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We present an immunological model that considers the dynamics of-ClDeklls
interacting with free virions, reverse transcriptase inhibiting drugs and protease
inhibiting drugs. We divide the T cells into multiple classes and use impulsive
differential equations to describe the drug activity. As expected, we find that insuf-
ficient dosing of either drug corresponds to high viral load and a large population of
infectious T cells. The model further predicts that, in the absence of physiological
limits on tolerable drug concentrations, sufficiently frequent dosing with the reverse
transcriptase inhibitor alone could theoretically maintain the €O4cell count
arbitrarily close to the T cell count in the uninfected immune system. However, for
frequent dosing of the protease inhibitdore, the limiting T cell populations may

not be enough to maintain the immune system. Furthermore, frequent dosing of
both drugs has the same net effect on the T cell population as frequent dosing of
the reverse transcriptase inhibitor only. Thus, the two drug classes can have funda-
mentally different effects on the long-term dynamics and the reverse transcriptase
inhibitor, in particular, plays a crucial role in maintaining the immune system. We
also provide estimates for the dosing inis of each drug that could theoretically
sustin the T cell population at a desired level.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

The kest current therapy for HIV involves the simultaneous administration of two
or more anti-viral drugs, potent inhibitors of HIV-1 replicatiomvivo. Although
several new classes of drugs are now in clinical triseyle, 2003, these drugs
are typically chosen from two major classes of anti-virals, reverse transcriptase
inhibitors and protease inhibitors. Reverse transcriptase inhibitors block the trans-
lation of viral RNA into DNA for incorporation into the host genome, thus pre-
venting the infection of new cells; in contrast protease inhibitors interfere with
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essential steps of protein cleavage in new virions, thus preventing infected cells
from producing infectious viral particlegdnewayet al., 2001).

Mathematical models have been developed to study the dynamics of viral repli-
cation during HIV-1 infection [se€overt and Krschner(2000, Nowak and May
(2000, Perdson (2002 for review articles], including the effects of drug treatment
(Nowak et al., 1997 Kepler and Perelson1998 Nowak and May 2000 Wahl
and Nowak 200Q Nelsonet al., 2001 Cdloway and Perelsqr2002 Nelson and
Perdson 2002 Perdson 200). The effects of different drug classes, however,
have typically been aggregated in these modelling approattmsak and May
200Q Cdloway and Perelsgr2002, with some notable exceptionl¢lson and
Perdson 2002 Perdson, 2002. We present here a model in which the two major
classes of anti-virals are treated separately, allowing us to examine the (possibly
different) effects of each drug on viral dynamics.

The dstinguishing feature of our model is that the immune cells infected by the
virus, CD4" T cells, are divided into multiple classes, depending on whether a
cell has been infected or has absorbed either of the drugs. We also make use of
impulsive differential equations to model the change in drug concentration which
occurs when a new dose is administered. These techniques allow us to make a
number of interesting predictions: we find, for example, that the reverse transcrip-
tase inhibitor has the potential to maintain immune function, in the sense that it is
possible to choose a small enough dosing interval so that the population of T cells
is arbitrarily close to the level for the uninfected immune system, whether or not
the protease inhibitor is also present. However, the protease inhibitor alone may
not be enough to ensure a sufficient immune response, regardless of the dosing
frequency.

This paer is organised as follows. ISection 2we develop he model. In
Section 3we examine the model without drugs. Bection 4we shte some pre-
liminary results for the model with drugs. Bection 5 we @nsider the extreme
cases where the dosing intervals of one or both drugs shrink to zeBection 6
we provide some numerical simulations to illustrate the predictions of the model.
In Section 7we provide eBmates on the dosing intervals to guarantee a suitably
healthy immune system. Finally, Bection 8we discuss the biological implica-
tions of the model predictions.

2. THE MODEL

2.1. T cedls. We would like to examine the various possible fates of a €D4

T cell in some detail. At any time, a T cell may come into contact with (1) an
infectious virion, (2) the reverse transcriptase inhibitor or (3) the protease inhibitor.
Naively, it seems that we might need a very large number of T cell classes to
capture all of these possible effects, since in its lifetime each cell may undergo
several (or none) of these interactions, and the order in which the interactions occur
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Figure 1. The various drug classes and their interactions. The six classes of T cells are
susceptible, infected, reverse transcriptase inhibited, doubly inhibited, noninfected pro-
tease inhibited and infected protease inhibited cells. Each cell may come into contact
with an infectious virion, the reverse trangteise inhibitor or the protease inhibitor. Once
infected, cells cannot move into the class of reverse transcriptase inhibited cells. Cells with
either drug will eventually revert back todh appropriate drug-free state. Healthy cells
are produced at a rate Infected cells will produce infectious or defective (noninfectious)
virions. Infected protease inhibited cells will produce noninfectious virus.

may aso be important (encountering reverse transcriptase followed by virus will be
different from encountering the virus first). By careful consideration of the possible
combinations, however, we find that T cells can be classified into six populations,
described below in paragraphs (a) through (f) and picturddgn 1

Throughout these classifications, we define a ‘reverse transcriptase inhibited’
T cell as a cell in which the intracellular concentration of the drug is sufficiently
high that the probability of viral RNA being transcribed to DNA is negligible.
Likewise a ‘protease inhibited’ T cell is a cell in which the chance of produc-
ing infectious virions is negligible. A ‘doubly inhibited’ T cell is one which has
absorbed sufficient quantities of both drugs.

We assume that each drug affects the relevant T cells for a certain period of time,
after which the T cells revert to their appropriate state. Thus, reverse transcrip-
tase inhibited cells and uninfected protease inhibited cells will revert to susceptible
cells, doubly inhibited cells will revert to either reverse transcriptase inhibited cells
or uninfected protease inhibited cells, while infected protease inhibited cells will
revert to infected T cells. This feature of the model may be important because, for
example, lamivudine has an intracellular half-life of 12Rofimanet al., 1996
and zidovudine has a half-life of 4 IKammacket al., 1992, whereas the lifetime
of an uninfected cell is of the order of daysdlson and Brelson 2002.

(a) LetTs be the population of susceptible (noninfected) CDécells. These
cells are produced at a constant rate, There ae four possible fates for these
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T cells: they may die at natural death rdtg they may (b) lecome infected; or they
may absorb either (c) the reverse transcriptase inhibitor or (d) the protease inhibitor.

(b) We useT, to denote the population of infected CDZ cells. These cells
produce infectious virug/, , or defective (noninfectious) virugy, , andhave a sig-
nificantly higher death rate, (Ho et al., 1995. Like the healthy cells, these cells
may later absorb either the reverse transcriptase inhibitor or the protease inhibitor.
If the protease inhibitor is absorbed, the cell will join the population of (f) infected,
protease-inhibited cell§§,, described below). Since the viral genome has already
been transcribed into the host DNA, absorbing the reverse transcriptase inhibitor
has no effect on these infected cells.

(c) Tr denotes noninfected cells which have absorbed the reverse transcriptase
inhibitor, but not the protease inhibitor. LiKg; cells, these cells may also come
into contact with either infectious virus or the protease inhibitor. Since the cell can-
not be infected while in this state, the former has no consequence for the cell. If the
protease inhibitor is absorbed, the cell will join the population of (d) noninfected
doubly inhibited cells Trp, described below).

(d) Trp denotes noninfected cells which have absorbed both the reverse tran-
scriptase inhibitor and the protease inhibitor. Like cells, these cells cannot be
infected while in this state.

As we will demonstrate shortly, thdr and Trp classes of cells prove to be
crucial for the maintenance of the immune system, even if the population of healthy
susceptible cellsTs, approaches zero.

(e) Ten; denotes noninfected cells which have absorbed the protease inhibitor but
not the reverse transcriptase inhibitor. These cells may subsequently absorb infec-
tious virus or the reverse transcriptase inhibitor. In the former case, the cell will
join the population of (f) infected protease-inhibited cellg(, described below).

In the latter case, the cell will join the population of (d) noninfected doubly inhib-
ited cells, Trp.

(f) Finally, Tp, denotes infected cells which have absorbed the protease inhibitor.
Unlike the populationT;, these cells release only noninfectious virMg, . Like
T,, however, hese cells die at the higher death rdteand areunaffected by sub-
sequent absorption of the reverse transcriptase inhibitor.

Infectious virions,V,, are poduced by infected T cells and are removed by clear-
ance, infection of susceptible cells and infection of protease inhibited cells. Non-
fectious virions Vy , ae produced by protease inhibited cells or represent deficient
virions produced by infected cells and are removed by clearance. We ignore the
loss of virions due to reinfection of infected cells or infection of reverse transcrip-
tase inhibited cells. This has the effect of overestimating the virion count and plays
no important role in the estimates below.

2.2. Drugs. We useR to denote the intracellular concentration of the reverse
transcriptase inhibitor and its active metabolitel®@ggard and Bacgk2002, while
P denotes the intracellular concentration of the protease inhibitor. We assume that
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drugs are given at independent tintggor the reverse transcriptase inhibitor and

s for the protease inhibitor (not necessarily fixed, although later we shall assume
that they are). The effect of the drugs is assumed to be instantaneous, resulting
in a system of impulsive differential equations, whereby solutions are continuous
fort # tx andt # s¢ (satisfying the associated system of ordinary differential
eqguations) and undergo an instantaneous change in statetwhedp ort = s.

The nodel thus consists of a system of ordinary differential equations together
with two difference equations. According to impulsive theory, we can describe the
nature of the impulse at tintg via the difference equation

Ay =y —yr) = (e yro). (2.1)

We rder the interested reader ®ainov and 8neonov (1989 1993 1995 and
Lakshmikanthamet al. (1989 for moredetails on the theory of impulsive differ-
ential equations.

Approximation by impulsive differential equations is typical when a period of
rapid change occurs on a timescale that is short, compared to the timescale of
the remainder of the cycle. The application of this technique here assumes that
the change in intracellular drug concentration immediately after a dose is taken
is nearly instantaneous, that is, the time-to-peak is negligible compared to the
timescale of the intracellular activity. We explored the effects of relaxing this
assumption numerically, and found that differences in therapy outcome were neg-
ligible over the timescales of interest (weeks or years of infection), for realistic
time-to-peak values from the pharmacokinetics literature $setion 6for simu-
lation details).

By neglecting the known dispersion and delay as the drug enters the intracellular
space, we overestimate the temporal effects of dosing at intervals. The implications
of this assumption will be taken up further in the discussion. For a fuller treatment
of the effects of spatially distinct compartments, g&plerand Perelsoif1999;
for a detailed model of the kinetics of drug action, gesstin et al. (1999.

2.3. Combining T cell populationswith virusand drugs. Thedynamics of virus
and T cell concentrations are thus given by:

dVv,
d_tl =noT —dyV, =1 TsV, =1 Ten V

dVni
dt
dTs
rTal A =1 TsV) —dsTs —rrTsR—=rpTsP + MgrTr + MpTpy
dT

d—tl =0nTsVi =d Ty —rpTi P+ mpTp

=nTp +N(1—w)T) —dyVy
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dT
d—tR =rrTsR—dsTr + MpTrp — MRrTRr — IpTrp P
dT,
d?P =IRrTpni R—dsTrp — MpTrp — MRTrp +pTRP
dTen TsP — dsT,
gt — 'PTsP —dsTen =N Teni Vi = rrRTpni R—MpTeny + MRTrp
dT
dtpl =0Tpni Vi —diTpy +1pTy P —mpTp (2.2)

fort #£ t andt #£ s (see impulsive conditions below).

Heret is time in daysn, is the number of virions produced per infected cell per
day,w is the fraction of virions produced by an infected T cell which are infectious,
dy is the rate at which free virus is clearetd,is the noninfected CD4T cell death
rate,d, is the infected CD#4 T cell death rate;, is the infection rate of noninfected
T cells, rr is the rate at which the reverse transcriptase inhibitor inhibits the T
cells, rp is the rate at which the protease inhibitor inhibits the T celig,is the
rate at which the reverse transcriptase inhibitor is cleared from the intracellular
compartmentmep is the rate at which the protease inhibitor is similarly cleared,
and A represents a source of susceptible cells. All death rates, rates of infection
and A are assumed to be positive and we assum& Qw < 1. Furthermore,
ds <d <dy (Hoet al., 1995

In addition, the dynamics of the two drugR,and P, are given by

dR
E = —drR t £t
4P (2.3)
The impulsive conditions are
— Ri —
AR=R t =1t 2.4)

AP = P! t=s.

Here,dr is the rate at which the reverse transcriptase inhibitor is cledeeid, the
rate at which the protease inhibitor is clear®d,is the dose of protease inhibitor
and R' is the dose of reverse transcriptase inhibitor. In gengrak t,, so that
the two drugs are taken at different times. ThRL¥-(2.4) describe a system of
impulsive differential equations.

Notethat using 2.1), we have

Rt = R(ty) + R (2.5)
P(s)) =P(s)+ P'. (2.6)
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The inpulse timedy, s can be assumed fixed, reflecting regular dosing periods,
although we can séf to be significantly large to reflect the fact that drugs are not
taken until after the infection has been diagnosed. We will likewise assume that
R(0) = P(0) = 0.

3. THE SYsSTEM WITHOUT DRUGS

First we shall analyse the model when there are no drugs present. In this case,
model @.2) becomes a system of (nonimpulsive) ordinary differential equations.

dV,
d—tl =Nl —dyV, =1 TsVi =1 Tpni Vi
dV,
d:“ =nTp +N(1—w)T —dyVy
dT.
d—tS = A —ITsV) —dsTs + MgTr + MpTpy;
dT
d—tl =0TV —di Ty + mpTp
3.7)
dTgr
e —dsTr + MpTrp — MRTR
dT
dtRP = —dsTrp — MpTrp — MrTrp
dT
dF;NI = —dsTeni — I Teni Vi — MpTpn) + MRTrp
dT
dtpl =N TpniVi —di Tpp —mpTpy.
This system has two non-negative steady states, given by
- - - = = - - A
M, VN, Ts, T, Tr, Tre, Teng, Tei) = (0, 0, ao 0,0,0,0, 0) ,
s
A ds A dyds ) dyd,
——(o—-d)——=n1-0w)|—— , ,
(dvdl( @=a) r ' w)(dl nmo—d)/) rnne—ad)

A dsdy

- ———0,0,0,0
d nme-d) )

which we shall refer to as the trivial and nontrivial equilibria, respectively. We
shall refer to the number of T cells in the trivial equilibrium as the number of
T cells in the uninfected immune system, since there is no virus present.

The Jacobian matrix for systenB(/), evaluated at the trivial equilibrium is
J(0,0,2,0,0,0,0,0) =[J; | J»] where

’d_S’
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_—dv—r|-|_-s 0 —r|\7| nyw
0 —dy 0 n(1—w)
—I'|-|_-S 0 —r|\7| —ds 0
J= r|'I_'5 0 r|\7| —d
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 T
0 0 0 n
Mg 0 mp 0
0 0 0 mp
J =
—ds— Mg Mp 0 0
0 —ds —mr —mp 0 0
0 Mg —ds—r|\_/| — Mp 0
L 0 0 nv —dy —mp

whereV, andTs are equilibrium values. This matrix has the characteristic equation

O=det(J — ul) = (dv + p)(ds+ mMp + Mg + p)(ds + Mg + 1)
X (ds+1 Vi +mp + pw)(dy +mp + ) f(w)
where
f(w=ud+au’+bu+c
with
a = dv+r|'f5+r|\7| +ds+d >0

b= (dv+d +rTs)ds+d +r V) —df —rTs(hjo+r1 V)
¢ = dvdi(ds+r V) +rdsTs(di — nw).

WhenV, = 0 andTs = dis we have

rnwi

b=(dv+d|+—>(ds+d|) d? — <0,
ds

s
provided
dsd?
wnp > —(ds(dv +d)+rnA)ds+d) — IR (3.8)
r

which will be the case whem; is not too close to zero, sineg andA are normally
large, compared to the other constants (by several orders of magnitude). Further-
more,

c=dydsd; +rA(d —njw) <0
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whenw is not too close to zero, sinecg andi are normally large, compared to the
other constants.
The aitical points of f (i) occur when

and hence it follows that there is a critical point with real part greater than zero.
Thus the Jacobian matrix has at least one eigenvalue with positive real part and
hence the trivial equilibrium is unstable.
Notethatds < di < dy. WhenV| = Z-(njo —d)) — ‘r‘—ls andTs = I'|(r?|v+d|)
we have
dyd;d
h— vaifs

Al AX
—m+d_\/l(nlw_dl)+d_ll(nlw_dl) >0

if njw > d,, which is a necessary condition for the existence of the nontrivial
equilibrium. Furthermore, we have

c=Ai(nw —d)—dydsd; >0
provided

dydsd,
Al

N >d +

which will be the case it is not too close to zero, singg andx are normally

large compared to the other constants. Thus the eigenvalues have a negative real
part and hence the nontrivial equilibrium is usually stablew 6 close to zero,

then the infectious T cells produce mainly noninfectious virus, so the viral load is
relatively low, even in the absence of drugs. Such cases are rare in HIV positive
patients.

The exisence of a trivial and a nontrivial steady state, as well as their stabil-
ity properties, correspond to the usual properties of such immunological models
without drug effects [se€dloway and Perelsoif2002 or Nelson and Brelson
(2002].

4. THE SYSTEM WITH DRUGS

The applicéion of drugs via impulsive differential equations will obviously per-
turb these steady states. In general, impulsive models do not exhibit steady states,
but rathe impulsive periodic orbits (periodic orbits with discontinuities). However,
it should be noted that in mode2.Q) only the drugs will exhibit discontinuities
directly. The remaining parameters may have discontinuities in their derivatives,
but will have continuous solutions.
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We shall use the initial condition®, (0) = V, > 0, Vy; (0) = 0 andT, (0) = 0.
Before therapy,R(0) = P(0) = 0. It follows immediately thaig(0) = Trp(0) =
Teni (0) = Tp(0) = 0. We assuma@/, is small compared to the productA.
We shall also assum&s(0) < dis which includes the possibility that the immune
system may not be operating at peak capacity when infection begins. These initial
conditions correspond to the very earliest stages of infection, when the system is
at the uninfected equilibrium except for a small population of infectious virus. We
are therefore assuming that (1) the initial viral load is low compared to the total
viral load as the infection progresses, (2) the initial (susceptible) T cell count is
usually at the uninfected equilibrium value before infectiBolackeret al., 1999,
although we allow for the possibility that it may be less, and (3) no drugs are taken
before diagnosis. These initial conditions will be assumed hereafter.

Suppose the drugs are given at fixed intervals. t.et t,,; — tx be the period
of the reverse transcriptase inhibitor amid= s, ; — S be the period of the pro-
tease inhibitor (fok > 1). Fort satisfyingty <t < t, 1 ands; <t < sj4,
we have

R(t) = R(t)e IR

P(t) = P(s")e %%,
The inpulsive effect means we have a recursion relation at the moments of impulse,
given by

Rt = Rt ) + R

P(s’) = P(s;) + P'.
Thus

1— e—der Ri

+\ _ P
R =R 1—etr  1— et

ask — oco. Similarly
i
P —

1—edeo
asj — oo. _ _
However, ifR(t,) = ﬁ_'dw, thenR(t, ;) = &_'dwe*dw and so
i
R(t;;_l) - 1—ere e +R
Ri

T 1-_edre
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Furthermore, note that

. » .
Rty R _gloe R
k7 1_edrt ™ " 1_edkr ]_e Uk
R g—kdrt
T 1-edr

It follows that the impulse pointi;_idw and fi‘;:ii define the ends of a pos-
itive impulsive periodic orbit in the reverse transcriptase inhibitor, to which the
endpoints of each cycle monotonically incr_eadse.

Similarly, the impulse points—2— and 2£" define the ends of a positive
. . . . - . 1_e P - 1_.e . P - .
impulsive periodic orbit in the protease inhibitor, to which the endpoints of each
cycle monotonically increase.

The fdlowing lemma is straightforward, but will be used quite frequently.

LEMMA 4.1. Quppose X isa variable satisfying
X'(t) < c—a@x()
where cisa constant and q(¢) isindependent of x and t. Then
(@) If x(0) < q(—fp) it follows that

C
X)) < ——

a®)

for all t.
(b) 1f x(0) < q(—fp) and lim,_0q(¢) = oo it follows that

x(t) — 0

as¢ — Ofor all t.

Proof. By linearity we have

Aty (¢ 0) 4+ S _eu@on _ _©
T TP
C C
t 0) — — e 9@t ;. _~ (4.9)
X = <X() q(¢)>e 3@
¢
q(¢)
—- 0

as¢ — 0if limy_0q(¢) = oo, thus proving parts (a) and (b).C]
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Remark. Lemma 4.1also holds if the inequalities are reversed.

Next, recall that the death rate for noninfected cells is much less than the death rate
for infected cells. If we let

Tt =Ts+Tr+Trp + Teni + Ti + Tpy

then

Tot = 2 —ds(Ts+ Tr+ Trp + Teni) — di (T) + Tpy)

< & — ds(Tiot)
A A
Tiot(t) < [ Tiot(0) — = ) 79t + = (4.10)
dS dS
A
< =
= e

for all t, sinceTy(0) < A/ds. Thus the limiting value of the total number of

T cells with infection is less than or equal to the number of T cells in the uninfected
immune system. If there is no infection th&h= Tp; = 0 and we have equality.

In practice, Tior(t) will be less thank/ds when infection is present. By similar
reasoning,

Tiot(t) > di (4.11)
|

Notethat these results are independent of drug activity.

5. EXTREME CASES

We consider four extreme cases to demonstrate the different long-term outcomes
that can occur, depending on the dosing intervals. A small dosing interval corre-
sponds to frequent drug administration. Intuitively, we expect that small dosing
intervals should provide the most effective therapy, whereas large dosing inter-
vals should have little effect on the virus. To illustrate, we shall examine the four
extreme cases, when there are no drugs (corresponding to an infinitely large dosing
interval) and as each dosing interval shrinks to zero.

As the infection progresses, the susceptible T cell numbers are reduced as they
become infected or receive drugs, while the infected T cells die off at a faster
rate than the noninfected T cells. Intuitively, this suggests Thallrp and Tpy;
will be the dominant populations as time goes on, and correspondingly, these cells
will ultimately be responsible for maintaining the health of the immune system.
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Furthermore, although there may be high levels of noninfectious virus, this is irrel-
evant to therapy outcome, given that these virus particles can play no further part
in infection.

The initial conditions on the drug concentrations and the monotonicity of the
impulsive trajectories imply that

Ri i
R(t) < ———— and Pt <

g (5.12)

1—edeo

for all t. Sincethe impulsive drug orbits are asymptotically stable, it follows that
for anye > 0, there exist$; such that

Ri ede‘L’ Piefdpﬂ
R(t) > m — € and P(t) > m — € (513)

forallt > tj.

We shall also assume th& andP' are not both zero, so the results below apply
to systems with one or both drugs. Note thaRif = 0, thenR(t) = 0 and so
Ti = —dsTg. Thus, sincelg(0) =0, Tr = 0.

LEMMA 5.1. V, isultimately bounded and satisfies

Proof. Using @.10), we have

Vi=noT —dyV, =1 TsVi — 1 Tpn1 Vi

Ny wA
< —advV.
SR A%
UsingLemma 4.1a), we have
Ny wA
Vi (t
(1) < dsdy

sinceV, (0) is small compared ta, andr. O

LEMMA 5.2. Thesusceptible T cells satisfy

Ts(t) >

a(t,0)

wherea(t,0) - ccast — 0or o — 0.
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Proof. UsingLemma 5.1and 6.12), we have

, nywi R pi
Te>A—n1T —dsTs —rrRTg——— —rpTg——
s~ 'S Gedy sls —IRIST— —dnr PIST o dro
=Ai— O((Ta U)T55
where
rnwi I'RRi eri
O(<Ta U) — dsdv +dS+ 1_ edet + l—eﬁdpd

ast — Ooro — 0.
Sincex andn, are large compared to the other constants, it follows tHat

a(T,0)

is small in general. It is thus reasonable to expect T#d) > ﬁ sincethe

body already has a sizable number of T cells when initially infected. Thus, by the
analogue of.emma 4.1a), we have

Ts(t) >

A
a(t,o)’
For simplicity of notation, definen = mg + mp.

LEMMA 5.3. (1) If R # 0, then there exists t; such that

A1+ A - e %R
Ts(t) < = +4(t,7,0)

for t> t;, whered(t, r,0) - 0ast —- occort — 0oro — 0.
(2) If P' #£ 0, then there exists t; such that

AL+ (L —e %)
Ts(t) < rPie +4t.7,0)

fort > tj.
ThusTs — 0ast — 0oro — Oandt — oo.

Proof. (1) Using 6.13), if ¢ is any positive number satisfying

inlq rpPie-dro
(rR+rp)€<m|n S,m
then there existty such that
rm rm
Té <A — dsTs— rRTsR—rpTsP + LR + rr
ds ds

m rrR e dr? rpPle-dro
<A (l—{- d—S> — dsTs— st— st—{- (rr+rp)eTs
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fort > t;. We thus have, using4(9)

A1+ 3 Al my
Ts(t) < (TS(O) — 7“5) g Bt L 77 ds7

B(r.0) Bz, 0)
where
rrR'edr  rpPigdeo
plr.0) =ds+ 1 _edrt T 1 _ e deo —(rR+Tp)e
rrR e IR
> - 1 __ -
1—e e
Thus
A1+ @A - g dr7)
Ts(t) < é(t, 7,0) + P
where
AL+ dﬂ
St,7,0) = | Tg(0) — —— 957 | g Fmont,
(t,7,0) (s() ,3(1’,0’))

Notethats(t,t,0) — 0ast - oo ort — 0oro — 0. The proof of part 2 is
similar. O

THEOREM 5.1. If R #0,then Ty — 0, Tpny — 0, Tp; — Oand Tr+ Trp —
dis ast — oo and t — 0, for any fixed o.

Proof. Using part 2 olLemma 5.3and 6.12), there exist$; such that

NI

m
Teni <Tph <1+d— 1 _ete 1_on Te

S, t,0)pP'  rgrRe 9
)edpg+ (t,z,o)rp R
s

MpA
+rreTont + ——
ds

fort > t1, wheree is any positive number such that

Ri ede‘L’

€< ———.
1—e e

Thus, using.emma 4.1

PALF G+ R | ettt o)
. — = , T, O
rreRie-drT —rge(1— e dr7) 4

Tent <

-0

ast — oo andt — O, for each fixedr.
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UsingLemma 5.1 part 1 ofLemma 5.3andTheorem 5.1we have
T+ Tp =1 (Ts+ Ten)Vi = di (Ty + Tpy)

nmoi [ AL+ (L — e %) -
= dsdv rrRie—dre +ét.r,0) +y(t 7,0)

—d (Ty + Tpy)

fnon [ AL+ 21— e %) -
dsdv d, PP +8(t, r,0) +y(t, 7,0)

T +Tp <

-0

ast —» ocoandr — 0.
UsingLemma 5.1and part 1 oLemma 5.3we have

T+ Th+The + Ton =2 =11 (Ts+ Teni)Vi — ds(Ts + Tr + Trp + Teni)

rnwi )\<1+ d_n;)(l_eith)
dsdy I'RRi edre

+4(t, 7,0)

> A —

+y,r, 0)) — ds(Ts+ Tr+ Trp + Tpni)-

By the analogue 0f4.9), we have

A rnna (A'(l+ d_n;)(l—e—dRT)

TR+TRP>_ +5(t’t’0')+)’(t’t’0'))

ds B déd| rRRi e—drt
+ | 1<0 A +r|l’l|k A1+ dms)(l_eidw) st )
—_- — - o
S ds d§d| rRR edrt s

+y@, T, U)>j| e %t — Ts — Tpy

— dis ast — oo andr — 0, for any fixedo, using tle first part of this proof and
Lemma 5.3 O

These results are summarised in the following four cases.

Case (i) Frequent dosing of both drugs. In this case, it follows fronTheorem 5.1

that for a suitably small dosing interval of the reverse transcriptase inhibitor, we
can make the number of reverse transcriptase inhibited cells and doubly inhibited
cells arbitrarily close to the levels of T cells in the uninfected immune system.

From Theorem 5.1and Lemma 5.3 all other cells approach zero. Thig and

Trp dominate in this case.
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Case (ii) The absence of both drugs. The nontrivial equilibrium is usually stable
(for n; sufficiently large andv not too close to zero) as shown 3ection 3 This
corresponds to high levels & and relatively low (or zero) levels dffs, T, Tg,
Tre, Tpny andTp, . In this case the virus dominates.

Case (iii) Theabsence of protease inhibitor, frequent dosing of reverse transcrip-
taseinhibitor. Inthe absence of the protease inhibitor, it follows from mo&el)(
that

Tre + Toni < —ds(Trp + Teni)

and hencélrp — 0 ast — oo. It follows from Theorem 5.%hat for a suitably
small dosing interval of the reverse transcriptase inhibitor, we can make the number
of reverse transcriptase inhibited cells arbitrarily close to the levels of T cells in the
uninfected immune system. Froiheorem 5.1Lemma 5.3and the above, all
other T cells approach zero. Thilig dominates in this case.

Case (iv) The absence of reverse transcriptase inhibitor, frequent dosing of
protease inhibitor. In this case, it follows from4.10 and @.11) that

* <Ti+Teni +Tp < *

dl = N PNI PI = dS'
However, typicallyds « d,. Let ug denote the minimum number of T cells
required to maintain the immune systemulf satisfies

A . A
— < Iim (T) +Tpni + Tpi) < po < =— (5.14)
d, t—o0 ds

then there is no dosing schedule that will sustain a healthy immune system.

These cases illustrate the patterns of therapy outcome which may be obtained
in more realistic situations where there are frequent and infrequent dosing of the
drugs, rather than infinite and zero dosing. Case (iii), for example, should approx-
imate the situation where there is reasonably frequent dosing of the reverse tran-
scriptase inhibitor, but infrequent dosing of the protease inhibitor, though not
necessarily an absence of the protease inhibitor.

6. NUMERICAL SIMULATIONS

To illustrate these theoretical results, we performed numerical simulations of a
typical dosing regimen for a reverse transcriptase inhibitor and a protease inhibitor
taken together. We also tested examples of each of the other extreme cases desc-
ribed in the previous section. Equatior’is3)—(2.4) were integated numerically
using a fourth- and fifth-order Runge—Kutta method, ODE45 in MATLABg
Mathworks, Inc).
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Figure 2. Frequent dosing of both drugs. Typical, frequent dosing of both drugs was simu-
lated by numerical integration as described in the text. Non-infected T cells are maintained
close to the healthy equilibrium value (1OQGT1), largely due to the contribution &fR.

The left mnel plots ofV; andVy ; the right panel plots the sum dk, Tr, TRp andTpy -

The proportions of each type of T cell at the end of the simulation are shown in the inset.
Paraméers used were, = 625 day ! (Haaset al., 1996, w = 0.05,r; = 0.0032 day 2,

rp = 0.127uM~1day 1, rg =561 uM~Lday !, mg = 4.16 day !, mp = 8.52 day 1,

dy = 3day !, ds=0.1day !, d =05day?, dp = 832 day?, dr = 16.6 day?,

A = 100 cellsul~1 day 1, P' = 116 uM, R = 7.3 uM, r = 0.5 days andr = 0.333

days. Initial conditions wer¥| (0) = 100 virionsul~1, Tg(0) = 1000 cellsul~1 and all

other initial conditions zero.

The parameters describing T cell and virus dynamics in our simulations are
largely straightforward and were taken from the literature; the reader is referred
to Haaseet al. (1996, Perdson and Nelsorf1999 and Wahl ard Nowak (2000
for details and to the figure legends for specific values. The parametdgscrib-
ing the infection rate, was determined such fhatthe equilibrium value offs in
the presence of infection but the absence of drug therapy, was about 180Icé|ls
as determined experimentalliPéréson and Nelson1999. The other parameters
which ae difficult to estimate areg andr p, which give the fraction of susceptible
T cells which become inhibited by the drug, peM drug in gasma, per day.
Although the dose—effect curves for these pharmaceuticals are well-established
in vitro, the redations between plasma concentration, intracellular concentration,
andin vitro test concentrations are extremely unclear. Therefore, we have made
the assumption th&,,, the trough concentration of the drug in plasma during a
typical dosing regimen, is sufficient to inhibit 100% of the T cells in their lifetime.
Note that this assumption will affect the quantitative results for our simulations,
but has no effect on the qualitative behaviour as determined in the four analytical
cases described in the previous section.

Results for a typical dosing regimen are showiirig. 2 We nodel the protease
inhibitor indinavir, taken three times daily, and the reverse transcriptase inhibitor
AZT, taken twice a day. Thégure shows the viral load for both infectious and
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Figure 3. Infrequent dosing of both drugs. The total number of healthy T cells is signifi-
cantly reduced in the absenceT andTpy| . All parameters andhitial conditions were

the sare as inFig. 2, except for the dosing intervals, which wete= 30 days and =

7 days.
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Figure 4. Frequent dosing of the reverse transcriptase inhibitor and infrequent dosing of
the protease inhibitor. As iRig. 2 non-infected T cells are maintained close to the healthy
equilibrium value due to the large contribution @k. All parameters and initial conditions
were the same as ifig. 2 except for the dosing intervals, which were= 0.5 days and

o =7 days.

non-infectious virions in the left panel, and the total humber of non-infected T
cells, perul plasma, on the right. The inset shows the fraction of T cells in each
of the six possible states. We see that for these parameter values, a healthy T
cell count is maintained, mainly due to a large population of reverse transcriptase
inhibited cells. Note that this picture reflects the best-case scenario for this drug
regimen, with perfect adherence to the prescribed regimen and in the absence of
resistance mutations. This figure corresponds to our theoretical description of case
(), frequent dosing with both drugs.

Results for the other extreme cases described in the previous section are shown
in Figs. 35. In dl cases, parameters were the same ad-fgr 2, except for
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Figure 5. Frequent dosing of the protease inhibitor, with infrequent dosing of the reverse
transcriptase inhibitor. Despite the presemt theprotease inhibitor at high concentra-
tions, the total healthy T cell population isall. All parameters and initial conditions
were the ame as irFig. 2, except for the dosing intervals, which wete= 30 days and

o = 0.333 days.

the dosing intervals. Ifrigs. 2and4, T cell counts are not far from the healthy
equilibrium value— = 1000, as predicted on theoretical grounds. Nonetheless, the
total number of non -infected cells is higher when both drugs are taken frequently.
In Fig. 5, despite frequent dosing of the protease inhibitor, Thelevels remained
verylow. If g = 200 cells pewl in this example, then there is no dosing schedule
of protease inhibitor which will maintain a healthy immune system.

For case (i)r = 0.5 days andr = 0.33 days. For case (ii)y = 30 days and
o = 7 days. For case (iii)z = 0.5 days andr = 7 days. For case (iv)y = 30
days andr = 0.33 days.

7. ESTIMATES OF SUITABLE DOSING INTERVALS

From @.10, Lemma 4.1a), 6.12 and 6.13), if ¢ satisfies

fort > t;, then we have

A
Ts+ Tpny < i —Tr—Tgre
S

Ti+ Tip =rrRR(Ts+ Tpni) — ds(Tr + Trp) — Mr(Tr + Trp)

A
<rgR (d_ —Tr— TRP) — (ds+ mg)(Tr + Trp)
S
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rgR A
R <— - Tr— TRP) — (ds + mg)(Tr + Trp)

<:|.—67th ds
rRRiA I'RRi
=R (et mr4 —F ) (Ta+T
1 e dw)ds (s-l— RT T oawr ) (TRt TrP)
rRRiA

Tr+ Trp <

ds((ds + mg)(1 — e79%7) +-rgR)’
Note that this is a reasonable upper bound, since it satisfies

reR A A

n —>
ds((ds + mg)(1 — e 9r7) +rgR’) ds

ast — 0.
Using Lemma 5.2 the analogue otLemma 4.1a), 6.13 and Theorem 5.1if
R' = 0, there exists$; such that for any sufficiently smadl> 0, we have

rrARie dr? €rrA
Th+ T, = — (ds+ MR)(Tr+ T
R+ Trp > 1_e®aro) a0 (ds+ mMgr)(Tr + Trp)
rrAR e 0= €rph
Tr+ Trp > R R

(ds + MR)(1 — e-%%)a(t,0)  (ds+ MRa(T, o)

fort > t;. Sincee is small andx(z, o) is usually large (since, is usually large)
we shall assume that last term is negligible.

Thus if g is the minimum number of T cells required to maintain a healthy
immune system, then we need to choose dosing intetvaiglo to ensure that

rrAr R dr? N rgR reP 717t
Mo

d
= (ds+ mr)(1 — e*de) dsdy tOs 1—edre + 1— e dpo

(7.15)

For example, using parametars = 200 virions celt! day ™, o = 05,1, =
1/25 celr! day™?, rp = 1/10 uM~t day %, rg = 15 uM~1 day?, dy = 2.77
day?!, ds = 0.05 day?, d» = 1 day?, dr = 1 day?, mg = 0.1 day?,
A = 100 cells day', P' = 15 uM, R = 18 uM, we find tha for afrequency of 4
doses per day for both drugBz(t)+Trp(t) > 154 cellsul~*. In cortrast when the
dosing frequency is six doses per day, we hdxé) + Trp(t) > 213 cellsul 2.
Thus for these parameter values, doses should be taken about six times per day to
guarantee a T cell count aboug = 200 cellsul 2.

Finally, we can assume that = kz, wherek € Q*. This refects the fact that
the dosing intervals usually come into phase over a 24 hour period. In this case,
the right-hand side of(15 approaches

)\.I‘RRidpk
(ds + mR)(rRRidpk + eridR)

(7.16)

TR,min =
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ast — 0. Note thatTg min is strictly less thark/ds if the protease inhibitor is
present. This implies that the number of T cells will fall betw&@gi, andx/ds
when ttrere are suitably small dosing intervals of both drugs.

8. SUMMARY AND DISCUSSION

We present an immunological model of HIV infection in which the different
effects of reverse transcriptase inhibitors and protease inhibitors on the Tl
population are considered. The T cells are classified into six classes, as illustrated
in Fig. 1and described in paragraphs (a) through (fpéction 2.1

We use inpulsive differential equations to model the kinetics of drug action.
Framing our model in these terms allows us to make use of a fairly sophisticated
mahematical literatureRainov and 8neonoy 1989 1993 1995 Lakshmikan-
thamet al., 1989: we find that drug concentrations monotonically approach an
(impulsive) periodic orbit and that for both drugs, this orbit is globally asymptot-
ically stable. This model of drug action, however, compels us to make a num-
ber of simplifying assumptions about the uptake and egress of the drugs. First,
we goproximate the change in drug concentration when a new dose is taken as
an instantaneous increase. Although the time-to-peak of plasma drug concentra-
tion is arguably negligible on the timescales we consider, the time course of drug
entry to the intracellular space (for example to cells in lymph tissue) is almost cer-
tainly slower. This assumption has the effect of overestimating the temporal effects
of dosing at intervals. We argue that our conclusions regarding the existence of
various upper and lower bounds will not be affected by this assumption, although
more accurate guantitative estimates will be possible once the intracellular phar-
macokinetics are better understood. Finally, we assume that the anteffeail
of the dose decays exponentially after a dose is taken; while exponential decay is
typical for drug concentrations in plasma, this assumption is clearly less accurate
when the dose—effect curve is non-linear, i.e., for very large or small doses.

We consider four extreme cases to examine the effects that large or small dosing
intervals of each drug can have. These four cases demonstrate the importance of
sufficiently frequent dosing intervals, and also illustrate the important differences
between reverse transcriptase and protease inhibitors.

For example, the model predicts that insufficient dosing with both drugs
corresponds to a high viral load and a large population of infectious T cells, as
we would expect. More surprisingly, we predict that sufficiently frequent dosing
with the reverse transcriptase inhibitor alone could theoretically maintain the CD4
T cell count arbitrarily close to the T cell count in the uninfected immune system.
This limit would only be achievable, however, in the absence of physiological lim-
its on tolerable drug concentrations. This interesting result suggests that new drugs
with a mechanism of action similar to the reverse transcriptase inhibitor (i.e., in
preventing new T cells from becoming infected), but with negligible side effects,
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would hold the promise of maintaining ‘normal’ T cell counts over long periods of
time.

In contrast, for frequent dosing of the protease inhibitor alone, even if the drug
is perfectly efficacious and there are no physiological limits on tolerable drug con-
centrations, it may be impossible to maintain adequate T cell counts for immune
system function. This implies that for drugs with a mechanism of action similar
to the protease inhibitor (i.e., in preventing infected cells from releasing infectious
virions) even extremely high drug concentrations may not be able to adequately
protect and maintain the immune response.

Furthermore, we predict that very frequent dosing of both drugs has the same
net effect on the T cell population as frequent dosing of the reverse transcriptase
inhibitor only. Although the protease inhibitor is critically important in the preven-
tion of antiviral resistance (or when the dosing of the reverse transcriptase inhibitor
is infrequent) there is a sense in which its role is secondary. Intuitively, this is not
surprising, since reverse transcriptase inhibited cells are immune to viral infection,
whereas protease inhibited T cells are not. These results demonstrate the maxim
that prevention is better than cure, in the sense that prevention of infection via
reverse transcriptase inhibition is more important than production of noninfectious
virus via protease inhibition.

These theoretical predictions may appear to be at odds with clinical evidence
that protease inhibitors control HIV more effectivel@i{aniet al., 2001). This
is because our result pertains to all possible drugs which either prevent infection
or prevent virion production, and compares these two strategies of defence, in
the absence of resistance. We do not mean to discount the effects of resistance,
but rather we examine dosing regimes for the different drug classes in the hope
that future drugs may be used to combat resistance as effectively as the protease
inhibitor now does.

Finally, we were able to find a condition [equatiochX5] to relate the periods
of the dosing intervals to the minimum number of T cells required to sustain an
adequate immune response. This is an overestimate, so that if the drugs satisfy this
condition, then the predicted T cell count will be higher than the minimum. Given
guantitative estimates of immune system and drug parameters, this condition may
be used to estimate the dosing frequency of a given combination of drugs which
could, in principle, maintain T cell counts above a desired threshold. Once again,
this dosing frequency may not be attainable due to physiological intolerance at high
drug concentrations.

The dassification of the T cells that we propose offers a novel means of eluci-
dating the complex effects of antiviral drug classes and their interactions. There is
much work that can be done using this classification and the impulsive description
of the drug behaviour. Specifically, we would like to examine the effect of adhe-
rence to the drug regime and the emergence of resistance to one or both types of
drug Wahl ard Nowak 2000, the effects of drug resistance due to other factors
and the possibly different effects of new classes of antivifdisy(e, 2003. In the
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latter case, the initial descriptions of the new classes of drugs suggests that they
may behaveri a sinilar manner to the class df cells (preventing viral infection

of T cells). If such drugs can be used in combination to overcome resistance then
the major use of the protease inhibitor (namely preventing the emergence of drug
resistance) may be redundant and ‘preventative’ drugs such as reverse transcriptase
inhibitors, integrase inhibitors and fusion inhibitors may be used exclusively, lead-
ing to long-term benefits for the treatment of HIV positive patients.
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