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Abstract: Enfuvirtide (formerly T20) is an injectable fusion
inhibitor that has established effective antiretroviral activity
and excellent tolerability in extensively pretreated patients.
This fusion inhibitor does not affect themetabolism of other
co-administrated drugs for metabolic drug interactions
involving enfuvirtide. Few mathematical models have con-
sidered co-administration of antiretroviral drugs. We
develop a mathematical model to study the effect of enfu-
virtide upon this process in combination with protease
inhibitors (PIs) using impulsive differential equations. We
divide the T cells into several classes to describe the drug
activity. Analytical results show that a combination of enfu-
virtide and PIs gives a better outcome than single drug
activity; furthermore, use of enfuvirtide clearly outranks
PIs if only one class of drugs were to be used. We determine
the threshold value for the dosage and dosing intervals to
ensure the stability of the disease-free state and illustrate
our results with numerical simulations.We recommend that
use of enfuvirtide, in combination with PIs, be expanded
beyond salvage therapy.
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1 Introduction

Acquired immunodeficiency syndrome (AIDS) is a lethal
disease that suppresses the effectivity of the immune

system and curbs the body’s ability to fight against any
infection. Human immune deficiency virus (HIV) causes
AIDS through infecting and damaging the CD4+ T cells.
The T cells are able to fight this attack for a certain period
of time, but, due to lack of helper T cells, the immune
system eventually fails. As a result, the immune system
becomes less effective in fighting against opportunistic
infections such as pneumonia. In a healthy human’s
peripheral blood, the level of CD4+ T cells is between
800 and 1200 per mm3; once this number falls below 200,
the patient is classified as having AIDS [1].

Like most of the other viruses, HIV-1 is a simple RNA
virus. It binds to CD4+ T molecules on the surface of T
cells. The virus then invades the cytoplasm of the T cell.
From a therapeutic perspective, viral entry is one of the
most striking points for intervention in the viral life
cycle. The first step in the entry process involves bind-
ing of the viral envelope glycoprotein (gp120) to the CD4
cell surface receptor on helper T cells [2–5]. The gp120
protein that undergoes a conformational change results
in its binding to chemokine co-receptors CCR5 and
CXCR4 [6, 7]. The binding of both CD4 and the chemo-
kine co-receptors by gp120 is the first two steps of viral
entry. The third and final step in the viral entry process
is fusion. Fusion of the viral and cellular membranes is
a highly complex process that results in the discharge of
the viral RNA and HIV enzymes such as reverse tran-
scriptase, integrase and protease into the cytoplasm of
the host cell. By means of its reverse transcriptase
enzyme, HIV virus produces a homologous DNA copy
and inserts itself into the host cell’s DNA by integrase
(another virally encoded enzyme). In the final stage of
the viral life cycle, with the help of protease enzyme, the
viral assembly process is complete.

There are more than 20 FDA-approved anti-HIV drugs
currently available; most fall into 1 of the 2 categories:
reverse transcriptase inhibitors (RTIs) and protease inhi-
bitors (PIs) [8–10]. The most widespread treatment strat-
egy for acutely infected HIV patients is highly active
antiretroviral therapy (HAART), which uses two or more
drugs. Typically, these drug cocktails consist of one or
more RTIs as well as a PI. RTIs prevent the conversion of
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HIV RNA into DNA, blocking integration of the viral code
into the target cell. On the other hand, PIs effectively
reduce the number of infectious virus particles, prevent-
ing the proper structure of the viral proteins before their
release from the host cell.

Many patients have benefited from these drug regi-
mens, which successfully reduce and maintain viral
load below detectable levels [11]. Regardless of the
success of these drug regimens, their long-term use
comes with substantial complications. Many first-time
HAART patients discontinue treatment within 8
months, often due to virological failure, poor adher-
ence to treatment schedules or excessive toxicity [12].
In addition, high drug costs and complicated pill sche-
dules make adherence troublesome for some patients
and impossible for those who have limited access to
anti-HIV drugs [13].

Major progress has been made in the treatment of
HIV-infected patients; as a result, patients can achieve
improved quality of life and greater longevity. Due to
advances in available drug treatments and their combi-
nation in “drug cocktails”, many patients successfully
maintain low viral load and high T-cell counts for
months or even years. The fusion inhibitor T20 (generic
name: enfuvirtide; brand name: Fuzeon) is the most
clinically advanced drug of a new class of antiretrovirals
designed to inhibit viral entry [14]. Enfuvirtide is a syn-
thetic 36 amino acid peptide, derived from the C-term-
inal region of HR2 [15]. Clinical data show that T20 is
effective as salvage therapy for HIV/AIDS patients who
have failed to respond to current antiretroviral thera-
peutics [16]. Enfuvirtide has a unique mechanism of
action and has high viral target specificity; in clinical
trials, it has been shown to exhibit both high efficacy
and low toxicity. However, many patients are now fail-
ing to respond to T20 because the viruses develop T20
resistance [17–20].

A number of mathematical models have been devel-
oped to describe various treatment strategies and the
effects of different drug therapies. The effect of perfect
adherence to antiretroviral therapy has been studied
using impulsive differential equations [6,7,21–25]. Using
this method, the dosing period and threshold values of
dosage can be obtained more precisely, as well as the
effect of maximal acceptable drug holidays (short breaks
taken from medication to alleviate side effects) [13].
Several mathematical models have been developed to
describe the interaction of the human immune system
with HIV, the decline in CD4+ T cell count and the effects
of different drug therapies [1, 26–35]. Here, we consider
a combination of enfuvirtide and PIs to examine the

effects of combination therapy on viral dynamics. A
handful of mathematical models have examined combi-
nation therapy [36]. However, none have examined enfu-
virtide in combination with PIs. Song et al. examined two
different therapy strategies for enfuvirtide, but not in
combination [25]. To the best of our knowledge, this is
the first mathematical model for combination therapy
with enfuvirtide.

We consider a mathematical model in which two
classes of drugs are taken: the fusion inhibitor enfuvir-
tide, which is effective early in the viral life cycle
and prevents viral entry into host cells, and a PI,
which efficiently reduces the number of infectious
virus particles. Using impulsive differential equations,
we also evaluate the dosage and dosing period of
both drugs.

2 The model

Here, we would like to enlighten the study of different
achievable outcomes of CD4+ T cell in a broader sense [6].

We consider two classes of virus populations: VI

denotes infectious virus populations that can infect
susceptible CD4+ T cells, and VNI denotes noninfectious
virus populations. Let TS be the population of susceptible
CD4+ T cells and TI denote the population of infected
CD4+ T cells. The latter produce both infectious and
noninfectious virus. These cells may absorb either
enfuvirtide or the PI. Since virus has already entered
into CD4+ T cells, absorbing enfuvirtide has no effect
on infected cells. At any time, four possible actions
may occur.
1. A CD4+ T cell may come into contact with an infec-

tious virion.
2. The cell may absorb enfuvirtide.
3. The cell may absorb the PI.
4. The cell may absorb both drugs.

TF denotes fusion-inhibited T cells. Fusion-inhibited
T cells are noninfected T cells that have absorbed suffi-
cient quantity of fusion inhibitor (enfuvirtide) so that
the probability of viral entry into this cell is negligible.
If the PI is subsequently absorbed by these cells, then
they will become noninfected doubly inhibited cells.
TPNI denotes noninfected protease-inhibited T cells.
These cells may subsequently be infected by virus or
they may absorb enfuvirtide. In the former case, they
will become infected protease-inhibited cells; in the
latter case, they will become noninfected doubly
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inhibited cells. TPI denotes infected cells that have
absorbed PI. Due to presence of the PI, these cells
release only noninfectious virus. Furthermore, absorp-
tion of enfuvirtide has no effect on these cells. Lastly,
TFP denotes cells that have absorbed both enfuvirtide
and a PI, called doubly infected cells. These cells cannot
be infected.

We use F and P to denote the intracellular concen-
tration of enfuvirtide and the PI, respectively. Here, we
have considered that the drugs are given at tk for enfuvir-
tide and at sk for PI. Furthermore, we have assumed that
the effect of drug is instantaneous. The solutions of the
ordinary differential equations (1) are continuous for t ≠ tk
and t ≠ sk and go through an instantaneous change when
t = tk or t = sk. According to impulsive theory [37–39], we
can describe the nature of the impulse at time tm via the
difference equation,

ΔZ ≡ Z t +m
� �

−Z t −m
� �

= f tm, Z t −m
� �� �

.

The model takes the following form:

dVI

dt
= nIωTI − dVVI − rITSVI − rITPNIVI

dVNI

dt
= nITPI + nIð1−ωÞTI −dVVNI

dTS
dt

= λ− rITSVI − dSTS − rPTSP +mPTPNI − rFTSF +mFTF

dTI
dt

= rITSVI −dITI − rPTIP +mPTPI

dTF
dt

= rFTSF − dSTF −mFTF +mPTFP − rPTFP

dTPNI
dt

= rPTSP − dSTPNI − rITPNIVI −mPTPNI − rFTPNIF +mFTFP

dTPI
dt

= rITPNIVI −dITPI + rPTIP −mPTPI

dTFP
dt

= rFTPNIF − dsTFP −mPTFP −mFTFP + rPTFP

dF
dt

= − dFF

dP
dt

= − dPP,

(1)

for t ≠ tk and t ≠ sk.
The impulsive conditions are

ΔF = Fi t = tk
ΔP =Pi t = sk.

(2)

Here, nI is the number of virions produced per infected
cell per day and ω is the fraction of infectious virus

produced by an infected T cell. dV , dS and dI are the
natural death rates of free virus, noninfected CD4+ T cells
and infected CD4+ T cells, respectively. rI is the infection
rate of noninfected T cells, while rF and rP are the rates at
which enfuvirtide and the PI are absorbed into the T cells.
The rates at which enfuvirtide and the PI are cleared from
the intracellular compartment are mR and mP, respec-
tively. λ represents a source of susceptible cells. All the
parameters are assumed to be positive, and we assume
that 0 � ω ≤ 1. We have dS < dI < dV [40]. We shall also
assume that nIω > dI , as there are significantly more
infectious virions produced from a T cell than the death
rate of said cells.

Furthermore, we assume that each drug has an effect
on the relevant T cells for a certain period of time, after
which the T cells will revert to their appropriate state.
Here, dF and dP are the clearance rates of enfuvirtide and
PIs, while Fi and Pi are the dosages.

3 The system without drugs

In absence of both drugs, we set P = F =0 in eq. (1) and
ignore the impulsive equations. The system thus becomes
a set of ordinary differential equations, for which we can
perform standard stability analysis.

3.1 Equilibria

The system has two non-negative steady states: the dis-
ease-free equilibrium,

E0 �VI , �VNI , �TS, �TI , �TF , �TPNI , �TPI , �TFP
� �

= 0, 0,
λ
dS

, 0, 0, 0, 0, 0
� �

,

and the endemic equilibrium, E + V̂ I , V̂NI , T̂S, T̂I , T̂F ,
�

T̂PNI , T̂PI, T̂FPÞ = λ nIω−dIð Þ
dIdV

− dS
rI
, nIð1−ωÞ λ

dIdV
− dS

rI nIω−dIð Þ
h i

,
�

dIdV
rI nIω− dIð Þ ,

λ
dI
+ dSdV

rI nIω−dIð Þ , 0, 0, 0, 0Þ, which only exists if

λ=dIdVð Þ > dS=rI nIω− dIð Þð Þ.

3.2 The basic reproductive ratio

Linearisation of the infective differential equations of the
drug-free system at E0 takes the following form:

dZ
dt

= FE0 −VE0ð ÞZ,
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where

Z = ½VI ,VNI , TI , TPI �T

FE0 =

0 0 nIω 0

0 0 nIð1−ωÞ nI
rIλ
dS

0 0 0

0 0 0 0

2
6664

3
7775

VE0 =

dV + rIλ
dS

0 0 0

0 dV 0 0

0 0 dI −mP

0 0 0 dI +mP

2
6664

3
7775.

Deriving the spectral radius of the next-generation
matrix, we have the threshold

R0 = ρ FE0V − 1
E0

� �

= max
jξ j

det

ξ 0 − nIω
dI

− nIωmP
dI dI +mPð Þ

0 ξ −
nI ð1−ωÞ

dI
−

nI ð1−ωÞmP

dI dI +mPð Þ −
nI

dI +mP

− rIλ
rIλ+ dVdS

0 ξ 0

0 0 0 ξ

0
BBBBBBB@

1
CCCCCCCA

The characteristic equation of FE0V − 1
E0 satisfies

ξ 2 ξ 2 −
λrInIω

dI dVdS + λrIð Þ
� �

=0.

Therefore, the disease-free equilibrium (DFE) is unstable if

R0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λrInIω

dIðdVdS + λrIÞ

s
> 1.

Note that this has appropriate threshold properties,
although it is not the average number of secondary infec-
tions [41].

3.3 Stability analysis

Theorem 3.1: The disease-free equilibrium E0 of the drug-
free system is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof: The Jacobian matrix J0 for the drug-free system at
E0 is

J0 hasnegative eigenvalues − ds −mP −mF , −dV , − dS −mF ,
−dS −mP, −dI −mP and − dS, with nontrivial eigenvalues ξ
expressed as the roots of the quadratic equation

f ðξÞ= ξ 2 + a1ξ + a2,
with

a1 = rI �TS +dV +dI
a2 = dIdV + rI �TSdI − rI �TSnIω.

Here, a1 is always positive, while a2 > 0 iff R0 < 1. □

Theorem 3.2: The endemic equilibrium E + of the drug-free
system exists and is locally asymptotically stable if R0 > 1.

Proof: The endemic equilibrium E + of the drug-free sys-
tem clearly exists if R0 > 1 and nIω > dI . The characteristic
equation at the endemic equilibrium E + is

ξ +dS +mP +mFð Þ ξ + dVð Þ ξ +dS +mFð Þ ξ +dS +mP + rIVIð Þ
ξ +dI +mPð Þ dS + ξð Þg ξð Þ=0

where

g ξð Þ = ξ 3 + b1ξ 2 + b2ξ + b3,
with

b1 = dS + rI T̂S + rI V̂ I + dV + dI

b2 =dIdV + rI T̂SdI + rI V̂ IdI +dSdI + rI V̂IdV +dSdV

+ rI T̂SdS − rI T̂SnIω

b3 = rI V̂ IdVdI +dIdSdV +dIrI T̂SdS − rI T̂SdSnIω.

Here, b2 and b3 > 0 if R0 > 1. We have

b1b2 − b3 =
1
d2V

�
dIdSd3V − λd2I dVrI + λrIdSd

2
V + λ2dIr2I + λ

2dVr2I :

+
λωrInI
dI

dV d2I +dIdV +d2V
� �

− 2λrI dI +dVð Þ
 �
+
λ2ω2r2I n

2
I dI + dVð Þ
d2I

+
d2I d

2
Sd

4
V

nIω− dIð Þ2 +
dIdSd3V dI + dVð Þ

nIω− dI

�
.

J0 =

−dV − rI �TS 0 0 nIω 0 0 0 0
0 − dV 0 nIð1−ωÞ 0 0 nI 0

− rI �TS 0 − dS 0 mF mP 0 0
rI �TS 0 0 − dI 0 0 mP 0
0 0 0 0 −dS −mF 0 0 mP

0 0 0 0 0 −dS −mP 0 mF

0 0 0 0 0 0 −dI −mP 0
0 0 0 0 0 0 0 −ds −mP −mF

0
BBBBBBBBBB@

1
CCCCCCCCCCA
.
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We have numerically examined the positivity of b1b2 − b3
along with R0 > 1. Hence, E + is locally asymptotically
stable if R0 > 1.

4 The system in the presence
of drugs

Including the dynamics of drugs via impulsive differen-
tial equations will obviously perturb the steady states.
Instead of equilibria, the solutions will vary in periodic
orbits. To apply our stability analysis, we fix F* and P* as
constants representing the appropriate drug levels. Thus,
equilibria denoted X* will depend on drug levels, while
those denoted ~X will not.

The disease-free equilibrium is

E0
D

~VI , ~VNI , T*
S , ~TI ,T*

F , T
*
PNI , ~TPI ,T*

FP

� �
= 0, 0,T*

S , 0,T
*
F ,T

*
PNI , 0,T

*
FP

� �
.

where

T*
S =

λ dS+mFð Þ dS+mPð Þ dS+mF+mP+F*rF
� �

+λP*rP dS+mFð Þ dS+mPð Þ+ F*rFdS
� �

dS dS+mF+F*rFð Þ dS+mP+P*rPð Þ dS+mF+mP+F*rF+P*rPð Þ

T*
F =

λF*rF dS +mPð Þ dS +mF +mP + F*rF
� �

+P*rPmP
� �

dS dS +mF + F*rFð Þ dS +mP +P*rPð Þ dS +mF +mP + F*rF +P*rPð Þ

T*
PNI =

λP*rP d2S + dS 2mF +mP +P*rP
� �

+mF mF +mP + F*rF +P*rP
� �� �

dS dS +mF + F*rFð Þ dS +mP +P*rPð Þ dS +mF +mP + F*rF +P*rPð Þ

T*
FP =

λF*rFP*rP 2dS +mF +mP + F*rF +P*rP
� �

dS dS +mF + F*rFð Þ dS +mP +P*rPð Þ dS +mF +mP + F*rF +P*rPð Þ .

(3)

The endemic equilibrium is

E +
D V*

I ,V
*
NI , T

*
S ,T

*
I ,T

*
F ,T

*
PNI ,T

*
PI , T

*
FP

� �
,

where

V*
I =

nIωT*
I

dV + rI T*
S +T

*
PNI

� � V*
NI =

nIT*
PI + nIð1−ωÞT*

I

dV

T*
S =

λ+mPT*
PNI +mFT*

F

rIV*
I + dS + rPP

* + rFF*
T*
I =

rIT*
SV

*
I +mPT*

PI

dI + rPP*

T*
F =

rFT*
SF

* +mPT*
FP

dS +mF + rPP* T*
PNI =

rPT*
SP

* +mFT*
FP

dS + rIV*
I +mP + rFF*

T*
PI =

rIT*
PNIV

*
I + rPT

*
I P

*

dI +mP
T*
FP =

rFT*
PNIF

* + rPT*
FP

*

dS +mP +mF
.

4.1 Basic reproductive ratio

Linearisation of the infective differential equations of
the model (1) at the disease-free state E0

D takes the
following form:

dZ
dt

= FE0
D
−VE0

D

� �
Z,

where

Z = ½VI ,VNI ,TI ,TPI �T

FE0
D
=

0 0 nIω 0

0 0 nIð1−ωÞ nI

rIT*
S 0 0 0

rIT*
PNI 0 0 0

2
666664

3
777775

VE0
D
=

dV + rIT*
S + rIT

*
PNI 0 0 0

0 dV 0 0

0 0 dI +P*rP −mP

0 0 −P*rP dI +mP

2
666664

3
777775.

Therefore,

RD
0 = ρ FE0

D
V − 1
E0
D

� �
= max

jζ j
det

ζ 0 −
nIωðdI +mPÞ

dIðdI +mP +P*rPÞ −
nIωmP

dIðdI +mP + P*rPÞ

0 ζ −
nIð1−ωÞðdI +mPÞ
dIðdI +mP +P*rPÞ −

nIð1−ωÞmP

dIðdI +mP + P*rPÞ

−
nIP*rP

dIðdI +mP +P*rPÞ −
nIðdI +P*rPÞ

dIðdI +mP + P*rPÞ

−
rIT*

S

dV + rIT*
S + rIT

*
PNI

0 ζ 0

−
rIT*

PNI

dV + rIT*
S + rIT

*
PNI

0 0 ζ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

.

The characteristic equation of FE0
D
V − 1
E0
D
is

ζ 4 − ζ 2
�

rIT*
SnIω

�
dI +mP

�
dI
�
dI +mP +P*rP

��
dV + rIT*

S + rIT
*
PNI

�
+

nIωmPrIT*
PNI

dI
�
dI +mP +P*rP

��
dV + rIT*

S + rIT
*
PNI

� �=0.
Therefore,

RD
0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rIT*

SnIω dI +mPð Þ
dI dI +mP +P*rPð Þ dV + rIT*

S + rIT
*
PNI

� �
+

nIωmPrIT*
PNI

dI dI +mP +P*rPð Þ dV + rIT*
S + rIT

*
PNI

� � ,
vuuuuuut (4)

where T*
S and T*

PNI are as in eq. (3).
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4.2 Dynamics of drugs

Here, we examine the relationship between drug dosage
and dosing interval of combination therapy for a better
treatment strategy to effectively reduce viral load and
also prevent viral entry into host cell.

The dynamics of the drugs are

dF
dt

= − dFF t ≠ tk

dP
dt

= − dPP t ≠ sk

ΔF = Fi t = tk

ΔP =Pi t = sk:

Let τ= tk + 1 − tk be the period of enfuvirtide and
σ = sk + 1 − sk be the period of the PI (for k ≥ 1).

The solution of the system (4) is

FðtÞ= F t +k
� �

e−dF t − tkð Þ for tk < t ≤ tk + 1

PðtÞ= P s+k
� �

e−dP t − skð Þ for sk < t ≤ sk + 1.

In the presence of an impulsive effect, we have a recur-
sion relation at the moments of impulse, given by

Fðt +k Þ = F t −k
� �

+ Fi.

Thus, the drug concentrations before and after the drug is
taken are

F t +k
� �

=
Fi 1− e− kmFτ
� �
1− e−mFτ

and

F t −k + 1
� �

=
Fi 1− e− kmFτ
� �

e−mFτ

1− e−mFτ
.

Hence, for the limiting case, the drug concentration
before and after one dosage is

lim
k!∞

F t +k
� �

=
Fi

1− e−mFτ

lim
k!∞

F t −k + 1
� �

=
Fie−mFτ

1− e−mFτ

and

F t +k + 1
� �

=
Fie−mFτ

1− e−mFτ
+ Fi =

Fi

1− e−mFτ
.

We thus have

F t +k
� �

−
Fi

1− e−mFτ
= Fi 1− e

− kmFτ

1− e−mFτ
−

Fi

1− e−mFτ

= − Fi e− kmFτ

1− e−mFτ
< 0.

We can conclude that the positive impulsive orbit for

enfuvirtide starts at
Fie−dF τ

1− e−dF τð Þ and ends at
Fi

1− e− dF τð Þ.
Similarly, the positive impulsive orbit of the PI starts

at
Pie− dPσ

1− e−dPσð Þ and ends at
Pi

1− e−dPσð Þ.

Theorem 4.1: Let F1 =
X
ϕ and F2 =

X
ψ, where ϕ=

e− dF τ

1− e− dF τð Þ
and ψ=

1

1− e−dF τð Þ. Keeping the PI at a constant dose, we

consider the following two cases:
i. If Fi > F1, the disease-free periodic orbit (E0

D) exists
and the endemic periodic orbit (E*

D) does not exist.
ii. When the dosage satisfies 0 ≤ Fi < F2, E0

D is unstable
and E*

D exists.

Proof: We have

Fiϕ ≤ F* ≤ Fiψ. (5)

The disease-free equilibrium point E0
D exists if RD

0 < 1.
Therefore,

S1Fi2 + S2Fi + S3 > 0, (6)

where

S1 = dIdSdVr2Fϕ
2 dI +mP + P*rP
� �

dS +mP +P*rP
� �

,

S2 =dI dS +mFð Þ dSdV + λrIð ÞrFϕ dI +mP + P*rP
� �

dS +mP +P*rP
� �

+ dIdSdVrFϕ dI +mP + P*rP
� �

dS +mP +mF + P*rP + F*rF
� �

× dS +mP + P*rP
� �

− nIωλrIrFϕP*rPdSdI

− nIωλrIdIrFϕ dS +mFð Þ
× dS +mPð Þ− nIωλrIP*rPmPrFϕ dS +mFð Þ− nIωλrImPrFϕ

× dS +mFð Þ dS +mPð Þ,
S3 = dS +mP + P*rP

� �
dS +mP +mF + P*rP + F*rF
� �

dI +mP + P*rP
� �
×dI ds +mFð Þ dSdV + λrIð Þ− nIωλrIP*rPdI dS +mFð Þ
dS +mPð Þ
− nIωλrIdI dS +mFð Þ dS +mPð Þ dS +mF +mPð Þ
− nIωλrIP*rPmP

× dS +mFð Þ dS +mP +mF +P*rP + F*rF
� �

− nIωλrImP dS +mFð Þ
× dS +mP +mF + P*rP + F*rF
� �

dS +mPð Þ.
Using eq. (5), for RD

0 > 1, we can find

T1Fi2 + T2Fi + T3 < 0, (7)
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where
T1 =dIdSdVr2Fψ

2 dI +mP + P*rP
� �

dS +mP +P*rP
� �

,

T2 = dI dS +mFð Þ dSdV + λrIð ÞrFψ dI +mP + P*rP
� �

dS +mP +P*rP
� �

+dIdSdVrFψ dI +mP + P*rP
� �

dS +mP +mF + P*rP + F*rF
� �

× dS +mP +P*rP
� �

− nIωλrI rFψP*rPdSdI

− nIωλrIdIrFψ dS +mFð Þ
× dS +mPð Þ− nIωλrIP*rPmPrFψ dS +mFð Þ− nIωλrImPrFψ

× dS +mFð Þ dS +mPð Þ
T3 = dS +mP +P*rP

� �
dS +mP +mF +P*rP + F*rF
� �

dI +mP + P*rP
� �
× dI ds +mFð Þ dSdV + λrIð Þ− nIωλrIP*rPdI dS +mFð Þ
dS +mPð Þ

− nIωλrIdI dS +mFð Þ dS +mPð Þ dS +mF +mPð Þ
− nIωλrIP*rPmP

× dS +mFð Þ dS +mP +mF + P*rP + F*rF
� �

− nIωλrImP dS +mFð Þ
× dS +mP +mF + P*rP + F*rF
� �

dS +mPð Þ.
Here, eqs. (6) and (7) both have a unique positive root if
S3 > 0 and T0 > 0. Let F1 and F2 be the unique positive

roots of eqs. (6) and (7), respectively. So, Fi > F1 holds

whenever RD
0 < 1 and Fi > F2 holds for RD

0 > 1.
Whenever RD

0 < 1, we have a threshold value of drug
dose F1 such that

Fi > F1

) τ <
1
dF

ln 1 +
Fi

X

� �
≡ τ1.

If RD
0 > 1, we have found a threshold value of drug dose F2

such that

Fi < F2

) τ > −
1
dF

ln 1−
Fi

X

� �
≡ τ2.

Keeping the dosages of PI fixed, the disease-free peri-
odic orbit will be stable if the drug regimen satisfies

the condition Fi > F1, i.e. when the drug dose is suffi-
ciently high. Conversely, the infection persists and
reaches an endemic state if the drug dose satisfies the

condition Fi < F2. If we can control the dosing interval τ

satisfying the condition 0 ≤ τ < τ1 for a fixed dosage,
then the disease-free periodic orbit will be stable. If
τ > τ2 (i.e. if the dosing interval is sufficiently high),
then the endemic periodic orbit will be stable in the
presence of drug.

It should be noted that prediction is impossible in the
interval τ1 < τ < τ2 (or F2 < Fi < F1), for ongoing treatment of
an individual, because in this situation, RD

0 fluctuates
around one.

Theorem 4.2: Let P1 = K
δ, P2 = K

θ, where δ= e− dPσ

1− e− dPσð Þ and

θ= 1

1− e− dPσð Þ.
(i) If Pi >P1, the disease-free periodic orbit (E0

D) exists
and the endemic periodic orbit (E*

D) does not exist.
(ii) When the dosage satisfies 0 ≤Pi <P2, E0

D is unstable
and E*

D exists.

Proof: From the endpoints of the impulsive periodic
orbit, we have

Piδ ≤ F* ≤Piθ. (8)

The disease-free equilibrium point E0
D exists if RD

0 < 1.
Therefore,

Q1Pi3 +Q2Pi2 +Q3Pi +Q4 > 0, (9)

where

Q1 = δ3r3P


dIdSdV

�
dS +mF +mP + F*rF

�
−mPdIdSdV + λdIrI

�
dS +mF

��
,

Q2 = δ2r2P


dIdSdV

�
dS +mF +mP + F*rF

�
−mPdIdSdV + λdIrI

�
dS +mF

��
× ð2dS + dI + 3mP +mF + F*rFÞ− nIωλrImPðdS +mFÞ�

Q3 = δ2r2P½fdIdSdVðdS +mF +mP + F*rFÞ−mPdIdSdV + λdIrI
ðdS +mFÞg × fðdI +mPÞðdS +mPÞ+ ðdS +mPÞ

ðdS +mF +mP + F*rFÞ+
× ðdS +mF +mP + F*rFÞðdI +mPÞg− nIωλrIdIdSF*rF

+ ðdI +mPÞ: × ðdS +mFÞðdS +mPÞ+mPðdS +mFÞ
ðdS +mF +mP + F*rFÞg�

Q4 = dIdSdV dS +mF +mP + F*rF
� �


−mPdIdSdV + λdIrI dS +mFð Þg × dI +mPð Þ dS +mPð Þ
ds +mF +mP + F*rF
� �

− nIωλrI dS +mFð Þ
× dS +mPð Þ mP dS +mF +mP + F*rF

� �
+ dI dS +mFð


+mPÞ+dIF*rFg.
Using eq. (8), for RD

0 > 1, we can find

R1Pi3 +R2Pi2 +R3Pi +R4 < 0, (10)
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where

R1 = θ3r3P dIdSdV dS +mF +mP + F*rF
� �


−mPdIdSdV
+ λdIrI dS +mFð Þg

R2 =

θ2r2P dIdSdV dS +mF +mP +F*rF
� �

−mPdIdSdV



+λdIrI dS +mFð Þg
× 2dS + dI + 3mP +mF + F*rF
� �

− nIωλrImP dS +mFð Þ�
R3 =

θrP dIdSdV dS +mF +mP + F*rF
� �

−mPdIdSdV + λdIrI dS +mFð Þ
 �
× dI +mPð Þ dS +mPð Þ+ dS +mPð Þ dS +mF +mP + F*rF

� �
+



× dS +mF +mP + F*rF
� �

dI +mPð Þ�− nIωλrI dIdSF*rF + dI +mPð Þ

× dS +mFð Þ dS +mPð Þ+mP dS +mFð Þ dS +mF +mP + F*rF

� ���
R4 = dIdSdV dS +mF +mP + F*rF

� �
−mPdIdSdV + λdIrI dS +mFð Þ
 �

× dI +mPð Þ dS +mPð Þ ds +mF +mP + F*rF
� �

− nIωλrI dS +mFð Þ
× dS +mPð Þ mP dS +mF +mP + F*rF

� �
+ dI dS +mF +mPð Þ


+ dIF*rF
�
.

Here, eqs. (9) and (10) can both have positive roots
(possibly with multiple roots) if and only if the following
inequalities hold:
(i) Q1Q2 < 0,
(ii) Q1Q3 > 0,
(iii) Q1Q4 < 0 and
(iv) 27Q2

1Q
2
4 + 4Q1Q3

3 + 4Q
3
2Q4 ≤ 18Q1Q2Q3Q4 +Q2

2Q
2
3.

From eqs. (9) and (10), we see that Q1 > 0,Q2 > 0,R1 > 0
and R2 > 0, so inequality (i) cannot be true. Thus, both of
the two equations cannot have three positive roots. If
Q4 < 0 and R4 < 0, then (9) and (10) must have only one
positive root. Let P1 and P2 be the unique positive roots of
eqs. (9) and (10). So, Pi >P1 holds whenever RD

0 < 1 and
Pi >P2 holds for RD

0 > 1.
Whenever RD

0 < 1, we have a threshold value of drug
dose P1 such that

Pi >P1

) σ <
1
dP

ln 1 +
Pi

K

� �
≡ σ1.

When RD
0 > 1, we have a threshold value of drug dose P2

such that

Pi <P2

) σ > −
1
dP

ln 1−
Pi

K

� �
≡ σ2.

Keeping the dosages of enfuvirtide fixed, the disease-free
periodic orbit will be stable if the drug regimen satisfies
the condition Pi >P1, i.e. when the drug dose is suffi-
ciently high. However, the infection persists and reaches
an endemic state if drug dose satisfies the condition
Pi <P2. If we can control the dosing interval σ satisfying
the condition 0 ≤ σ < σ1 for a fixed dosage, then the dis-
ease-free periodic orbit will be stable. If σ > σ2 (i.e. if the
dosing interval is sufficiently high), then the endemic
periodic orbit will be stable in the presence of drug.

As before, prediction is impossible in the interval
σ1 < σ < σ2 (or P2 <Pi <P1), because RD

0 fluctuates around
one.

5 Numerical analysis

5.1 Sensitivity analysis

We now perform a sensitivity analysis to explore the
robustness of the basic reproductive number to fluctua-
tions in the parameters. From this, we can identify the
parameters that have a high impact on the basic repro-
ductive ratio, as well as on the disease transmission. The
normalised forward sensitivity index of R0 with respect to
a parameter nI is defined as follows [42]:

�R0
nI =

∂R0

∂nI
×
nI
R0

. (11)

We calculate the sensitivity of R0 with respect to other
parameters similarly (see Table 1). The sensitivity index
measures the normalised effect that each parameter has
on the outcome (R0 in our case). For example, in Table 1,
a value of �R0

ω =0.5 indicates that increasing ω by 10%
will increase R0 by 5%. Conversely, since �R0

dV
= −0.5,

Table 1: 1 Parameter values in the absence of drugs.

Parameter Parameter description Value Sensitivity

nI Number of virions produced per infected cell per day 62.5 0.5
ω Fraction of infectious virions produced by an infected cell 0.05 0.5
λ Source of susceptible cells 100 0.1596
rI Infection rate of noninfected T cells 0.0032 0.1596
dS Death rate of noninfected T cells 0.05 −0.1596
dI Death rate of infected T cells 0.5 −0.5
dV Death rate of virus 3 −0.1596
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increasing dV by 10% will decrease R0 by 5%. The results
are plotted in Figures 1 and 2.

The most sensitive parameters are number of virions
produced per infected cell per day (nI ) and fraction of
virions produced by an infected cell that are infectious
(ω). We perform the same analysis for the basic repro-
ductive ratio in the presence of drugs (RD

0 ) (see Table 2).
Here, the most sensitive parameters are the number

of virions produced per infected cell per day (nI ) and the
fraction of virions produced by an infected cell that are
infectious (ω).

5.2 Time-dependent solutions

We performed numerical simulations for enfuvirtide and the
PI under conditions of perfect drug adherence. The values

of the parameters used are λ= 100, nI = 62.5, ω=0.05,
rI =0.0032, rP =0.2, rF = 50, mP =8.522, mF =4.16,
dS =0.05, dI =0.5, dV = 3, dP = 1, dF = 1 [21, 22, 6, 7].
Initial conditions are taken as VIð0Þ= 100, VNI =0,
TSð0Þ= 1000, TIð0Þ= 20, TFð0Þ=0, TPNIð0Þ=0, TPIð0Þ=0,
TFPð0Þ=0 and the unit of the concentration is mm− 3.

Figure 3 shows the contour plot of the basic repro-
ductive ratio in the absence R0ð Þ and presence RD

0

� �
of

drug therapy as a function of rI and λ, respectively. From
both plots, we observe that if rI and λ are small, then
both R0 and RD

0 can be below unity. However, if rI and λ
are both very large, then R0 and RD

0 exceed 1. Comparing
both plots, we see that, for most choices of λ and rI , the
disease-free state becomes stable once both drugs are
present.

We summarise the four different cases of drug regi-
men that predict the best therapy strategy.
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Figure 2: Tornado plots of sensitivity of RD
0 for each of the parameters.
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Figure 1: Tornado plots of sensitivity of R0 for each of the parameters.
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5.2.1 Both drugs with safe dosages and frequent dosing

In this case, we have considered the dosages of enfuvirtide
and the PI to be Fi =0.7 > F1 and Pi = 1.9 >P1 with dosing
intervals τ=0.5 and σ =0.25, respectively. Figure 4 illus-
trates the outcome for this drug regimen. We observe that
the virus is under control, due to the high dosage of both
drugs. In this case, the T-cell count is maintained close to
healthy equilibrium, and the total viral and infected popu-
lations are in a lower density. Clearly, sufficient dosing of
both drugs can maintain the level of noninfected T cells,
thus controlling the virus. Figure 5 shows time-dependent
changes of the drug concentration in plasma of both drugs.

5.2.2 Both drugs with unsafe dosages and infrequent
dosing

Next, we considered the dosages of enfuvirtide and PI,
Fi =0.01 < F2 and Pi =0.1 <P2 with dosing intervals τ=

σ = 3. Figure 6 illustrates the outcome for this drug sche-
dule. Insufficient and infrequent dosing of both drugs
leads to a high viral load and a large population of
infected T cells. In this case, it is impossible to maintain
sufficient noninfected T-cell counts for a healthy immune
system.

5.2.3 The protease inhibitor without enfuvirtide

Frequent dosing of the PI alone, even with a relatively
high dosage of Pi = 15 and high frequency of σ =0.5, may
be insufficient to maintain T cell counts at a level
comparable to the healthy immune system. Figure 7
shows that even large and frequent dosing of the PI
may lead to a high viral load and a large population
of infected T cells. We conclude that the PI alone,
even at an extremely high dose, may not be a good
strategy.

Table 2: 2 Parameter values in the presence of drugs.

Parameter Parameter description Value Sensitivity

nI Number of virions produced per infected cell per day 62.5 0.5
ω Fraction of infectious virions produced by an infected cell 0.05 0.5
λ Source of susceptible cells 100 0.4068
rI Infection rate of noninfected T cells 0.0032 0.4068
dS Death rate of noninfected T cells 0.05 −0.4025
dI Death rate of infected T cells 0.5 −0.499
dV Death rate of virus 3 −0.4068
mP Rate of clearance of PI 8.522 0.0213
mF Rate of clearance of enfuvirtide 4.16 0.3588
rF Rate of inhibition of T cell by enfuvirtide 50 −0.3631
rP Rate of inhibition of T cell by PI 0.2 −0.0213

Figure 3: Left panel: Contour plot of R0 as a function of λ and rI. Right panel: Contour plot of RD
0 as a function of λ and rI.
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Figure 4: System behaviour for perfect adherence with F i =0.7,Pi = 1.9 and τ =0.5, σ =0.25. Inset: Trajectories of the system in the absence
of therapy.
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5.2.4 Enfuvirtide without the protease inhibitor

Conversely, consider enfuvirtide used alone, with a mod-
erate dosage Fi =0.8 and dosing interval τ=0.5. Figure 8
shows that the noninfected T-cell count is close to
healthy equilibrium and viral population and infected T
cells are in a lower density than the previous two cases.
Comparing Figures 4 and 8, we observe that, although
enfuvirtide monotherapy may effectively control the viral
infection, combination therapy can successfully reduce
viral load and infected T cells below detectable level and
also adequately maintain a healthy immune system by
sustaining noninfected T cells at or near the disease-free
equilibrium.

6 Discussion

We considered a mathematical model of HIV-1 infection
with combination drug therapy of enfuvirtide together
with a PI. We incorporated impulsive differential equa-
tions to model the dynamics of drug action, and we also
formulated a therapy strategy for perfect adherence,
which plays an important role in clinical trials. In the
absence of drug therapy, the disease-free equilibrium
persists whenever R0 lies below 1, but the system changes
its stability whenever the value of R0 exceeds unity. We
found threshold values and the relationship between
drug dosage and dosing interval for existence and stabi-
lity of the disease-free and endemic equilibria for both
drugs.

There are some limitations of our modelling, which
should be acknowledged. First, we assumed that the two
drugs acted independently and had no cumulative con-
tribution when acting together. Since the effect of enfu-
virtide occurs at the beginning of the viral life cycle and
PIs affect the end of the viral life cycle, this may be a
reasonable assumption in this case, but it may not carry
over to general modelling of combination therapy. For
example, if enfuvirtide and RTIs are taken together, the
effects on the virus may be stronger than the sum of their
parts. We will investigate such effects in future work.
Second, we assumed that the effect of each drug was
instantaneous; in reality, there is a small delay as the
mechanism of drug reaction reaches its time to peak.
Such delays will not affect our results, as long as time
between dosages is significantly larger than the instanta-
neous approximation. Finally, we assumed that the decay
of drugs was unaffected by their uptake into cells; this
has the effect of overestimating the amount of available
drug in the body.

A surprising result from our analysis is that enfuvir-
tide is significantly more effective at controlling the virus
than PIs are. This is likely because enfuvirtide is a “pre-
ventative” drug, whereas PIs act after infection has
occurred. That is, if enfuvirtide inhibits a cell, then that
cell is long lived and impervious to infection; conversely,
if PIs inhibit a cell, then such cells do not live long, even
if they are only producing noninfectious virus. Clearly,
using both drugs is the best case scenario, but we recom-
mend that PIs not be used alone.

In summary, modelling combination therapy allows
us to gain insights into disease dynamics that
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Figure 5: Left panel: Time-dependent changes of concentration of enfuvirtide with F i =0.7. Right panel: Time-dependent changes of
concentration of the PI with Pi = 1.9.
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Figure 6: System behaviour for perfect adherence with F i =0.01,Pi =0.1 and τ =3, σ =3. Inset: Trajectories of the system in the absence of
therapy.
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monotherapy does not. Furthermore, impulsive differen-
tial equations are a useful mathematical tool for eluci-
dating insights into regular drug dosing. The

advantages of enfuvirtide over PIs indicate that it may
be worthwhile expanding treatment options to patients
belonging to salvage therapy.
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Figure 7: System behaviour for perfect adherence with F i =0, Pi =0.1 and τ =0, σ =0.25. Inset: Trajectories of the system in the absence of
therapy.
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