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Abstract

To stimulate the immune system’s natural defenses, a post-infection HIV vaccination program to regularly boost cytotoxic T-lympho-
cytes has been proposed. We develop a mathematical model to describe such a vaccination program, where the strength of the vaccine
and the vaccination intervals are constant. We apply the theory of impulsive differential equations to show that the model has an orb-
itally asymptotically stable periodic orbit, with the property of asymptotic phase. We show that, on this orbit, the vaccination frequency
can be chosen so that the average number of infected CD4+ T cells can be made arbitrarily low. We illustrate the results with numerical
simulations and show that the model is robust with respect to both the parameter choices and the formulation of the model as a system of
impulsive differential equations.
! 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A vaccine that stimulates the cytotoxic T-lymphocyte
(CTL) response represents the best hope for control of
HIV [6,4,12]. CTLs are host cells with the ability to identify
and destroy virally infected cells in the body [14]. CTLs are
activated via specific recognition of viral fragments (called
epitopes), presented by cell-surface molecules [18]. With
proper stimulation and activation, they can eliminate
infected cells and control viral infection [21]. Here, we
model the situation where CTLs can effectively control
the viral infection (by way of reducing the number of
infected cells) when the post-infection vaccine (presenting
the correct viral epitopes) is administered at regular inter-

vals. Results from ongoing clinical trials of such vaccines
are expected by 2011.

We propose a simple impulsive differential equation
model of infected CD4+ T-helper cells and CTLs, with
the mechanism of vaccination described by a fixed pulsing
at regular intervals that activates CTLs. The use of impul-
sive differential equations has recently been proposed to
model dynamic drug concentrations during antiretroviral
therapy [15,16] and is here applied to the question of regu-
lar CTL vaccinations. This framework allows us to capital-
ise on the theory of impulsive differential equations [1–
3,13], facilitating our investigation of pulsed vaccination.

The structure of this paper is as follows: In Section 2, we
develop the model and briefly discuss impulsive differential
equations. In Section 3, we analyse the corresponding non-
impulsive system to determine global stability and phase-
plane portraits. In Section 4, we describe the impulsive
periodic orbit, prove that it is orbitally asymptotically sta-
ble and show that the number of infected T cells is driven
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towards zero, if the vaccine is sufficiently strong, or is given
sufficiently often. In Section 5, we illustrate our results with
numerical simulations and examine the sensitivity of the
results with respect to both the model and parameters.
We conclude with a discussion of the implications.

2. The model

Let T be the density of infected CD4+ T cells and C be
the density of CTLs in the body. We make the simplifying
approximation that these infected CD4+ T cells are pro-
duced at a constant rate, p. This approximation is reason-
able when the amount of free virus is constant, such as in
the clinically asymptomatic period of infection; it becomes
less reasonable in the earliest or latest stages of infection.
Accordingly, we use equilibrium approximation of free
virus to estimate parameters. Infected CD4+ T cells die at
death rate d [11] and are cleared by CTLs at rate p, propor-
tional to the density of each [20]. CTLs proliferate at rate a,
proportional to the density of CTLs and infected CD4+ T
cells, and die at death rate d [19].

We assume that the CTLs are pulsed by the vaccine at
fixed times tk. For the purposes of our model, we assume
that the effect of the vaccine is instantaneous, resulting in
a system of impulsive differential equations, whereby solu-
tions are continuous for t 6¼ tk (satisfying the associated
system of ordinary differential equations) and undergo an
instantaneous change in state when t ¼ tk. This technique
assumes that the change in CTL concentration immediately
after a vaccine is administered is nearly instantaneous; that
is, the time-to-peak is negligible on the relevant time scale.
By neglecting the dispersion and delay as the vaccine enters
the body, we overestimate the temporal effects of vaccinat-
ing at intervals. The implications of this assumption will be
taken up further in Section 5.

Thus, the model is
dT
dt ¼ p" dT " pCT t 6¼ tk

dC
dt ¼ aCT " dC t 6¼ tk

DC ¼ eC t ¼ tk;

ð2:1Þ

where tk ðk ¼ 1; 2; . . .Þ are the vaccination times and where
eC is defined to be the strength of the vaccine, which is pro-
portional to the number of CTLs the vaccine stimulates.
Here, the impulsive effect is defined as

DC % Cðtþk Þ " Cðt"k Þ ¼ eC ;

where Cðt"k Þ is the CTL concentration immediately before
the impulsive effect and Cðtþk Þ is the CTL concentration
immediately after the impulsive effect.

3. The system without vaccination

First, we shall analyse the model when there is no vacci-
nation. In this case, the system has no impulses, so the
dynamics are continuous in both state variables. The
non-impulsive system has two equilibria,

ðT̂ ; ĈÞ ¼ p
d
; 0

! "

ðT ;CÞ ¼ d
a
;
ap" dd

pd

# $
;

which we shall refer to as the trivial and non-trivial equilib-
ria, respectively. The nullclines of the non-impulsive model
are given by

C ¼ 0

T ¼ d
a

T ¼ p
d þ pC

:

Lemma 3.1. The trivial equilibrium is globally asymptoti-
cally stable if and only if the non-trivial equilibrium does not
exist in the positive plane. The non-trivial equilibrium of the
non-impulsive model is globally asymptotically stable when-
ever it exists in the positive plane.

Proof. First, note that the non-trivial equilibrium is only
positive if

ap" dd > 0: ð3:1Þ

The Jacobian matrix for the non-impulsive model is

J ¼
"d " pC "pT

aC aT " d

% &

J jðT̂ ;ĈÞ ¼
"d " pp

d

0 ap
d " d

" #

:

Hence, the trivial equilibrium is unstable if and only if

ap
d
" d > 0:

This is equivalent to existence of the non-trivial equilib-
rium, as shown by Eq. (3.1).

Next,

J jðT ;CÞ ¼
"d " pC "pT

aC 0

" #

:

This matrix has negative trace and positive determinant. It
follows that both eigenvalues are negative and hence that
ðT ;CÞ is asymptotically stable whenever it exists in the po-
sitive plane.

Finally, we have

o
oT

T 0

CT

% &
þ o

oC
C0

CT

% &
¼ o

oT
p" dT " pCT

CT

% &

þ o
oC

aCT " dC
CT

% &
¼ " p

CT 2 :

Since this value is not identically zero and does not change
sign in the positive plane, it follows from the Dulac crite-
rion [10] that there are no periodic orbits in the positive
plane. Since the non-impulsive model is a two-dimensional
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model, there is no higher-order behaviour. It follows that
the stable fixed point is globally asymptotically stable. h

Sample phase-plane portraits for the positive plane are
shown in Fig. 1, illustrating the case where only the trivial
equilibrium is stable (Fig. 1A) and the case where the non-
trivial equilibrium is stable (Fig. 1B).

4. The system with vaccination

The impulsive effect continually ‘interrupts’ the trajecto-
ries in the non-impulsive system, by moving solutions a
fixed distance to the right (see Fig. 2). Define s to be the
duration of time between successive vaccine administra-
tions. Then we can define

T int ¼ e
R s

0
ðaT ðuÞ"dÞdu

: ð4:1Þ

T int is a measure of the difference in CTLs between the
beginning and the end of an impulsive cycle. For a periodic
vaccine administered at times tk (k ¼ 1; 2; . . .), we have
s % tkþ1 " tk, a constant.

Theorem 4.1. Model (2.1) has a positive impulsive periodic
orbit, with one impulse per period. At times of impulse
ftng1n¼0, the endpoints of this impulsive periodic orbit satisfy

Cðt"n Þ ¼
eCT int

1" T int

Cðtþn Þ ¼
eC

1" T int
:

Furthermore, this periodic orbit is orbitally asymptotically
stable and has the property of asymptotic phase.

Proof. From the second equation in model (2.1), we can
write

Z t

0

dC
C
¼
Z t

0

ðaT ðuÞ " dÞdu

CðtÞ ¼ Cð0Þe
R t

0
ðaT ðuÞ"dÞdu

:

ð4:2Þ

It follows that

Cðs"Þ ¼ Cð0ÞT int

CðsþÞ ¼ Cð0ÞT int þ eC :

Suppose CðsþÞ ¼ Cð0Þ. Then

Cð0Þ ¼
eC

1" T int
:

Fig. 1. Sample phase-plane portraits illustrating stable equilibria in the positive plane, for the system without vaccination. (A) When the non-trivial
equilibrium is not in the positive plane, the trivial equilibrium is stable. (B) When the non-trivial equilibrium is in the positive plane, the trivial equilibrium
is unstable and the non-trivial equilibrium is stable. Note that, for visual accessibility, the CTLs are on the x-axis and the infected T cells are on the y-axis.
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Fig. 2. Schematic representation of the impulsive effect. The impulsive
effect ‘interrupts’ the continuous trajectories, moving them a fixed distance
eC horizontally to the right (dashed lines), before resuming their progress.
Consequently, the cycling converges to an impulsive periodic orbit with
one impulse per cycle.

182 R.J. Smith?, E.J. Schwartz / Mathematical Biosciences 212 (2008) 180–187



Author's personal copy

Thus,

CðtÞ ¼
eCe
R t

0
ðaT ðuÞ"dÞdu

1" T int
ð4:3Þ

and hence

Cðs"Þ ¼
eCT int

1" T int

CðsþÞ ¼
eCT int

1" T int
þ eC

¼ Cð0Þ:

It follows that (4.3) defines a impulsive periodic orbit on
the range 0 < t < s, with one impulse per cycle, whose end-

points are eC
1"T int

and
eCT int
1"T int

.

Next, we show that T int < 1. Suppose T int P 1. ThenR s
0 ðaT ðuÞ " dÞdu P 0. It follows from (4.2) that

Cðs"ÞP Cð0Þ. But

CðsþÞ ¼ Cðs"Þ þ eC

) Cð0Þ ¼ Cðs"Þ þ eC

P Cð0Þ þ eC

) eC 6 0:

This is a contradiction, so T int < 1. It follows that the orbit
is positive.

We now apply impulsive Floquet theory to system (2.1)
to establish orbital asymptotical stability of the periodic
orbit and asymptotic phase. We calculate the non-trivial
impulsive Floquet multiplier (see Bainov and Simeonov
[2]). Define

P ðT ;CÞ ¼ p" dT " pCT

QðT ;CÞ ¼ aCT " dC

aðT ;CÞ ¼ 0

bðT ;CÞ ¼ eC ;

with the (differentiable) function / implicitly defined by
f/ðT ðtÞ;CðtÞÞ ¼ 0 : t ¼ tkg. Let ðnðtÞ; gðtÞÞ define the
impulsive periodic orbit. Then

nðt"k Þ ¼ nðtþk Þ ¼ T ðsÞ

gðt"k Þ ¼
eCT int

1" T int

gðtþk Þ ¼
eC

1" T int
:

Therefore, the non-trivial Floquet multiplier is

l2 ¼ D1 exp

Z s

0

oP
oT
ðnðtÞ; gðtÞÞ þ oQ

oC
ðnðtÞ; gðtÞÞ

# $
dt

% &
;

ð4:4Þ

where

D1 ¼
Pþ ob

oC
o/
oT "

ob
oT

o/
oC þ

o/
oT

' (
þ Qþ

oa
oT

o/
oC "

oa
oC

o/
oT þ

o/
oC

' (

P o/
oT þ Q o/

oC

;

P, Q, oa
oT , ob

oT , oa
oC, ob

oC, o/
oT and o/

oC are computed at the
point ðnðt"k Þ; gðt"k ÞÞ and Pþ ¼ P ðnðtþk Þ; gðtþk ÞÞ, Qþ ¼
Qðnðtþk Þ; gðtþk ÞÞ. We thus have

Pþ ¼ p" dnðt"k Þ " pgðtþk Þnðt"k Þ Qþ ¼ anðt"k Þgðtþk Þ " dgðtþk Þ
P ¼ p" dnðt"k Þ " pgðt"k Þnðt"k Þ Q ¼ anðt"k Þgðt"k Þ " dgðt"k Þ;

since nðtþk Þ ¼ nðt"k Þ. In particular,

Q ¼ T intQþ
PþT int ¼ ðp" dnðt"k ÞÞT int " pgðtþk ÞT intnðt"k Þ

¼ ðp" dnðt"k ÞÞT int " pgðt"k Þnðt
"
k Þ;

ð4:5Þ

since gðt"k Þ ¼ gðtþk ÞT int. From the nullclines, T 0ðt"k Þ > 0.
Thus, p" dnðt"k Þ > pgðt"k Þnðt"k Þ > 0. Hence,

PþT int < P ; ð4:6Þ

since T int < 1. It follows, from (4.5) and (4.6), that

D1 ¼
Pþ o/

oT þ Qþ
o/
oC

P o/
oT þ Q o/

oC

<
1

T int
:

We thus have

l2 <
1

T int
exp

Z s

0

oP
oT
ðnðtÞ; gðtÞÞ þ oQ

oC
ðnðtÞ; gðtÞÞ

# $
dt

¼ 1

T int
exp

Z s

0

"d " pgðtÞ þ anðtÞ " dð Þdt

¼ 1

T int
exp "

Z s

0

ðd þ pgðtÞÞdt
# $

exp

Z s

0

ðanðtÞ " dÞdt
# $

¼ 1

T int
exp "

Z s

0

ðd þ pgðtÞÞdt
# $

T int

< 1:

Thus, the non-trivial impulsive Floquet multiplier lies in-
side the unit circle, so the s-periodic orbit is orbitally
asymptotically stable and has the property of asymptotic
phase. h

Remark. While condition (4.2) holds for all solutions, we
have not demonstrated that the periodic orbit is unique.
In particular, there may be periodic orbits with more than
one impulse per cycle. If we generalise (4.1) by defining

T j
int % e

R ðjþ1Þs

js
ðaT ðuÞ"dÞdu

and define

akðnÞ ¼
Yn"1

k¼0

T k
int;

then we have
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CðsþÞ ¼ Cð0ÞT 0
int þ eC

Cð2sþÞ ¼ CðsþÞT 1
int þ eC

¼ Cð0ÞT 0
intT

1
int þ eCðT

1
int þ 1Þ

Cð3sþÞ ¼ Cð0ÞT 0
intT

1
intT

2
int þ eCðT

1
intT

2
int þ T 2

int þ 1Þ

..

.

CðnsþÞ ¼ Cð0Þa0ðnÞ þ eCða1ðnÞ þ a2ðnÞ þ ' ' ' þ an"1ðnÞ þ 1Þ:

Thus, it is possible that the sequence fCðksþÞg may di-
verge, or that there is an nth-order impulsive periodic orbit.
Such an orbit would satisfy (4.2) and the conditions

Cð0Þ ¼
eCða1 þ a2 þ ' ' ' þ an"1 þ 1Þ

1" a0

CðjsþÞ ¼ Cð0Þa0ðjÞ þ eCða1ðjÞ þ a2ðjÞ þ ' ' ' þ aj"1ðjÞ þ 1Þ
ðj ¼ 1; 2; . . . ; nÞ:

However, numerical simulations did not show any higher-
order periodic orbits for the parameter range under consid-
eration, so we restrict the remainder of our attention to the
first-order periodic orbit.

Theorem 4.2. Define the average infected T cell strength to
be the average number of infected CD4+ T cells during a sin-
gle cycle of the impulsive periodic orbit, given by

T av %
1

s

Z s

0

T ðuÞdu:

Then, on the impulsive periodic orbit given in Theorem 4.1,
we have

lim
s!0

T av ¼ lim
eC!1

T av ¼ 0: ð4:7Þ

Proof. Since T ðt"k Þ ¼ T ðtþk Þ ¼ T ðtkÞ, it follows that, for any k,
dT
dt
ðt"k Þ ¼ p" dT ðtkÞ " pCðt"k ÞT ðtkÞ

dT
dt
ðtþk Þ

¼ p" dT ðtkÞ " pCðtþk ÞT ðtkÞ

¼ p" dT ðtkÞ " pðCðt"k Þ þ eCÞT ðtkÞ

¼ dT
dt
ðt"k Þ " peCT ðtkÞ:

Thus,
dT
dt
ðtþk Þ <

dT
dt
ðt"k Þ: ð4:8Þ

Furthermore, from the nullclines, in the positive plane
dT
dt ¼ 0 only when T ¼ p

dþpC. Thus, since dC
dt < 0 within each

cycle, it follows that T has at most one turning point per
cycle. From (4.8), this turning point must be a minimum
and dT

dt ðt
"
k Þ > 0.

Next, note that

lim
s!0

Cð0þÞ ¼ lim
s!0

eC

1" e
R s

0
ðaT ðuÞ"dÞdu

¼1

and lim
s!0

Cðs"Þ ¼ lim
s!0

eCe
R s

0
ðaT ðuÞ"dÞdu

1" e
R s

0
ðaT ðuÞ"dÞdu

¼1:

We have

lim
s!0

T av ¼ lim
s!0

1

s

Z s

0

T ðuÞdu

¼ lim
s!0

T ðsÞ:

Suppose that lims!0T ðsÞ 6¼ 0. Then

lim
s!0

dT
dt
ðsÞ ¼ lim

s!0
p" dT ðsÞ " pCðsÞT ðsÞð Þ

¼ "1:

However, this is a contradiction, since dT
dt ðsÞ > 0 for s > 0.

It follows that lims!0T ðsÞ ¼ 0 and hence

lim
s!0

T av ¼ 0:

Finally, note that, on 0 < t < s, CðtÞ > Cðs"Þ. Thus,

lim
eC!1

CðtÞP lim
eC!1

Cðs"Þ

¼ lim
eC!1

eCT int

1" T int

¼1:

Thus,

lim
eC!1

dT
dt
¼ lim
eC!1
ðp" dT " pCT Þ ¼ "1

unless limeC!1T ¼ 0. Hence,

lim
eC!1

T av ¼
1

s

Z s

0

lim
eC!1

T ðuÞdu

¼ 0: !

Remark. It follows that the number of infected T cells can
theoretically be kept as low as desired, by appropriate
choice of vaccine strength eC and/or period s. Thus, infec-
tion can theoretically be kept arbitrarily low (ignoring
latently infected cells and other reservoirs), assuming a suf-
ficiently strong vaccine or sufficiently frequent vaccinations
(although the impulsive assumptions break down as the
limit approaches zero).

5. Simulations

To illustrate the theorem, parameter values from the lit-
erature were used (see Table 1). All parameters can be
found in published studies, except p. In a model of de Boer
and Perelson [8], the production of infected CD4+ T cells is

Table 1
Parameters used

Parameter Value Units Reference

p 1.5 cells day"1 lL"1 [8]
d 0.5 day"1 [9]
p 0.05 lL cells"1 day"1 [5]
a 0.067 lL cells"1 day"1 [8]
d 0.2 day"1 [8]
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given by the term bV , where b ¼ 0:015 is the infection rate
and V represents the (non-constant) density of infectious
virions (Eq. (9) in that reference). At equilibrium values,
V ¼ 100, suggesting that p ¼ bV ¼ ð0:015Þð100Þ ¼
1:5 cells day"1 lL"1. Thus, our estimates assume approxi-
mate equilibrium concentrations of free virus.

A CTL boost of 35 cells/lL administered every 120 days
produces an average of 2.02 infected CD4+ T cells/lL
(Fig. 3). Conversely, the same CTL boost administered
every 14 days produces an average of 1.07 CD4+ T cells/
lL (Fig. 4). All other parameters are as in the Table 1.

It should be noted that these results depend primarily
upon two factors: (a) the choice of an impulsive model to
approximate the CTL boost and (b) sensitivity to parame-
ter variation. Consequently, we explore the sensitivity of
our results to each factor.

Activation of CTLs may be delayed by up to ten days
after HIV infection [7]. Thus, the impulsive approximation
by instantaneous activation may be too coarse. To explore
this, we ran numerical simulations that overestimated this
delay to 14 days (see Fig. 5). Specifically, the non-impulsive
model (dashed curve) activated linear growth of CTLs
14 days before the instantaneous effect of the impulsive
model (solid curve). While the trajectories were out of
phase during this delay period, they came back into phase
quite rapidly afterwards. Furthermore, the average infected
T cell concentration was lower in the non-impulsive model
(dashed horizonal line) than for the impulsive model (solid
horizontal line).

To explore sensitivity of our results to parameter varia-
tion, we varied each parameter individually, while holding
all others at mean values. Our output was the average num-
ber of infected T cells (see Fig. 6). In each case, the mean

value on the x-axis (dashed line) is the value used in the
Table 1. Since the slope of each graph is quite mild, the
model is robust with respect to parameter choices. If d, p
or a increase, then the average number of infected T cells
is reduced slightly, whereas if these parameters are
decreased, then the average number of infected T cells is
increased slightly.

It is well established that small variations in death rates
have large effects on the outcome [17], so the sensitivity
curve for d is not unexpected. Furthermore, of all parame-
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Fig. 3. A CTL boost of 35 cells/lL administered every 120 days produces
an average infected T cell concentration of 2.02 cells/lL. (A) CTL
concentrations, with initial values of 1.7 cells/lL, showing impulsive
(discontinuous) vaccination and approximately exponential decay. (B)
Infected T cell concentrations, with initial values of 2.8 cells/lL. Note that
tractories in this case are continuous (although their derivatives are not).
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Fig. 4. A CTL boost of 35 cells/lL administered every 14 days produces
an average infected T cell concentration of 1.07 cells/lL. All other
parameters are as in Fig. 3. Note that this figure illustrates the convergence
of the impulsive periodic orbit, as well as the fact that the infected T cell
concentration can be kept low with sufficiently frequent vaccination.
However, it should be noted that this is an extremely short vaccination
interval, of the same order of magnitude as the CTL activation period, and
thus the impulsive assumptions would break down in reality.
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Fig. 5. Comparison of the impulsive model with a non-impulsive
activation effect. The impulsive model (solid curve) resembles the infected
T cell trajectories from Fig. 3B. The non-impulsive model (dashed curve)
followed the same differential equations except that the impulsive effect
was replaced by a linear growth function for the CTLs, activated 14 days
earlier. Not only do the trajectories come into phase quite quickly, the
average infected T cell concentration from the non-impulsive model is
lower than that estimated by the impulsive model.
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ters, the death rates have been most carefully analysed in
the experimental literature, so we have reasonable faith in
the accuracy of these rates.

Increasing p, the production rate of infected T cells,
would obviously increase the average number of infected
T cells. However, in the context of an infected individual
undergoing a CTL vaccination program, it is more likely
that we would see a decreased value of p, at least during
the long asymptomatic phase the disease. This is because
the vaccination program lowers the number of infected
cells, which consequently would produce fewer viral par-
ticles to infect cells. Subsequently, we would see a
reduced average number of infected T cells. Such a
reduction of p may offset any variation in the other
parameters, further reinforcing the robustness of the
parameter choices.

6. Discussion

A CTL vaccine pulsed at regular intervals can keep the
average number of infected CD4+ T cells arbitrarily low,
by choosing appropriate vaccination intervals and strength
of the vaccine.

While impulsive differential equations are a useful tool
for mathematical analysis, it should be noted that these
results rely upon the assumption that the change in CTL
concentration is instantaneous. Such approximations are
valid so long as the impulsive cycle time is large compared
to the rapid change being approximated. This case, this

approximation has the effect of overestimating the average
infected CD4+ T cell concentration and hence does not
affect our conclusions.

In this case, the approximation is a coarse one: CTLs
may take up to 10 days to be stimulated; nevertheless,
Fig. 5 demonstrates that this timescale is still short, com-
pared to a vaccination interval of the order of months, or
more. Thus, our results are less valid for extremely short
vaccination intervals (of the order of weeks). However,
vaccination programs with extremely short intervals are
unlikely to be implemented in practice.

Although we have shown that the impulsive periodic
orbit exists, is positive, is orbitally asymptotically stable
and has the property of asymptotic phase, it does not nec-
essarily follow that all trajectories with appropriate initial
conditions will necessarily approach this orbit; there may
be higher-order periodic orbits or more complex attractors,
which are theoretically possible with two-dimensional
impulsive orbits. However, numerical simulations did not
show any such behaviour. Furthermore, the application
of impulsive Floquet multipliers to determine stability is
straightforward for two-dimensional systems, as here, or
systems that can be reduced to two-dimensional systems
(see also [17]), but are less useful for higher-order systems.

The fact that infected CD4+ T cell concentrations vary
significantly throughout each impulsive cycle (Figs. 3 and
4) has implications for how patients are monitored and
suggests that the progress of patients should be monitored
carefully, especially at the time just before vaccination
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when the infected T cell concentration is expected to be
maximal.

Furthermore, the assumption that infected CD4+ T cells
are produced at a constant rate becomes less valid if the
vaccination program is successful. However, the rate of
production of infected T cells is likely to decrease due to
the effects of the vaccine. This reduction may offset the var-
iation due to random fluctuations in the other parameters.

Further work will investigate the effects of non- or par-
tial-adherence to the vaccine. The effects of full adherence
to the vaccine, but with fluctuating vaccination dates will
also be investigated. We will also examine the case when
the rate of production of infected CTLs varies with the
level of CTL killing, as well as the effects that antiretroviral
therapy will have in conjunction with such a vaccine.

In conclusion, a post-infection CTL vaccine would be
highly desirable, assuming perfect patient adherence. Such
a vaccine would, at the very least, offer an alternative to the
daily pill burden of antiretroviral drug therapy.
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