÞ.

Thus, TS ! 0 as t! 0 or s! 0.

Proof. 1. Using (4.1),

T 0Sol� dSTS � rRTSRav � rPTSPav þ
lmR

dS

þ
lmP

dS

¼ l 1þ
m

dS

� �
� bðt;sÞTS,

where

bðt;sÞ ¼ dS þ rRRav þ rPPav4rRRav .

Thus,

d

dt
ðebðt;sÞtTSÞol 1þ

m

dS

� �
ebðt;sÞt

TSðtÞo TSð0Þ �

l 1þ
m

dS

� �
bðt;sÞ

2
664

3
775e�bðt;sÞt þ

l 1þ
m

dS

� �
bðt;sÞ

.

Hence,

TSðtÞodðt; t;sÞ þ
l 1þ

m

dS

� �
rRRav

,

where

dðt; t;sÞ � TSð0Þ �

l 1þ
m

dS

� �
bðt;sÞ

2
664

3
775e�bðt;sÞt.

Using (2.3), bðt; sÞ ! 1 as t! 0 or s! 0 and
dðt; t;sÞ ! 0 as t!1 or t! 0 or s! 0. Thus, TS !

0 as t! 0 or s! 0.
The proof of part 2 is similar. &

Remark. This establishes upper limits on the number of
susceptible cells, which approach zero as treatment
becomes more effective. Thus, when either RTIs or PIs
(or both) are used frequently, the number of susceptible
cells is driven to zero (since such cells are either infected or
converted into drug-inhibited cells).

Theorem 4.1. If Rava0, then, in model (2.2), TI ! 0,
TPNI ! 0, TPI ! 0 and TR þ TRP ! ðl=dSÞ as t!1

and t! 0, for any fixed s.

Proof. Using part 2 of Lemma 4.4 and (4.1),

T 0PNIpl 1þ
m

dS

� �
þ rPdðt; t;sÞPav � rRRavTPNI þ

lmR

dS

.

Thus, using Lemma 4.1,

TPNIp
l 1þ

m

dS

� �
þ rPdðt; t; sÞPav þ

lmR

dS

� �
rRRav

� gðt; t;sÞ

! 0

as t!1 and t! 0, for each fixed s.
Using Lemma 4.2, part 1 of Lemma 4.4 and the first part

of Theorem 4.1,

T 0I þ T 0PI ¼ rI ðTS þ TPNI ÞV I � dI ðTI þ TPI Þ

p
rI nIol
dSdV

l 1þ
m

dS

� �
rRRav

þ dðt; t;sÞ þ gðt; t;sÞ

2
664

3
775

� dI ðTI þ TPI Þ,

TI þ TPIp
rI nIol
dSdV dI

l 1þ
m

dS

� �
rRRav

þ dðt; t;sÞ þ gðt; t; sÞ

2
664

3
775

! 0

as t!1 and t! 0, for each fixed s.
Using Lemma 4.2 and part 1 of Lemma 4.4,

T 0S þ T 0R þ T 0RP þ T 0PNI ¼ l� rI ðTS þ TPNI ÞV I

� dSðTS þ TR þ TRP þ TPNI Þ

4 l�
rI nIol
dSdV

l 1þ
m

dS

� �
rRRav

þ dðt; t;sÞ þ gðt; t;sÞ

2
664

3
775

� dSðTS þ TR þ TRP þ TPNI Þ.

Using a similar argument to the proof of Lemma 4.4,

TR þ TRP

4
l

dS

�
rI nIl

d2
SdI

l 1þ
m

dS

� �
rRRav

þ dðt; t;sÞ þ gðt; t; sÞ

2
664

3
775
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� TS � TPNI þ TSð0Þ �
l

dS

þ
rI nIl

d2
SdI

8>><
>>:

�

l 1þ
m

dS

� �
rRRav

þ dðt; t;sÞ þ gðt; t;sÞ

2
664

3
775
9>>=
>>;e�dSt

! ðl=dSÞ as t!1 and t! 0, for any fixed s, using the
first part of this proof and Lemma 4.4. &

Remark. Thus, if RTIs are taken with sufficient frequency
(with or without PIs), cells inhibited with RTIs do the work
of maintaining the immune system at pre-infection levels
and all other cells are driven to zero.

5. Comparison of the implicit and explicit model

For the purposes of comparison with the explicit model,
it is assumed that the efficacy of the drugs is directly
related to the frequency of drug dosing; that is, as
the frequency of doses approaches infinity, the efficacy
approaches 100%.

In the absence of both drugs, the implicit and explicit
models are equivalent. In this case, both models predict
that the disease-free equilibrium is unstable and the
endemic equilibrium is stable. It follows that the virus
dominates in the absence of drugs.

When both drugs are taken frequently, Theorems 3.1
and 4.1 predict that the virus will be eliminated and the
infected T cell count will be low.

When PIs are absent, but RTIs are taken frequently,
Theorems 3.1 and 4.1 also predict that the virus will be
eliminated and the infected T cell count will be low.

However, when RTIs are absent, but PIs are taken
frequently, the outcome may not be consistent. In
particular, Theorem 3.1 always predicts that the disease-
free equilibrium will be stable and the endemic equilibrium
will be unstable in the implicit model. For the explicit model
in this case, TS ! 0 (from Lemma 4.4) and TRP ¼ TR ¼ 0

(since the RTIs are absent). Applying (4.2), we have

l
dI

pTI þ TPNI þ TPIp
l

dS

.

However, typically 1=dI51=dS. Let m0 denote the mini-
mum number of T cells required to maintain the immune
system. If m0 satisfies

l
dI

p lim
t!1
ðTI þ TPNI þ TPI Þom0o

l
dS

, (5.1)

then there is no dosing schedule that will sustain a healthy
immune system. That is, if the number of nonzero T cells is
too low, then the effect of treatment with PIs, no matter
how frequently taken or how large the dose is, ultimately
may be no better than no treatment at all. Thus, in this case,
the outcome depends on the model.
The results are summarised in Table 1.

6. Numerical simulations

Section 4 does not demonstrate what happens as s! 0
if Rav ¼ 0 and Pava0. In this case, the result may be
identical to the implicit model (namely, eradication), it
might satisfy (5.1) (in which case treatment with PIs is
effectively similar to no treatment at all) or there may be a
limiting value that exceeds m0 but is still low (see Calloway
and Perelson, 2002). Consequently, the outcome must be
illustrated numerically.
While drugs are never perfectly efficacious, results in

Sections 3 and 4 are an idealisation of the case where one
or both drugs are highly efficacious. In this section, the
results are illustrated for realistic parameters, where the
drugs are moderately efficacious. The parameters describ-
ing T cell and virus dynamics are largely straightforward
and were taken from the literature; the reader is referred to
Haase et al. (1996), Nelson and Perelson (2002), and Wahl
and Nowak (2000) for details and to the figure legends for
specific values (Figs. 2 and 3).
To illustrate the differences in the implicit versus the

explicit models, PI-only therapy was simulated. In Fig. 2,
the PI efficacy was 75%. Even this moderate efficacy led
to low viral load for infectious virus (approximately

ARTICLE IN PRESS

Table 1

Comparison of implicit and explicit dosing for both major classes of drugs

RTI PI Implicit dosing Explicit dosing Result

Infrequent Infrequent Infected T cell counts high, Infected T cell counts high, Virus dominates

Uninfected T cell counts low Uninfected T cell counts low

Frequent Frequent Infected T cell counts low, Infected T cell counts low, Virus eliminated

Uninfected T cell counts high Uninfected T cell counts high

Frequent Infrequent Infected T cell counts low, Infected T cell counts low, Virus eliminated

Uninfected T cell counts high Uninfected T cell counts high

Infrequent Frequent Infected T cell counts low, Infected T cell counts may be high, Depends on method!

Uninfected T cell counts high Uninfected T cell counts may be low

If both drugs are taken infrequently, then the virus dominates. If RTIs are taken sufficiently frequently, then the virus is theoretically eliminated, regardless

of PI frequency. However, if PIs are taken frequently, but RTIs are taken infrequently, then the implicit and explicit models may produce different results.
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0:0043 copiesmL�1) and a high T cell count for noninfected
cells (approximately 999:2 cellsmL�1, compared to a base-
line of 1000 cellsmL�1 for the uninfected patient).

In Fig. 3, the same parameters were used where
equivalent, and the PI was given three times daily (the
maximum daily dosage for any single drug or fixed-dose
combination; see Calmy et al., 2007), resulting in a value of
Pav ¼ 6:57. Unlike the implicit model, the infectious viral
load was significant (approximately 130 copies mL�1, simi-
lar to the viral load without treatment) and the uninfected
T cell counts were low (approximately 200 cellsmL�1).

Fig. 4 demonstrates how the stable viral load in the
implicit model depends on the efficacy of the drugs. The
nontrivial steady state is positive for a range of values of �R

and �P, but as either �R ! 1 or �P ! 1, the nontrivial
steady state exchanges stability with the trivial steady state
and thereafter becomes negative.

Fig. 5 demonstrates how the stable viral load in the
explicit model depends on the mean concentration of the
drugs. In this case, the virus is eliminated as Rav increases,
regardless of whether PIs are present or not. However, if
RTIs are absent, then the virus remains at untreated levels,
even if Pav becomes large.

7. Discussion

Implicitly modelling the uptake of antiretroviral drugs
may result in an overconfidence in the ability of PI-only

therapy to combat HIV. Altering the traditional models
only slightly, to include the explicit compartments of drug-
inhibited T cells, results in a qualitative change in outcome
for this line of therapy. Whereas RTIs prevent infection of
a cell (whether used in conjunction with PIs or alone), PIs
allow a cell to become infected. When the RTI wears off,
the cell can only return to a noninfected state, but when the
PI wears off, the cell may have already become infected.
This is a consequence of the RTI and PI drug mechanisms.
In particular, if RTIs are absent, then the only nonzero,
noninfected cells are PNI , which are themselves entirely
susceptible to infection.
Intuitively, for the implicit model, as the efficacy of PIs

approach 1 (in the absence of RTIs), the production of
infectious virions (and hence infected T cells) is signifi-
cantly reduced, but the susceptible cells are not driven
towards zero. Conversely, for the explicit model, as PI
dosing approaches infinity (in the absence of RTIs), most T
cells become inhibited with the PI, but it only takes one
virus particle to infect them. Once infected, these cells will
oscillate between cells that produce infectious virions and
cells that produce noninfectious virions, depending on the
uptake and waning rates of the PI. This drives the
noninfected cells towards zero. Once infected, the death
rate of a such a cell—whether inhibited with PIs or not—is
high. It follows that highly efficacious PI-only therapy may
result in an abundance of susceptible cells in the implicit
model, but an abundance of infected cells in the explicit
model.
Thus, the traditional (implicit) method of modelling the

efficacy of drugs may lead to an overconfidence in the

ARTICLE IN PRESS

0 5 10
0

5

10

15

20

25

30

35

40

45

50

In
fe

c
ti
o
u
s
 v

ir
u
s
 (

c
o
p
ie

s
/μ

 L
 p

la
s
m

a

time (days)

20 40 60
0

5

10

15

20

25

30

35

40

45

50

time (days)

S I
0

500

1000

Fig. 2. PI-only therapy, using the implicit model, with efficacy �P ¼ 0:75.
Other parameters were nI ¼ 62:5 day�1 o ¼ 0:05, dV ¼ 3day�1,

rI ¼ 0:0032day�1, l ¼ 100 cellsmL�1 day�1, �R ¼ 0, dS ¼ 0:1day�1, dI ¼

0:5 day�1 (taken from Smith and Wahl, 2004 where appropriate). Initial

conditions were VI ð0Þ ¼ 50 virionsmL�1, TSð0Þ ¼ 1000 cellsmL�1 and all

other initial conditions zero. In this case, high-efficacy PI-only therapy

leads to theoretical elimination of the virus. Inset: equilibrium CD4þ T cell

counts are high for susceptible and low for infected cells.
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Fig. 3. PI-only therapy, using the explicit model. All equivalent

parameters were as in Fig. 2. Remaining parameters were rP ¼

0:127mM�1 day�1, rR ¼ 56:1mM�1 day�1, mR ¼ 4:16 day�1, mP ¼ 8:52
day�1, dP ¼ 8:32day�1, Pi ¼ 11:6mM (taken from Smith and Wahl,

2004), resulting in a mean PI concentration value of Pav ¼ 6:57. Initial
conditions were as in Fig. 2. Unlike Fig. 2, high-frequency PI-only therapy

does not lead to elimination of the virus. Inset: equilibrium CD4þ T cell

counts are low for susceptible and infected cells and zero for all other cells.
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ability of PIs to deal with the virus. While it is possible to
choose parameters to ensure that PI-only therapy does lead
to theoretical elimination of the virus in the explicit model
(see Smith and Wahl, 2004), PI-only therapy will not
eliminate the virus in all cases and, in fact, may not lead to
CD4þ T cell counts much larger than that of no therapy at

all (Figs. 3 and 5). Critically, this means that the traditional
model predicts a long-term beneficial outcome for the
patient, whereas the explicit model predicts that such
therapy may ultimately kill the patient.
Mathematically, the implicit model determines the

stability, or not, of the trivial (disease-free) equilibrium,
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compared to the endemic equilibrium. Conversely, in the
explicit model, the trivial equilibrium is always unstable,
for all realistic parameters, but when t! 0, a new, stable,
disease-free equilibrium (with TS ¼ 0) is approached.
However, as s! 0, no such disease-free equilibrium may
be approached. Thus, while results in Section 3 are
independent of parameter estimates, results in Section 4
are independent of parameter estimates only when RTIs
are involved (see Theorem 4.1). If RTIs are absent, then
results depend enormously on the choice of parameters;
while sample parameters from the literature illustrate
treatment failure (Section 6), other parameter choices will
lead to treatment success (see Smith and Wahl, 2004 for
more discussion).

While neither model is an exact representation of the
drug dynamics in question, the explicit model captures
more of the reality of the situation than the implicit model
and approximates more complex models from the litera-
ture. The two models are equivalent in the absence of drugs
and have similar outcomes when the RTI is included (with
or without the presence of the PI), but they produce
qualitatively different results when the PI acts alone. Since
the explicit model captures more (although not all) of the
dynamics, this suggests that models that explicitly account
for the impact of drug dynamics on T cells are more
reliable predictors of therapy outcomes.

Even with a relatively low efficacy of 75%, the implicit
model predicts that PI-only therapy will lead to near-total
reduction in the viral load (less than 0:0043 copiesmL�1),
with high noninfected CD4þ T cell counts (Fig. 2).
However, the same basic model using the same parameters
but with explicit drug dynamics produced high viral load
(approximately 130 copies mL�1) and low CD4þ counts for
both infected and noninfected cells (Fig. 3). Fortunately,
PI-sparing therapy has recently been advocated, in both the
developing and developed world (Moyle, 2003). In
particular, RTI-only therapy is underway in antiretroviral
rollout programs in Africa, with PIs held back for second-
line therapy (Carpenter, 2006).

These theoretical predictions may appear to be at odds
with clinical evidence that PIs control HIV more effectively
(Ghani et al., 2001). This is because this result pertains to
all possible drugs which either prevent infection or prevent
virion production and compares these two strategies of
defense, in the absence of resistance. The effects of
resistance should not be discounted, but the development
of new drugs allows for the fact that mutation-resistant
cocktails may now consist of numerous RTIs, numerous
PIs or a combination of both. Side effects are also an
important issue (Krakovska and Wahl, 2007; Moyle, 2003)
that may lead to one regimen being chosen over another.

Preliminary experimental studies of PI-only therapy have
been carried out in the developed world (Calmy et al.,
2007) to reduce drug resistance in the short term, but such
therapy has not yet been approved. In that study, 42
patients taking one or two PIs were monitored for 105
weeks as part of a larger cohort of patients assessing

virological and immunological safety and activity of
nucleoside-RTI-sparing regimens. Other studies have
assessed preliminary 24-week trials, demonstrating that
immune reconstitution and median viral load decreased
(Staszewski et al., 2003a, b; Raguin et al., 2004), although
these studies were mostly performed on subjects who had a
heavy history of treatment before undertaking this regi-
men. Such experiments were devised only for short time
periods and did not assess the long-term impact of PI-only
therapy. Furthermore, it should be stressed that model
(2.2) does not necessarily predict treatment failure for
PI-only therapy, only that it is a possibility, whereas model
(2.1) does not allow for such a possibility.
The explicit model examined here is a continuous version

of the previously published model in Smith and Wahl
(2004). This was chosen to deliberately avoid the use of
impulsive differential equations, partly for clarity of
argument and partly to illustrate the robustness of the
results with respect to model choice (thus, the implicit
model here also differs slightly from similar models in the
literature; see Perelson and Nelson (1999), Wu and Ding
(1999), Nelson et al. (2001, 2000), and Nowak and May
(2000)). The difference lies in the structuring of the drug-
inhibited cells via compartment modelling, compared to
parameter variation in the implicit model. The inclusion of
the �rI TSVI term accounts for the loss of virions due to
infection; however, it makes little overall difference in the
qualitative results. While the analysis in Section 4 is similar
to the analysis in Smith and Wahl (2004), the model was
simplified to a continuous version to (a) avoid the
complications added by imposing discontinuities into
the model and (b) examine the underlying dynamics in
the model. Thus, the implicit and explicit models are both
new and the analysis of each model is also new, although
similar analyses of similar models have also been carried
out in other works.
Generalising the explicit model, similar results will occur

for any model that has unbounded drug levels as either the
dosage or dosing frequency increases without bound and
where the susceptible cells are driven towards zero, but cells
inhibited with RTIs (both with and without PIs) approach
the levels in the uninfected immune system. In such cases,
RTIs could theoretically eliminate the virus, with or
without PIs. Conversely, PIs alone may not control the
virus without further restrictions on the parameters.
In summary, mathematical models of HIV should

account for the explicit dynamics of T cells. In particular,
the clinical impact of PI-only therapy must be urgently re-
examined to determine long-term therapy outcomes, if such
outcomes have been based on overly simplistic modelling.

Acknowledgements

The author is grateful to Shoshana Magnet, Ben
Aggarwala, Beni Sahai, Jennifer Smith, Shanta Varma,
Frithjof Lutscher, Benoit Dionne, Barbara Smith, Greg
Smith and Marco Llamazares for technical discussions,

ARTICLE IN PRESS
R.J. Smith? / Journal of Theoretical Biology 251 (2008) 227–237236



Author's personal copy

and acknowledges three reviewers, whose comments helped
improve the manuscript. Support from an NSERC
Discovery Grant is gratefully acknowledged.

References

Calloway, D.S., Perelson, A.S., 2002. HIV-1 infection and low steady state

viral loads. Bull. Math. Biol. 64, 29–64.

Calmy, A., Petoumenos, K., Lewden, C., Law, M., Bocquentin, F., Hesse,

K., Cooper, D., Carr, A., Bonnet, F., 2007. Combination antiretroviral

therapy without a nucleoside reverse transcriptase inhibitor: experience

from 334 patients in three cohorts. HIV Med. 8, 171–180.

Carpenter, C., 2006. Universal access to antiretroviral therapy: when, not

if. Clin. Infect. Dis. 42, 260–261.

Department of Health and Human Services, 2006. Guidelines for the use

of antiretroviral agents in HIV-1-infected adults and adolescents hhttp://

img.thebody.com/hivatis/pdfs/adult_guide.pdfi (accessed December 26,

2007).

Ghani, A.C., Henley, W.E., Donnelly, C.A., Mayer, S., Anderson, R.M.,

2001. Comparison of the effectiveness of non-nucleoside reverse

transcriptase inhibitor-containing and protease inhibitor-containing

regimens using observational databases. AIDS 15 (9), 1133–1142.

Haase, A.T., Henry, K., Zupancic, M., Sedgewick, G., Faust, R.A., Melroe,

H., Cavert, W., Gebhard, K., Staskus, K., Zhang, Z.Q., Dailey, P.J.,

Balfour, H.H., Erice, A., Perelson, A.S., 1996. Quantitative image

analysis of HIV-1 infection in lymphoid tissue. Science 274, 985–989.

Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M.,

Markowitz, M., 1995. Rapid turnover of plasma virions and CD4

lymphocytes in HIV-1 infection. Nature 373 (6510), 123–126.

Huang, Y., Rosenkranz, S.L., Wu, H., 2003. Modeling HIV dynamics and

antiviral response with consideration of time-varying drug exposures,

adherence and phenotypic sensitivity. Math. Biosci. 184, 165–186.

Janeway, C., Travers, P., Walport, M., Shlomchik, M.J., 2001.

Immunobiology 5: The Immune System in Health and Disease.

Garland Publishing, New York.

Krakovska, O., Wahl, L.M., 2007. Costs versus benefits: best possible and

best practical treatment regimens for HIV. J. Math. Biol. 54 (3), 385–406.

Moyle, G., 2003. Protease inhibitor-sparing regimens: new evidence

strengthens position. J. Acq. Immun. Def. Synd. 33 (Suppl. 1), 17–25.

Nelson, P.W., Perelson, A.S., 2002. Mathematical analysis of delay differential

equation models of HIV-1 infection. Math. Biosci. 171 (1), 73–94.

Nelson, P.W., Murray, J.D., Perelson, A.S., 2000. A model of HIV-1

pathogenesis that includes an intracellular delay. Math. Biosci. 163,

201–215.

Nelson, P.W., Mittler, J.E., Perelson, A.S., 2001. Effect of drug

efficacy and the eclipse phase of the viral life cycle on estimates of

HIV viral dynamic parameters. J. Acq. Immun. Def. Synd. 26 (5),

405–412.

Nowak, M.A., May, R.M., 2000. Virus Dynamics. Oxford University

Press, Oxford.

Perelson, A.S., 2002. Modelling viral and immune system dynamics.

Nature Reviews: Immunology 2, 28–36.

Perelson, A.S., Nelson, P.W., 1999. Mathematical analysis of HIV-1

dynamics in vivo. SIAM Rev. 41 (1), 3–44.

Prior, R.W., 2005. Looking around in awareness: playbuilding on

HIV–AIDS. Res. Drama Educ. 10 (1), 55–64.

Raguin, G., Chene, G., Morand-Joubert, L., et al., 2004. Puzzle 1 study

group. Salvage therapy with amprenavir, lopinavir and ritonavir

200mg/d or 400mg/d in HIV-infected patients in virological failure.

Antiviral Ther. 9, 615–625.

Schacker, T.W., Hughes, J.P., Shea, T., Coombs, R.W., Corey, L., 1998.

Biological and virologic characteristics of primary HIV infection. Ann.

Intern. Med. 128 (8), 613–620.

Smith, R.J., Wahl, L.M., 2004. Distinct effects of protease and

reverse transcriptase inhibition in an immunological model of HIV-1

infection with impulsive drug effects. Bull. Math. Biol. 66 (5),

1259–1283.

Staszewski, S., Dauer, B., Von Hentig, N., et al., 2003a. The LOPSAQ

study: 24 week analysis of the double protease inhibitor salvage

regimen containing lopinavir plus saquinavir without any additional

antiretroviral therapy. In: Second International AIDS Conference,

Paris, France, July 2003 (Abstract 853).

Staszewski, S., Dauer, B., Gute, P., et al., 2003b. The CrixiLop cohort

study: preliminary results from a salvage study of HIV positive

patients treated with indinavir and lopinavir/ritonavir without the

addition of reverse transcriptase inhibitors. In: 43rd Interscience

Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL,

September 2003 (Abstract H-853).

Wahl, L.M., Nowak, M.A., 2000. Adherence and drug resistance:

predictions for therapy outcome. Proc. R. Soc. London Ser. B 267,

835–843.

Wu, H., Ding, A., 1999. Population HIV-1 dynamics in vivo: applicable

models and inferential tools for virological data from AIDS clinical

trials. Biometrics 55 (2), 410–418.

Wu, H., Huang, Y., Acosta, E.P., Park, J.-G., Yu, S., Rosenkranz, S.,

Kuritzkes, D.R., JEron, J., Perelson, A.S., Gerber, J.G., 2006.

Pharmacodynamics of antiretroviral agents in HIV-1 infected patients:

using viral dynamic models that incorporate drug susceptibility and

adherence. J. Pharmacokinet. Pharmacodyn. 33 (4), 399–419.

ARTICLE IN PRESS
R.J. Smith? / Journal of Theoretical Biology 251 (2008) 227–237 237




