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We present an immunological model that considers the dynamics of CD4+ T cells
interacting with free virions, reverse transcriptase inhibiting drugs and protease
inhibiting drugs. We divide the T cells into multiple classes and use impulsive
differential equations to describe the drug activity. As expected, we find that insuf-
ficient dosing of either drug corresponds to high viral load and a large population of
infectious T cells. The model further predicts that, in the absence of physiological
limits on tolerable drug concentrations, sufficiently frequent dosing with the reverse
transcriptase inhibitor alone could theoretically maintain the CD4+ T cell count
arbitrarily close to the T cell count in the uninfected immune system. However, for
frequent dosing of the protease inhibitor alone, the limiting T cell populations may
not be enough to maintain the immune system. Furthermore, frequent dosing of
both drugs has the same net effect on the T cell population as frequent dosing of
the reverse transcriptase inhibitor only. Thus, the two drug classes can have funda-
mentally different effects on the long-term dynamics and the reverse transcriptase
inhibitor, in particular, plays a crucial role in maintaining the immune system. We
also provide estimates for the dosing intervals of each drug that could theoretically
sustain the T cell population at a desired level.

c© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

The best current therapy for HIV involves the simultaneous administration of two
or more anti-viral drugs, potent inhibitors of HIV-1 replicationin vivo. Although
several new classes of drugs are now in clinical trials (Moyle, 2003), these drugs
are typically chosen from two major classes of anti-virals, reverse transcriptase
inhibitors and protease inhibitors. Reverse transcriptase inhibitors block the trans-
lation of viral RNA into DNA for incorporation into the host genome, thus pre-
venting the infection of new cells; in contrast protease inhibitors interfere with
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essential steps of protein cleavage in new virions, thus preventing infected cells
from producing infectious viral particles (Janewayet al., 2001).

Mathematical models have been developed to study the dynamics of viral repli-
cation during HIV-1 infection [seeCovert and Kirschner(2000), Nowak and May
(2000), Perelson(2002) for review articles], including the effects of drug treatment
(Nowak et al., 1997; Kepler and Perelson, 1998; Nowak and May, 2000; Wahl
and Nowak, 2000; Nelsonet al., 2001; Calloway and Perelson, 2002; Nelson and
Perelson, 2002; Perelson, 2002). The effects of different drug classes, however,
have typically been aggregated in these modelling approaches (Nowak and May,
2000; Calloway and Perelson, 2002), with some notable exceptions (Nelson and
Perelson, 2002; Perelson, 2002). We present here a model in which the two major
classes of anti-virals are treated separately, allowing us to examine the (possibly
different) effects of each drug on viral dynamics.

The distinguishing feature of our model is that the immune cells infected by the
virus, CD4+ T cells, are divided into multiple classes, depending on whether a
cell has been infected or has absorbed either of the drugs. We also make use of
impulsive differential equations to model the change in drug concentration which
occurs when a new dose is administered. These techniques allow us to make a
number of interesting predictions: we find, for example, that the reverse transcrip-
tase inhibitor has the potential to maintain immune function, in the sense that it is
possible to choose a small enough dosing interval so that the population of T cells
is arbitrarily close to the level for the uninfected immune system, whether or not
the protease inhibitor is also present. However, the protease inhibitor alone may
not be enough to ensure a sufficient immune response, regardless of the dosing
frequency.

This paper is organised as follows. InSection 2we develop the model. In
Section 3we examine the model without drugs. InSection 4we state some pre-
liminary results for the model with drugs. InSection 5, we consider the extreme
cases where the dosing intervals of one or both drugs shrink to zero. InSection 6
we provide some numerical simulations to illustrate the predictions of the model.
In Section 7we provide estimates on the dosing intervals to guarantee a suitably
healthy immune system. Finally, inSection 8we discuss the biological implica-
tions of the model predictions.

2. THE MODEL

2.1. T cells. We would like to examine the various possible fates of a CD4+
T cell in some detail. At any time, a T cell may come into contact with (1) an
infectious virion, (2) the reverse transcriptase inhibitor or (3) the protease inhibitor.
Naı̈vely, it seems that we might need a very large number of T cell classes to
capture all of these possible effects, since in its lifetime each cell may undergo
several (or none) of these interactions, and the order in which the interactions occur



Effects of Drug Classes in HIV-1 1261

Figure 1. The various drug classes and their interactions. The six classes of T cells are
susceptible, infected, reverse transcriptase inhibited, doubly inhibited, noninfected pro-
tease inhibited and infected protease inhibited cells. Each cell may come into contact
with an infectious virion, the reverse transcriptase inhibitor or the protease inhibitor. Once
infected, cells cannot move into the class of reverse transcriptase inhibited cells. Cells with
either drug will eventually revert back to their appropriate drug-free state. Healthy cells
are produced at a rateλ. Infected cells will produce infectious or defective (noninfectious)
virions. Infected protease inhibited cells will produce noninfectious virus.

may also be important (encountering reverse transcriptase followed by virus will be
different from encountering the virus first). By careful consideration of the possible
combinations, however, we find that T cells can be classified into six populations,
described below in paragraphs (a) through (f) and pictured inFig. 1.

Throughout these classifications, we define a ‘reverse transcriptase inhibited’
T cell as a cell in which the intracellular concentration of the drug is sufficiently
high that the probability of viral RNA being transcribed to DNA is negligible.
Likewise a ‘protease inhibited’ T cell is a cell in which the chance of produc-
ing infectious virions is negligible. A ‘doubly inhibited’ T cell is one which has
absorbed sufficient quantities of both drugs.

Weassume that each drug affects the relevant T cells for a certain period of time,
after which the T cells revert to their appropriate state. Thus, reverse transcrip-
tase inhibited cells and uninfected protease inhibited cells will revert to susceptible
cells, doubly inhibited cells will revert to either reverse transcriptase inhibited cells
or uninfected protease inhibited cells, while infected protease inhibited cells will
revert to infected T cells. This feature of the model may be important because, for
example, lamivudine has an intracellular half-life of 12 h (Rodmanet al., 1996)
and zidovudine has a half-life of 4 h (Cammacket al., 1992), whereas the lifetime
of an uninfected cell is of the order of days (Nelson and Perelson, 2002).

(a) Let TS be the population of susceptible (noninfected) CD4+ T cells. These
cells are produced at a constant rate,λ. There are four possible fates for these
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T cells: they may die at natural death ratedS ; they may (b) become infected; or they
may absorb either (c) the reverse transcriptase inhibitor or (d) the protease inhibitor.

(b) We useTI to denote the population of infected CD4+ T cells. These cells
produce infectious virus,VI , or defective (noninfectious) virusVN I , andhave a sig-
nificantly higher death rate,dI (Ho et al., 1995). Like the healthy cells, these cells
may later absorb either the reverse transcriptase inhibitor or the protease inhibitor.
If the protease inhibitor is absorbed, the cell will join the population of (f) infected,
protease-inhibited cells (TP I , described below). Since the viral genome has already
been transcribed into the host DNA, absorbing the reverse transcriptase inhibitor
has no effect on these infected cells.

(c) TR denotes noninfected cells which have absorbed the reverse transcriptase
inhibitor, but not the protease inhibitor. LikeTS cells, these cells may also come
into contact with either infectious virus or the protease inhibitor. Since the cell can-
not be infected while in this state, the former has no consequence for the cell. If the
protease inhibitor is absorbed, the cell will join the population of (d) noninfected
doubly inhibited cells (TR P , described below).

(d) TR P denotes noninfected cells which have absorbed both the reverse tran-
scriptase inhibitor and the protease inhibitor. LikeTR cells, these cells cannot be
infected while in this state.

As we will demonstrate shortly, theTR and TR P classes of cells prove to be
crucial for the maintenance of the immune system, even if the population of healthy
susceptible cells,TS, approaches zero.

(e)TP N I denotes noninfected cells which have absorbed the protease inhibitor but
not the reverse transcriptase inhibitor. These cells may subsequently absorb infec-
tious virus or the reverse transcriptase inhibitor. In the former case, the cell will
join the population of (f) infected protease-inhibited cells (TP I , described below).
In the latter case, the cell will join the population of (d) noninfected doubly inhib-
ited cells,TR P .

(f) Finally, TP I denotes infected cells which have absorbed the protease inhibitor.
Unlike the populationTI , these cells release only noninfectious virus,VN I . Like
TI , however, these cells die at the higher death ratedI , and areunaffected by sub-
sequent absorption of the reverse transcriptase inhibitor.

Infectious virions,VI , are produced by infected T cells and are removed by clear-
ance, infection of susceptible cells and infection of protease inhibited cells. Non-
fectious virions,VN I , are produced by protease inhibited cells or represent deficient
virions produced by infected cells and are removed by clearance. We ignore the
loss of virions due to reinfection of infected cells or infection of reverse transcrip-
tase inhibited cells. This has the effect of overestimating the virion count and plays
no important role in the estimates below.

2.2. Drugs. We useR to denote the intracellular concentration of the reverse
transcriptase inhibitor and its active metabolites (Hoggard and Back, 2002), while
P denotes the intracellular concentration of the protease inhibitor. We assume that
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drugs are given at independent timestk for the reverse transcriptase inhibitor and
sk for the protease inhibitor (not necessarily fixed, although later we shall assume
that they are). The effect of the drugs is assumed to be instantaneous, resulting
in a system of impulsive differential equations, whereby solutions are continuous
for t �= tk and t �= sk (satisfying the associated system of ordinary differential
equations) and undergo an instantaneous change in state whent = tk or t = sk .
The model thus consists of a system of ordinary differential equations together
with two difference equations. According to impulsive theory, we can describe the
nature of the impulse at timerk via the difference equation

�y ≡ y(r+
k ) − y(r−

k ) = f (rk, y(r−
k )). (2.1)

We refer the interested reader toBainov and Simeonov(1989, 1993, 1995) and
Lakshmikanthamet al. (1989) for moredetails on the theory of impulsive differ-
ential equations.

Approximation by impulsive differential equations is typical when a period of
rapid change occurs on a timescale that is short, compared to the timescale of
the remainder of the cycle. The application of this technique here assumes that
the change in intracellular drug concentration immediately after a dose is taken
is nearly instantaneous, that is, the time-to-peak is negligible compared to the
timescale of the intracellular activity. We explored the effects of relaxing this
assumption numerically, and found that differences in therapy outcome were neg-
ligible over the timescales of interest (weeks or years of infection), for realistic
time-to-peak values from the pharmacokinetics literature (seeSection 6for simu-
lation details).

By neglecting the known dispersion and delay as the drug enters the intracellular
space, we overestimate the temporal effects of dosing at intervals. The implications
of this assumption will be taken up further in the discussion. For a fuller treatment
of the effects of spatially distinct compartments, seeKeplerand Perelson(1998);
for a detailed model of the kinetics of drug action, seeAustin et al. (1998).

2.3. Combining T cell populations with virus and drugs. Thedynamics of virus
and T cell concentrations are thus given by:

dVI

dt
= nI ωTI − dV VI − rI TS VI − rI TP N I VI

dVN I

dt
= nI TP I + nI (1 − ω)TI − dV VN I

dTS

dt
= λ − rI TS VI − dS TS − rRTS R − rP TS P + m RTR + m P TP N I

dTI

dt
= rI TS VI − dI TI − rP TI P + m P TP I
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dTR

dt
= rRTS R − dSTR + m P TR P − m RTR − rP TR P P

dTR P

dt
= rRTP N I R − dSTR P − m P TR P − m RTR P + rP TR P

dTP N I

dt
= rP TS P − dSTP N I − rI TP N I VI − rR TP N I R − m P TP N I + m RTR P

dTP I

dt
= rI TP N I VI − dI TP I + rP TI P − m P TP I (2.2)

for t �= tk andt �= sk (see impulsive conditions below).
Heret is time in days,nI is the number of virions produced per infected cell per

day,ω is the fraction of virions produced by an infected T cell which are infectious,
dV is the rate at which free virus is cleared,dS is the noninfected CD4+ T cell death
rate,dI is the infected CD4+ T cell death rate,rI is the infection rate of noninfected
T cells, rR is the rate at which the reverse transcriptase inhibitor inhibits the T
cells, rP is the rate at which the protease inhibitor inhibits the T cells,m R is the
rate at which the reverse transcriptase inhibitor is cleared from the intracellular
compartment,m P is the rate at which the protease inhibitor is similarly cleared,
andλ represents a source of susceptible cells. All death rates, rates of infection
and λ are assumed to be positive and we assume 0� ω ≤ 1. Furthermore,
dS < dI < dV (Ho et al., 1995).

In addition, the dynamics of the two drugs,R andP, are given by

d R

dt
= −dR R t �= tk

d P

dt
= −dP P t �= sk .

(2.3)

The impulsive conditions are

�R = Ri t = tk
�P = Pi t = sk .

(2.4)

Here,dR is the rate at which the reverse transcriptase inhibitor is cleared,dP is the
rate at which the protease inhibitor is cleared,Pi is the dose of protease inhibitor
and Ri is the dose of reverse transcriptase inhibitor. In generalsk �= tk , so that
the two drugs are taken at different times. Thus (2.2)–(2.4) describe a system of
impulsive differential equations.

Notethat using (2.1), we have

R(t+
k ) = R(t−

k ) + Ri (2.5)

P(s+
k ) = P(s−

k ) + Pi . (2.6)
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The impulse timestk , sk can be assumed fixed, reflecting regular dosing periods,
although we can sett1 to be significantly large to reflect the fact that drugs are not
taken until after the infection has been diagnosed. We will likewise assume that
R(0) = P(0) = 0.

3. THE SYSTEM WITHOUT DRUGS

First we shall analyse the model when there are no drugs present. In this case,
model (2.2) becomes a system of (nonimpulsive) ordinary differential equations.

dVI

dt
= nI ωTI − dV VI − rI TS VI − rI TP N I VI

dVN I

dt
= nI TP I + nI (1 − ω)TI − dV VN I

dTS

dt
= λ − rI TS VI − dS TS + m RTR + m P TP N I

dTI

dt
= rI TS VI − dI TI + m P TP I

dTR

dt
= −dS TR + m P TR P − m RTR

dTR P

dt
= −dS TR P − m P TR P − m RTR P

dTP N I

dt
= −dS TP N I − rI TP N I VI − m P TP N I + m RTR P

dTP I

dt
= rI TP N I VI − dI TP I − m P TP I .

(3.7)

This system has two non-negative steady states, given by

(V̄I , V̄N I , T̄S, T̄I , T̄R, T̄R P, T̄P N I , T̄P I ) =
(

0, 0,
λ

dS
, 0, 0, 0, 0, 0

)
,

(
λ

dV dI
(nI ω − dI ) − dS

rI
, nI (1 − ω)

(
λ

dI
− dV dS

rI (nI ω − dI )

)
,

dV dI

rI (nI ω − dI )
,

λ

dI
− dSdV

rI (nI ω − dI )
, 0, 0, 0, 0

)

which we shall refer to as the trivial and nontrivial equilibria, respectively. We
shall refer to the number of T cells in the trivial equilibrium as the number of
T cells in the uninfected immune system, since there is no virus present.

The Jacobian matrix for system (3.7), evaluated at the trivial equilibrium is
J (0, 0, λ

dS
, 0, 0, 0, 0, 0) = [J1 | J2] where
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J1 =




−dV − rI T̄S 0 −rI V̄I n I ω

0 −dV 0 nI (1 − ω)

−rI T̄S 0 −rI V̄I − dS 0
rI T̄S 0 rI V̄I −dI

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




J2 =




0 0 0 0
0 0 0 nI

m R 0 m P 0
0 0 0 m P

−dS − m R m P 0 0
0 −dS − m R − m P 0 0
0 m R −dS − rI V̄I − m P 0
0 0 rI V̄I −dI − m P




whereV̄I andT̄S are equilibrium values. This matrix has the characteristic equation

0 = det(J − µI ) = (dV + µ)(dS + m P + m R + µ)(dS + m R + µ)

× (ds + rI V̄I + m P + µ)(dI + m P + µ) f (µ)

where

f (µ) = µ3 + aµ2 + bµ + c

with

a = dV + rI T̄S + rI V̄I + dS + dI > 0
b = (dV + dI + rI T̄S)(dS + dI + rI V̄I ) − d2

I − rI T̄S(nI ω + rI V̄I )

c = dV dI (dS + rI V̄I ) + rI dS T̄S(dI − nI ω).

WhenV̄I = 0 andT̄S = λ
dS

, we have

b =
(

dV + dI + rI λ

dS

)
(dS + dI ) − d2

I − rI nI ωλ

dS
< 0,

provided

ωnI >
1

rI λ
(dS(dV + dI ) + rI λ)(dS + dI ) − dSd2

I

rI λ
, (3.8)

which will be the case whenω is not too close to zero, sincenI andλ are normally
large, compared to the other constants (by several orders of magnitude). Further-
more,

c = dV dSdI + rI λ(dI − nI ω) < 0
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whenω is not too close to zero, sincenI andλ are normally large, compared to the
other constants.

The critical points of f (µ) occur when

µ = −a

3
±

√
a2 − 3b

3

and hence it follows that there is a critical point with real part greater than zero.
Thus the Jacobian matrix has at least one eigenvalue with positive real part and
hence the trivial equilibrium is unstable.

NotethatdS < dI < dV . WhenV̄I = λ
dV dI

(nI ω − dI ) − dS
rI

andT̄S = dV dI
rI (nI ω−dI )

,
we have

b = dV dI dS

nI ω − dI
+ λrI

dV
(nI ω − dI ) + λrI

dI
(nI ω − dI ) > 0

if nI ω > dI , which is a necessary condition for the existence of the nontrivial
equilibrium. Furthermore, we have

c = λrI (nI ω − dI ) − dV dSdI > 0

provided

nI ω > dI + dV dSdI

λrI

which will be the case ifω is not too close to zero, sincenI andλ are normally
large compared to the other constants. Thus the eigenvalues have a negative real
part and hence the nontrivial equilibrium is usually stable. Ifω is close to zero,
then the infectious T cells produce mainly noninfectious virus, so the viral load is
relatively low, even in the absence of drugs. Such cases are rare in HIV positive
patients.

The existence of a trivial and a nontrivial steady state, as well as their stabil-
ity properties, correspond to the usual properties of such immunological models
without drug effects [seeCalloway and Perelson(2002) or Nelson and Perelson
(2002)].

4. THE SYSTEM WITH DRUGS

The application of drugs via impulsive differential equations will obviously per-
turb these steady states. In general, impulsive models do not exhibit steady states,
but rather impulsive periodic orbits (periodic orbits with discontinuities). However,
it should be noted that in model (2.2) only the drugs will exhibit discontinuities
directly. The remaining parameters may have discontinuities in their derivatives,
but will have continuous solutions.
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We shall use the initial conditionsVI (0) = V0 > 0, VN I (0) = 0 andTI (0) = 0.
Before therapy,R(0) = P(0) = 0. It follows immediately thatTR(0) = TR P(0) =
TP N I (0) = TP I (0) = 0. We assumeV0 is small compared to the productnI λ.
We shall also assumeTS(0) ≤ λ

dS
, which includes the possibility that the immune

system may not be operating at peak capacity when infection begins. These initial
conditions correspond to the very earliest stages of infection, when the system is
at the uninfected equilibrium except for a small population of infectious virus. We
are therefore assuming that (1) the initial viral load is low compared to the total
viral load as the infection progresses, (2) the initial (susceptible) T cell count is
usually at the uninfected equilibrium value before infection (Schackeret al., 1998),
although we allow for the possibility that it may be less, and (3) no drugs are taken
before diagnosis. These initial conditions will be assumed hereafter.

Suppose the drugs are given at fixed intervals. Letτ = tk+1 − tk be the period
of the reverse transcriptase inhibitor andσ = sk+1 − sk be the period of the pro-
tease inhibitor (fork ≥ 1). For t satisfying tk < t ≤ tk+1 and s j < t ≤ s j+1,
we have

R(t) = R(t+
k )e−dR(t−tk)

P(t) = P(s+
j )e−dP (t−s j ).

The impulsive effect means we have a recursion relation at the moments of impulse,
given by

R(t+
k ) = R(t−

k ) + Ri

P(s+
j ) = P(s−

j ) + Pi .

Thus

R(t+
k ) = Ri 1 − e−kdRτ

1 − e−dRτ
→ Ri

1 − e−dRτ

ask → ∞. Similarly

P(s+
j ) → Pi

1 − e−dP σ

as j → ∞.
However, ifR(t+

k ) = Ri

1−e−dR τ , thenR(t−
k+1) = Ri

1−e−dR τ e−dRτ and so

R(t+
k+1) = Ri

1 − e−dRτ
e−dRτ + Ri

= Ri

1 − e−dRτ
.
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Furthermore, note that

R(t+
k ) − Ri

1 − e−dRτ
= Ri 1 − e−kdRτ

1 − e−dRτ
− Ri

1 − e−dRτ

= − Ri e−kdRτ

1 − e−dRτ
.

It follows that the impulse points Ri

1−e−dR τ and Ri e−dR τ

1−e−dR τ define the ends of a pos-
itive impulsive periodic orbit in the reverse transcriptase inhibitor, to which the
endpoints of each cycle monotonically increase.

Similarly, the impulse points Pi

1−e−dP σ and Pi e−dP σ

1−e−dP σ define the ends of a positive
impulsive periodic orbit in the protease inhibitor, to which the endpoints of each
cycle monotonically increase.

The following lemma is straightforward, but will be used quite frequently.

LEMMA 4.1. Suppose x is a variable satisfying

x ′(t) < c − q(φ)x(t)

where c is a constant and q(φ) is independent of x and t. Then

(a) If x(0) < c
q(φ)

it follows that

x(t) <
c

q(φ)

for all t .
(b) If x(0) < c

q(φ)
and limφ→0 q(φ) = ∞ it follows that

x(t) → 0

as φ → 0 for all t .

Proof. By linearity we have

d

dt
(eq(φ)t x) < ceq(φ)t

eq(φ)t x(t) < x(0) + c

q(φ)
eq(φ)t − c

q(φ)

x(t) <

(
x(0) − c

q(φ)

)
e−q(φ)t + c

q(φ)

<
c

q(φ)

→ 0

(4.9)

asφ → 0 if limφ→0 q(φ) = ∞, thus proving parts (a) and (b).�
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Remark. Lemma 4.1also holds if the inequalities are reversed.

Next, recall that the death rate for noninfected cells is much less than the death rate
for infected cells. If we let

Ttot ≡ TS + TR + TR P + TP N I + TI + TP I

then

T ′
tot = λ − dS(TS + TR + TR P + TP N I ) − dI (TI + TP I )

≤ λ − dS(Ttot)

Ttot(t) ≤
(

Ttot(0) − λ

dS

)
e−dSt + λ

dS

≤ λ

dS

(4.10)

for all t , sinceTtot(0) ≤ λ/ds . Thus the limiting value of the total number of
T cells with infection is less than or equal to the number of T cells in the uninfected
immune system. If there is no infection thenTI = TP I = 0 and we have equality.
In practice,Ttot(t) will be less thanλ/dS when infection is present. By similar
reasoning,

Ttot(t) ≥ λ

dI
. (4.11)

Notethat these results are independent of drug activity.

5. EXTREME CASES

Weconsider four extreme cases to demonstrate the different long-term outcomes
that can occur, depending on the dosing intervals. A small dosing interval corre-
sponds to frequent drug administration. Intuitively, we expect that small dosing
intervals should provide the most effective therapy, whereas large dosing inter-
vals should have little effect on the virus. To illustrate, we shall examine the four
extreme cases, when there are no drugs (corresponding to an infinitely large dosing
interval) and as each dosing interval shrinks to zero.

As the infection progresses, the susceptible T cell numbers are reduced as they
become infected or receive drugs, while the infected T cells die off at a faster
rate than the noninfected T cells. Intuitively, this suggests thatTR, TR P andTP N I

will be the dominant populations as time goes on, and correspondingly, these cells
will ultimately be responsible for maintaining the health of the immune system.
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Furthermore, although there may be high levels of noninfectious virus, this is irrel-
evant to therapy outcome, given that these virus particles can play no further part
in infection.

The initial conditions on the drug concentrations and the monotonicity of the
impulsive trajectories imply that

R(t) <
Ri

1 − e−dRτ
and P(t) <

Pi

1 − e−dP σ
(5.12)

for all t . Sincethe impulsive drug orbits are asymptotically stable, it follows that
for anyε > 0, there existst1 such that

R(t) >
Ri e−dRτ

1 − e−dRτ
− ε and P(t) >

Pi e−dP σ

1 − e−dP σ
− ε (5.13)

for all t > t1.
Weshall also assume thatRi andPi are not both zero, so the results below apply

to systems with one or both drugs. Note that ifRi = 0, thenR(t) ≡ 0 and so
T ′

R = −dSTR. Thus, sinceTR(0) = 0, TR ≡ 0.

LEMMA 5.1. VI is ultimately bounded and satisfies

VI <
nI ωλ

dSdV
.

Proof. Using (4.10), we have

V ′
I = nI ωTI − dV VI − rI TS VI − rI TP N I VI

≤ nI ωλ

dS
− dV VI .

UsingLemma 4.1(a), we have

VI (t) <
nI ωλ

dSdV

sinceVI (0) is small compared tonI andλ. �

LEMMA 5.2. The susceptible T cells satisfy

TS(t) >
λ

α(τ, σ )

where α(τ, σ ) → ∞ as τ → 0 or σ → 0.
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Proof. UsingLemma 5.1and (5.12), we have

T ′
S > λ − rI TS

nI ωλ

dSdV
− dSTS − rRTS

Ri

1 − e−dRτ
− rP TS

Pi

1 − e−dP σ

= λ − α(τ, σ )TS,

where

α(τ, σ ) = rI nI ωλ

dSdV
+ dS + rR Ri

1 − e−dRτ
+ rP Pi

1 − e−dP σ

asτ → 0 orσ → 0.
Sinceλ andnI are large compared to the other constants, it follows thatλ

α(τ,σ )

is small in general. It is thus reasonable to expect thatTS(0) > λ
α(τ,σ )

, sincethe
body already has a sizable number of T cells when initially infected. Thus, by the
analogue ofLemma 4.1(a), we have

TS(t) >
λ

α(τ, σ )
. �

For simplicity of notation, definem ≡ m R + m P .

LEMMA 5.3. (1) If Ri �= 0, then there exists t1 such that

TS(t) <
λ(1 + m

dS
)(1 − e−dRτ )

rR Ri e−dRτ
+ δ(t, τ, σ )

for t > t1, where δ(t, τ, σ ) → 0 as t → ∞ or τ → 0 or σ → 0.
(2) If Pi �= 0, then there exists t1 such that

TS(t) <
λ(1 + m

dS
)(1 − e−dP σ )

rP Pi e−dP σ
+ δ(t, τ, σ )

for t > t1.
Thus TS → 0 as τ → 0 or σ → 0 and t → ∞.

Proof. (1) Using (5.13), if ε is any positive number satisfying

(rR + rP)ε < min

{
dS,

rP Pie−dP σ

1 − e−dP σ

}

then there existst1 such that

T ′
S < λ − dSTS − rRTS R − rP TS P + λm R

dS
+ λm P

dS

< λ

(
1 + m

dS

)
− dS TS − rR Ri e−dRτ

1 − e−dRτ
TS − rP Pie−dP σ

1 − e−dP σ
TS + (rR + rP)εTS
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for t > t1. We thus have, using (4.9)

TS(t) <

(
TS(0) − λ(1 + m

dS
)

β(τ, σ )

)
e−β(τ,σ )t + λ(1 + m

dS
)

β(τ, σ )

where

β(τ, σ ) = dS + rR Ri e−dRτ

1 − e−dRτ
+ rP Pie−dP σ

1 − e−dP σ
− (rR + rP)ε

>
rR Ri e−dRτ

1 − e−dRτ
.

Thus

TS(t) < δ(t, τ, σ ) + λ(1 + m
dS

)(1 − e−dRτ )

rR Ri e−dRτ

where

δ(t, τ, σ ) ≡
(

TS(0) − λ(1 + m
dS

)

β(τ, σ )

)
e−β(τ,σ )t .

Note that δ(t, τ, σ ) → 0 ast → ∞ or τ → 0 or σ → 0. The proof of part 2 is
similar. �

THEOREM 5.1. If Ri �= 0, then TI → 0, TP N I → 0, TP I → 0 and TR + TR P →
λ
dS

as t → ∞ and τ → 0, for any fixed σ .

Proof. Using part 2 ofLemma 5.3and (5.12), there existst1 such that

T ′
P N I ≤ rPλ

(
1 + m

dS

)
edPσ + δ(t, τ, σ )rP Pi

1 − e−dP σ
− rR Ri e−dRτ

1 − e−dRτ
TP N I

+ rRεTP N I + m Pλ

dS

for t > t1, whereε is any positive number such that

ε <
Ri e−dRτ

1 − e−dRτ
.

Thus, usingLemma 4.1,

TP N I ≤ rPλ(1 + m
dS

)edP σ + δ(t,τ,σ )rP Pi

1−e−dP σ + λm P
dS

rR Ri e−dRτ − rRε(1 − e−dRτ )
(1 − e−dRτ ) ≡ γ (t, τ, σ )

→ 0

ast → ∞ andτ → 0, for each fixedσ .
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UsingLemma 5.1, part 1 ofLemma 5.3andTheorem 5.1, we have

T ′
I + T ′

P I = rI (TS + TP N I )VI − dI (TI + TP I )

≤ rI nI ωλ

dSdV

[
λ(1 + m

dS
)(1 − e−dRτ )

rR Ri e−dRτ
+ δ(t, τ, σ ) + γ (t, τ, σ )

]

−dI (TI + TP I )

TI + TP I ≤ rI nI ωλ

dSdV dI

[
λ(1 + m

dS
)(1 − e−dRτ )

rR Ri e−dRτ
+ δ(t, τ, σ ) + γ (t, τ, σ )

]

→ 0

ast → ∞ andτ → 0.
UsingLemma 5.1and part 1 ofLemma 5.3, we have

T ′
S + T ′

R + T ′
R P + T ′

P N I = λ − rI (TS + TP N I )VI − dS(TS + TR + TR P + TP N I )

> λ − rI nI ωλ

dSdV

(
λ(1 + m

dS
)(1 − e−dRτ )

rR Rie−dRτ
+ δ(t, τ, σ )

+ γ (t, τ, σ )

)
− dS(TS + TR + TR P + TP N I ).

By the analogue of (4.9), we have

TR + TR P >
λ

dS
− rI nI λ

d2
SdI

(
λ(1 + m

dS
)(1 − e−dRτ )

rR Ri e−dRτ
+ δ(t, τ, σ ) + γ (t, τ, σ )

)

+
[

TS(0) − λ

dS
+ rI nI λ

d2
SdI

(
λ(1 + m

dS
)(1 − e−dRτ )

rR Ri e−dRτ
+ δ(t, τ, σ )

+ γ (t, τ, σ )

)]
e−ds t − TS − TP N I

→ λ
dS

ast → ∞ andτ → 0, for any fixedσ , using the first part of this proof and
Lemma 5.3. �

These results are summarised in the following four cases.

Case (i) Frequent dosing of both drugs. In this case, it follows fromTheorem 5.1
that for a suitably small dosing interval of the reverse transcriptase inhibitor, we
can make the number of reverse transcriptase inhibited cells and doubly inhibited
cells arbitrarily close to the levels of T cells in the uninfected immune system.
From Theorem 5.1andLemma 5.3, all other cells approach zero. ThusTR and
TR P dominate in this case.
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Case (ii) The absence of both drugs. The nontrivial equilibrium is usually stable
(for nI sufficiently large andω not too close to zero) as shown inSection 3. This
corresponds to high levels ofVI and relatively low (or zero) levels ofTS, TI , TR,
TR P , TP N I andTP I . In this case the virus dominates.

Case (iii) The absence of protease inhibitor, frequent dosing of reverse transcrip-
tase inhibitor. In the absence of the protease inhibitor, it follows from model (2.2)
that

T ′
R P + T ′

P N I < −dS(TR P + TP N I )

and henceTR P → 0 ast → ∞. It follows from Theorem 5.1that for a suitably
small dosing interval of the reverse transcriptase inhibitor, we can make the number
of reverse transcriptase inhibited cells arbitrarily close to the levels of T cells in the
uninfected immune system. FromTheorem 5.1, Lemma 5.3and the above, all
other T cells approach zero. ThusTR dominates in this case.

Case (iv) The absence of reverse transcriptase inhibitor, frequent dosing of
protease inhibitor. In this case, it follows from (4.10) and (4.11) that

λ

dI
≤ TI + TP N I + TP I ≤ λ

dS
.

However, typicallydS � dI . Let µ0 denote the minimum number of T cells
required to maintain the immune system. Ifµ0 satisfies

λ

dI
≤ lim

t→∞(TI + TP N I + TP I ) < µ0 <
λ

dS
(5.14)

then there is no dosing schedule that will sustain a healthy immune system.
These cases illustrate the patterns of therapy outcome which may be obtained

in more realistic situations where there are frequent and infrequent dosing of the
drugs, rather than infinite and zero dosing. Case (iii), for example, should approx-
imate the situation where there is reasonably frequent dosing of the reverse tran-
scriptase inhibitor, but infrequent dosing of the protease inhibitor, though not
necessarily an absence of the protease inhibitor.

6. NUMERICAL SIMULATIONS

To illustrate these theoretical results, we performed numerical simulations of a
typical dosing regimen for a reverse transcriptase inhibitor and a protease inhibitor
taken together. We also tested examples of each of the other extreme cases desc-
ribed in the previous section. Equations (2.2)–(2.4) were integrated numerically
using a fourth- and fifth-order Runge–Kutta method, ODE45 in MATLAB (The
Mathworks, Inc.).
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Figure 2. Frequent dosing of both drugs. Typical, frequent dosing of both drugs was simu-
lated by numerical integration as described in the text. Non-infected T cells are maintained
close to the healthy equilibrium value (1000µl−1), largely due to the contribution ofTR .
The left panel plots ofVI andVN I ; the right panel plots the sum ofTS , TR , TR P andTP N I .
The proportions of each type of T cell at the end of the simulation are shown in the inset.
Parameters used werenI = 62.5 day−1 (Haaseet al., 1996), ω = 0.05,rI = 0.0032 day−1,
rP = 0.127µM−1 day−1, rR = 56.1µM−1 day−1, mR = 4.16 day−1, mP = 8.52 day−1,
dV = 3 day−1, dS = 0.1 day−1, dI = 0.5 day−1, dP = 8.32 day−1, dR = 16.6 day−1,
λ = 100 cellsµl−1 day−1, Pi = 11.6 µM, Ri = 7.3 µM, τ = 0.5 days andσ = 0.333
days. Initial conditions wereVI(0) = 100 virionsµl−1, TS(0) = 1000 cellsµl−1 and all
other initial conditions zero.

The parameters describing T cell and virus dynamics in our simulations are
largely straightforward and were taken from the literature; the reader is referred
to Haaseet al. (1996), Perelson and Nelson(1999) andWahl and Nowak(2000)
for details and to the figure legends for specific values. The parameterrI , describ-
ing the infection rate, was determined such thatT0, the equilibrium value ofTS in
the presence of infection but the absence of drug therapy, was about 180 cellsµl−1,
as determined experimentally (Perelson and Nelson, 1999). The other parameters
which are difficult to estimate arerR andrP , which give the fraction of susceptible
T cells which become inhibited by the drug, perµM drug in plasma, per day.
Although the dose–effect curves for these pharmaceuticals are well-established
in vitro, the relations between plasma concentration, intracellular concentration,
and in vitro test concentrations are extremely unclear. Therefore, we have made
the assumption thatCmin, the trough concentration of the drug in plasma during a
typical dosing regimen, is sufficient to inhibit 100% of the T cells in their lifetime.
Note that this assumption will affect the quantitative results for our simulations,
but has no effect on the qualitative behaviour as determined in the four analytical
cases described in the previous section.

Results for a typical dosing regimen are shown inFig. 2. We model the protease
inhibitor indinavir, taken three times daily, and the reverse transcriptase inhibitor
AZT, taken twice a day. Thefigure shows the viral load for both infectious and
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Figure 3. Infrequent dosing of both drugs. The total number of healthy T cells is signifi-
cantly reduced in the absence ofTR andTP N I . All parameters and initial conditions were
the same as inFig. 2, except for the dosing intervals, which wereτ = 30 days andσ =
7 days.

Figure 4. Frequent dosing of the reverse transcriptase inhibitor and infrequent dosing of
the protease inhibitor. As inFig. 2, non-infected T cells are maintained close to the healthy
equilibrium value due to the large contribution ofTR . All parameters and initial conditions
were the same as inFig. 2, except for the dosing intervals, which wereτ = 0.5 days and
σ = 7 days.

non-infectious virions in the left panel, and the total number of non-infected T
cells, perµl plasma, on the right. The inset shows the fraction of T cells in each
of the six possible states. We see that for these parameter values, a healthy T
cell count is maintained, mainly due to a large population of reverse transcriptase
inhibited cells. Note that this picture reflects the best-case scenario for this drug
regimen, with perfect adherence to the prescribed regimen and in the absence of
resistance mutations. This figure corresponds to our theoretical description of case
(i), frequent dosing with both drugs.

Results for the other extreme cases described in the previous section are shown
in Figs. 3–5. In all cases, parameters were the same as forFig. 2, except for
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Figure 5. Frequent dosing of the protease inhibitor, with infrequent dosing of the reverse
transcriptase inhibitor. Despite the presence of theprotease inhibitor at high concentra-
tions, the total healthy T cell population is small. All parameters and initial conditions
were the same as inFig. 2, except for the dosing intervals, which wereτ = 30 days and
σ = 0.333 days.

the dosing intervals. InFigs. 2and4, T cell counts are not far from the healthy
equilibrium valueλ

dS
= 1000, as predicted on theoretical grounds. Nonetheless, the

total number of non-infected cells is higher when both drugs are taken frequently.
In Fig. 5, despite frequent dosing of the protease inhibitor, theTP I levels remained
very low. If µ0 = 200 cells perµl in this example, then there is no dosing schedule
of protease inhibitor which will maintain a healthy immune system.

For case (i)τ = 0.5 days andσ = 0.33 days. For case (ii),τ = 30 days and
σ = 7 days. For case (iii),τ = 0.5 days andσ = 7 days. For case (iv),τ = 30
days andσ = 0.33 days.

7. ESTIMATES OF SUITABLE DOSING INTERVALS

From (4.10), Lemma 4.1(a), (5.12) and (5.13), if ε satisfies

rRε <
rR Ri e−dRτ

1 − e−dRτ

for t > t1, then we have

TS + TP N I ≤ λ

dS
− TR − TR P

T ′
R + T ′

R P = rR R(TS + TP N I ) − dS(TR + TR P) − m R(TR + TR P)

≤ rR R

(
λ

dS
− TR − TR P

)
− (dS + m R)(TR + TR P)
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<
rR Ri

1 − e−dRτ

(
λ

dS
− TR − TR P

)
− (dS + m R)(TR + TR P)

= rR Riλ

(1 − e−dRτ )dS
−
(

dS + m R + rR Ri

1 − e−dRτ

)
(TR + TR P)

TR + TR P <
rR Riλ

dS((dS + m R)(1 − e−dRτ ) + rR Ri )
.

Note that this is a reasonable upper bound, since it satisfies

rR Riλ

dS((dS + m R)(1 − e−dRτ ) + rR Ri )
→ λ

dS

asτ → 0.
Using Lemma 5.2, the analogue ofLemma 4.1(a), (5.13) andTheorem 5.1, if

Ri �= 0, there existst1 such that for any sufficiently smallε > 0, we have

T ′
R + T ′

R P >
rRλRi e−dRτ

(1 − e−dRτ )α(τ, σ )
− εrRλ

α(τ, σ )
− (dS + m R)(TR + TR P)

TR + TR P >
rRλRi e−dRτ

(dS + m R)(1 − e−dRτ )α(τ, σ )
− εrRλ

(dS + m R)α(τ, σ )

for t > t1. Sinceε is small andα(τ, σ ) is usually large (sincenI is usually large)
weshall assume that last term is negligible.

Thus if µ0 is the minimum number of T cells required to maintain a healthy
immune system, then we need to choose dosing intervalsτ andσ to ensure that

µ0 <
rRλRi e−dRτ

(dS + m R)(1 − e−dRτ )

[
rI nI ωλ

dSdV
+ dS + rR Ri

1 − e−dRτ
+ rP Pi

1 − e−dpσ

]−1

.

(7.15)

For example, using parametersnI = 200 virions cell−1 day−1, ω = 0.5, rI =
1/25 cell−1 day−1, rP = 1/10 µM−1 day−1, rR = 15 µM−1 day−1, dV = 2.77
day−1, dS = 0.05 day−1, dP = 1 day−1, dR = 1 day−1, mR = 0.1 day−1,
λ = 100 cells day−1, Pi = 15 µM, Ri = 18 µM, we find that for a frequency of 4
doses per day for both drugs,TR(t)+TR P(t) > 154 cellsµl−1. In contrast when the
dosing frequency is six doses per day, we haveTR(t) + TR P(t) > 213 cellsµl−1.
Thus for these parameter values, doses should be taken about six times per day to
guarantee a T cell count aboveµ0 = 200 cellsµl−1.

Finally, we can assume thatσ = kτ , wherek ∈ Q+. This reflects the fact that
the dosing intervals usually come into phase over a 24 hour period. In this case,
the right-hand side of (7.15) approaches

TR,min ≡ λrR Ri dPk

(dS + m R)(rR Ri dPk + rP Pi dR)
(7.16)
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asτ → 0. Note thatTR,min is strictly less thanλ/dS if the protease inhibitor is
present. This implies that the number of T cells will fall betweenTR,min andλ/dS

when there are suitably small dosing intervals of both drugs.

8. SUMMARY AND DISCUSSION

We present an immunological model of HIV infection in which the different
effects of reverse transcriptase inhibitors and protease inhibitors on the CD4+ T cell
population are considered. The T cells are classified into six classes, as illustrated
in Fig. 1and described in paragraphs (a) through (f) inSection 2.1.

We use impulsive differential equations to model the kinetics of drug action.
Framing our model in these terms allows us to make use of a fairly sophisticated
mathematical literature (Bainov and Simeonov, 1989, 1993, 1995; Lakshmikan-
tham et al., 1989): we find that drug concentrations monotonically approach an
(impulsive) periodic orbit and that for both drugs, this orbit is globally asymptot-
ically stable. This model of drug action, however, compels us to make a num-
ber of simplifying assumptions about the uptake and egress of the drugs. First,
we approximate the change in drug concentration when a new dose is taken as
an instantaneous increase. Although the time-to-peak of plasma drug concentra-
tion is arguably negligible on the timescales we consider, the time course of drug
entry to the intracellular space (for example to cells in lymph tissue) is almost cer-
tainly slower. This assumption has the effect of overestimating the temporal effects
of dosing at intervals. We argue that our conclusions regarding the existence of
various upper and lower bounds will not be affected by this assumption, although
more accurate quantitative estimates will be possible once the intracellular phar-
macokinetics are better understood. Finally, we assume that the anti-viraleffect
of the dose decays exponentially after a dose is taken; while exponential decay is
typical for drug concentrations in plasma, this assumption is clearly less accurate
when the dose–effect curve is non-linear, i.e., for very large or small doses.

Weconsider four extreme cases to examine the effects that large or small dosing
intervals of each drug can have. These four cases demonstrate the importance of
sufficiently frequent dosing intervals, and also illustrate the important differences
between reverse transcriptase and protease inhibitors.

For example, the model predicts that insufficient dosing with both drugs
corresponds to a high viral load and a large population of infectious T cells, as
we would expect. More surprisingly, we predict that sufficiently frequent dosing
with the reverse transcriptase inhibitor alone could theoretically maintain the CD4+
T cell count arbitrarily close to the T cell count in the uninfected immune system.
This limit would only be achievable, however, in the absence of physiological lim-
its on tolerable drug concentrations. This interesting result suggests that new drugs
with a mechanism of action similar to the reverse transcriptase inhibitor (i.e., in
preventing new T cells from becoming infected), but with negligible side effects,
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would hold the promise of maintaining ‘normal’ T cell counts over long periods of
time.

In contrast, for frequent dosing of the protease inhibitor alone, even if the drug
is perfectly efficacious and there are no physiological limits on tolerable drug con-
centrations, it may be impossible to maintain adequate T cell counts for immune
system function. This implies that for drugs with a mechanism of action similar
to the protease inhibitor (i.e., in preventing infected cells from releasing infectious
virions) even extremely high drug concentrations may not be able to adequately
protect and maintain the immune response.

Furthermore, we predict that very frequent dosing of both drugs has the same
net effect on the T cell population as frequent dosing of the reverse transcriptase
inhibitor only. Although the protease inhibitor is critically important in the preven-
tion of antiviral resistance (or when the dosing of the reverse transcriptase inhibitor
is infrequent) there is a sense in which its role is secondary. Intuitively, this is not
surprising, since reverse transcriptase inhibited cells are immune to viral infection,
whereas protease inhibited T cells are not. These results demonstrate the maxim
that prevention is better than cure, in the sense that prevention of infection via
reverse transcriptase inhibition is more important than production of noninfectious
virus via protease inhibition.

These theoretical predictions may appear to be at odds with clinical evidence
that protease inhibitors control HIV more effectively (Ghani et al., 2001). This
is because our result pertains to all possible drugs which either prevent infection
or prevent virion production, and compares these two strategies of defence, in
the absence of resistance. We do not mean to discount the effects of resistance,
but rather we examine dosing regimes for the different drug classes in the hope
that future drugs may be used to combat resistance as effectively as the protease
inhibitor now does.

Finally, we were able to find a condition [equation (7.15)] to relate the periods
of the dosing intervals to the minimum number of T cells required to sustain an
adequate immune response. This is an overestimate, so that if the drugs satisfy this
condition, then the predicted T cell count will be higher than the minimum. Given
quantitative estimates of immune system and drug parameters, this condition may
be used to estimate the dosing frequency of a given combination of drugs which
could, in principle, maintain T cell counts above a desired threshold. Once again,
this dosing frequency may not be attainable due to physiological intolerance at high
drug concentrations.

The classification of the T cells that we propose offers a novel means of eluci-
dating the complex effects of antiviral drug classes and their interactions. There is
much work that can be done using this classification and the impulsive description
of the drug behaviour. Specifically, we would like to examine the effect of adhe-
rence to the drug regime and the emergence of resistance to one or both types of
drug (Wahl and Nowak, 2000), the effects of drug resistance due to other factors
and the possibly different effects of new classes of antivirals (Moyle, 2003). In the
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latter case, the initial descriptions of the new classes of drugs suggests that they
may behave in a similar manner to the class ofTR cells (preventing viral infection
of T cells). If such drugs can be used in combination to overcome resistance then
the major use of the protease inhibitor (namely preventing the emergence of drug
resistance) may be redundant and ‘preventative’ drugs such as reverse transcriptase
inhibitors, integrase inhibitors and fusion inhibitors may be used exclusively, lead-
ing to long-term benefits for the treatment of HIV positive patients.
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