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a b s t r a c t

The growing number of reported avian influenza cases has prompted awareness of the
effectiveness of pharmaceutical or/and non-pharmaceutical interventions that aim to
suppress the transmission rate. We propose two Filippov models with threshold pol-
icy: the avian-only model with culling of infected birds and the SIIR (Susceptible–
Infected–Infected–Recovered)modelwith quarantine. The dynamical systems of these two
models are governedbynonlinear ordinary differential equationswithdiscontinuous right-
hand sides. The solutions of these two models will converge to either one of the two en-
demic equilibria or the sliding equilibrium on the discontinuous surface.We prove that the
avian-only model achieves global stability. Moreover, by choosing an appropriate quaran-
tine threshold level Ic in the SIIR model, this model converges to an equilibrium in the
region below Ic or a sliding equilibrium, suggesting the outbreak can be controlled. There-
fore a well-defined threshold policy is important for us to combat the influenza outbreak
efficiently.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, a new bird flu H7N9 has been reported as a threat to the public health across China. As an early stage of pre-
caution, the China Health and Family Planning Commission has alerted the WHO (World Health Organization) about this
infection [1,2]. Further, epidemiological investigations have been carried out to identify the root of the infection so that the
disease can be controlled in themost effective and efficient way [2]. The public are also advised to take care of their personal
hygiene, avoiding any contact with the sick or bird carcasses, reducing contact with wild birds and limiting unnecessary vis-
its to poultry farms [3,2]. Humans can be infected by avian influenza through direct contact with dead or infected poultry
and wild birds. People who have been infected by avian influenza may initially develop several symptoms such as fever,
sore throat, muscle aches, cough, having breathing difficulties and conjunctivitis [4–6].

The spread of the new highly pathogenic avian influenza A viruses has not only triggered a major loss of life but has also
cost a significant amount of money. Governments worldwide have spent billions of dollars to treat the infected patients
and invest in prevention to control the disease [7]. Thus it is crucial to identify any possible effective control measures that
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can eradicate the disease or at least to bring down the impact of the outbreak to a minimum level. That is, minimizing the
number of infected is always a priority.

A significant number of mathematical modeling studies have been initiated to evaluate the effectiveness and the role
of control measures in combating avian influenza [8–13]. Ferguson et al. [14] examined the effectiveness of targeted
prophylaxis antiviral drug and social distancingmeasures in fighting an emerging influenza outbreak in Southeast Asia. Nuño
et al. [15] assessed the basic public-health control strategies (such as using protective tools like gloves andmasks, isolation in
hospital wards and quarantine of suspected patients) in order to minimize the infection rate in hospitals and communities.
The use of antiviral drugs and vaccination in combating a potential flu pandemic had also been discussed. Gulbudak
and Martcheva [16] incorporated various approaches to culling of domestic birds: mass, modified and selective culling
approaches. They concluded that, besides culling of domestic birds, timely employment of temporary control methods such
as separation of poultry from wild birds, increasing biosecurity and prohibiting poultry movement and hatching eggs will
either reduce the number of infected domestic birds or eradicate the disease in poultry.

Further, Agusto [17] applied optimal control theory to a system of ordinary differential equations to describe the trans-
mission of two-strain avian influenza. Isolation of individuals with avian and mutant strains is represented by a pair of con-
trol variables. Moreover, cost-effectiveness of all possible combinations of the control measures is calculated. The results
show that the combination strategy of isolating individualswith both avian andmutant strains is themost cost-effectiveness
and provides more benefits towards disease eradication compared to only using one control strategy. Chong et al. [18] sug-
gested that a combination of pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) in-
terventions can combat avian influenza more effectively.

Several conventional control methods such as pharmaceutical or non-pharmaceutical interventions may be employed
if the number of infected individuals exceeds a certain tolerant threshold, say Ic , in order to control or suppress the
transmission rate of an emerging infectious disease. Thus, whenever the number of infected is below the threshold level
Ic , the infection is considered tolerable. However, once the number of infected reaches Ic , we assume that an outbreakmight
occur. Henceforth, we call this type of disease management strategy a threshold policy [19–21].

Xiao et al. [22] extended the classical SIR model to a Filippov SIR model incorporating behavioral change of general
individuals and implementation of necessary control measures by public authorities. They showed that the model solutions
will either converge to one of the two endemic equilibria or the sliding equilibrium on the discontinuous surface. In order to
preclude the outbreak or to stabilize the infection at a desired level, Xiao et al. suggested that choosing a proper combination
of threshold level and control intensities is crucial.

Tang et al. [19] designed a piecewise HIV virus dynamic model with CD4+ T cell counts to evaluate the strategies of
structured treatment interruptions (STIs) of antiretroviral therapies. The dynamic models for drug-on and drug-off states
with a single threshold and two thresholds (i.e., threshold window) are studied. Both models for STIs with single thresh-
old and threshold window show that the CD4+ T cell counts are preserved above a safe level. However, numerical results
show that, by picking different lower and upper tolerant thresholds, it will either converge to a stable level or fluctuate.
To conclude, an appropriate tolerant threshold of CD4+ T cell counts and an individualized STI strategy based on the ini-
tial value of CD4+ T cell counts for each individual patient are essential to compute the duration of drug on/off states for a
patient.

In addition, Zhao et al. [23] proposed two Filippov plant disease models with cultural control strategy; a plant-disease
model with replanting and roguing, and a Lotka–Volterra Filippov plant disease model with proportional planting rate. For
the former model, a roguing rate that is proportional to the number of infected plants is considered. The global dynamic
behavior of these models is discussed. Further, the global stability of five types of equilibria is thoroughly investigated.

An HPAI (highly pathogenic avian influenza) outbreak brings losses to the poultry business especially in commercialized
poultry-processing industries. Besides the great loss in these business ventures, a significant number of birds will be de-
stroyed [24,25]. The H5N1 outbreak in Hong Kong during 1997 caused an estimated loss of $13 million and the culling
of 1.4 millions birds. In the 2001 H5N1 outbreak in Hong Kong, 1.2 million birds were killed, resulting in a total loss
of $3.8 million. The H7N7 outbreak in 2003 in several European countries caused a loss of $314 million and 30 million
birds [26,27].

HPAI viruses (H5 andH7 subtypes) usually cause infection among common bird species, such as chickens, ducks, pigeons,
quails, turkeys and others. HPAI viruses can result in a very high mortality rate (90%–100%). Avian influenza viruses can be
found mostly in the feces, saliva and nasal secretions of birds. Due to limited space of birds in the farm, avian influenza
viruses can be spread easily among poultry flocks through aerosol or fecal-oral route [8,26,28]. Poultry, mainly chicken
meat and eggs, are a valuable source of protein for many people, especially for lower-income groups, since chicken meat is
the cheapest of all farm animals [29]. Hence, it is important for us to study avian influenza infections.

Here wewould like to propose twomathematical models with piecewise control strategy that relate to threshold policy:
an avian-onlymodel with culling of infected birds as a control strategy in Section 2 and an SIIRmodel with quarantine as the
control measure in Section 3. The dynamical systems of these two models are governed by nonlinear ordinary differential
equations with discontinuous right-hand sides. The local asymptotic stability of disease-free and endemic equilibria in
the regions below and above the threshold level are analyzed in each model. Further, the existence of a sliding mode, its
dynamics and the global stability of the equilibria (if it exists) will also be investigated in eachmodel. Finally, wewill discuss
the implications of our results in Section 4.
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2. The avian-only model with culling of infected domestic birds

In this section, we consider an avian-onlymodel incorporating culling of infected birds as a control strategy. Herewe only
consider domestic birds for the avian population. In order to manage the disease, the number of infected birds is used as
an index of reference in applying the control strategy. The disease is considered to be manageable and the implementation
of control methods is not required if the number of infected birds is below the tolerant threshold IT . However, the action
of culling the infected birds has to be employed immediately when the number of the infected birds exceeds the threshold
level IT . This action is essential to control the outbreak before the situation becomes more severe.

The avian-only model is driven by two compartments: susceptible domestic birds (Sd) and infected domestic birds (Id).
The total population of domestic birds, Nd(t), is the sum of Sd(t) and Id(t) at time t . Here, we represent the bird inflow,
natural death and disease death by the parametersΛd, µd and dd, respectively. The differential equations for this model are
formulated as follows:

S ′

d(t) = Λd − βdSdId − µdSd
I ′d(t) = βdSdId − (µd + dd)Id − udcId

(2.1)

with

ud =


0 for Id < IT ⇔ σd(Id) = Id − IT < 0
1 for Id > IT ⇔ σd(Id) = Id − IT > 0,

(2.2)

where IT > 0 is the tolerance threshold, βd is the rate at which domestic birds contract avian influenza and c is the culling
rate of infected domestic birds.

Moreover, we divide (Sd, Id) ∈ R2
+
into three regions as follows:

G1d := {(Sd, Id) ∈ R2
+
; Id < IT }

G2d := {(Sd, Id) ∈ R2
+
; Id > IT }

Md := {(Sd, Id) ∈ R2
+
; Id = IT }.

We define the normal vector perpendicular toMd as nd = (0, 1)T and the right-hand sides of (2.1) in region Gid are denoted
by fid for i = 1, 2, where

f1d = f1d(Sd, Id) =


Λd − Sd(βdId + µd)
Id [βdSd − (µd + dd)]


f2d = f2d(Sd, Id) =


Λd − Sd(βdId + µd)

Id [βdSd − (µd + dd + c)]


.

Lemma 2.1. The set Dd =


(Sd, Id) ∈ R2

+
; Sd + Id ≤

Λd
µd


is a positively invariant and attracting region for model (2.1)with any

given initial conditions in R2
+
.

Proof. By adding both S ′

d(t) and I ′d(t) of model (2.1), we get

N ′

d = Λd − µdSd − (µd + dd)Id − udcId ≤ Λd − µdNd. (2.3)

Solving (2.3) by using an integrating factor, we obtain t

0

d
dζ


Ndeµdζ


dζ =

 t

0
Λdeµdζdζ

Nd(t)eµdt = Nd(0)+
Λd

µd


eµdt − 1


Nd(t) ≤

Λd

µd
if Nd(0) = Sd(0)+ Id(0) ≤

Λd

µd
.

Thus we obtain Nd(t) ≤
Λd
µd

if Nd(0) ≤
Λd
µd

. Hence the region Dd is positively invariant.
Next, to show that Dd is an attracting region for model (2.1), let Nd(t) >

Λd
µd

and Λd
µd

= ψd =⇒ Λd = µdψd. From (2.3),
we have

N ′

d ≤ Λd − µdNd = µd(ψd − Nd) < 0.

We infer that the total population of domestic birds (i.e.,Nd = Sd+ Id) of (2.1) is bounded by Λd
µd

. Moreover, every solution
of model (2.1) with initial conditions in Dd will remain in Dd for t > 0. It is noteworthy to mention that every solution with
initial conditions in R2

+
\ Dd will approach Dd as t → ∞. Hence the ω-limit sets of (2.1) are contained in Dd. �



N.S. Chong, R.J. Smith? / Nonlinear Analysis: Real World Applications 24 (2015) 196–218 199

Since Dd is a positively invariant and attracting region for model (2.1), the solution of model (2.1) exists in Dd∀t > 0 and
this model is mathematically and epidemiologically well-posed in Dd [30]. So it is sufficient to consider the dynamics of this
model in Dd.

2.1. Analysis in region G1d

In this section, we begin with the calculation of the basic reproduction number and then analyze the stability of the equi-
libria in region G1d. The dynamics in region G1d can be described by the following nonlinear ordinary differential equations:

S ′

d(t)
I ′d(t)


=


Λd − βdSdId − µdSd
βdSdId − (µd + dd)Id


≡ f1d. (2.4)

There are two equilibria involved in (2.4), the DFE (disease-free equilibrium), E10d = (Sd, Id) =


Λd
µd
, 0

and a unique

positive EE (endemic equilibrium), E11d =


µd+dd
βd

,
Λdβd−µd(µd+dd)

βd(µd+dd)


. The basic reproduction number (see [31,32] for further

details) for model (2.4), R1d, is given as follows:

R1d =
Λdβd

µd(µd + dd)
.

In addition, we would like to show that the DFE and EE of model (2.4) achieve local asymptotic stability in the following
theorems, and the Jacobian matrix for this model is

J1d (Sd, Id) =


−βdId − µd −βdSd

βdId βdSd − (µd + dd)


.

Theorem 2.2. The DFE, E10d, of model (2.4) is locally asymptotically stable if R1d < 1.

Proof. By solving the characteristic equation |J1d(E10d)− λI| = 0, we obtain

(−µd − λ)


Λdβd

µd
− (µd + dd)− λ


= 0 =⇒ λ = −µd < 0

λ =
Λdβd − µd(µd + dd)

µd
< 0

if R1d < 1. We conclude that, at the DFE, all eigenvalues of (2.4) are negative if R1d < 1. Hence E10d is locally asymptotically
stable if R1d < 1. �

Theorem 2.3. The EE, E11d, of model (2.4) is locally asymptotically stable if R1d > 1.

Proof. The eigenvalues of J1d(E11d) are

λ =
1
2


−

Λdβd

µd + dd
±

√
11d


where11d =


Λdβd

µd + dd

2

− 4

Λdβd − µd(µd + dd)


.

If R1d > 1, we obtainΛdβd −µd(µd + dd) > 0. Thus all λ are complex eigenvalues with negative real parts if11d < 0 since

all associated parameters are positive. Otherwise, if11d > 0, then11d <

Λdβd
µd+dd

2
, so all λ are negative real numbers.

It follows that E11d is either a stable spiral or stable node. Hence E11d achieves local asymptotic stability whenever
R1d > 1. �

2.2. Analysis in region G2d

A similar analysis as shown in Section 2.1will be carried out in this section. The following equations describe the dynamics
in region G2d.

S ′

d(t)
I ′d(t)


=


Λd − βdSdId − µdSd

βdSdId − (µd + dd + c)Id


≡ f2d. (2.5)

In G2d, we found two equilibria: the DFE, E20d = (Sd, Id) =


Λd
µd
, 0

, and a unique positive EE, E21d =


µd+dd+c

βd
,

Λdβd−µd(µd+dd+c)
βd(µd+dd+c)


. Moreover, the basic reproduction number (refer to [31,32] for further details) for model (2.5), R2d, is

thus

R2d =
Λdβd

µd(µd + dd + c)
.
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Further, the local asymptotic stability of the DFE and EE of model (2.5) are shown in the following theorems.

Theorem 2.4. The DFE E20d of model (2.5) is locally asymptotically stable if R2d < 1.

We use a similar method as in the proof of Theorem 2.2 to demonstrate that all eigenvalues of (2.5) at E20d are negative or
have negative real parts whenever R2d < 1. Therefore, we claim that E20d is locally asymptotically stable if R2d < 1.

Theorem 2.5. The EE E21d of model (2.5) is locally asymptotically stable if R2d > 1.

The same method as Theorem 2.3 can be used to prove Theorem 2.5, so we omit the proof here.

2.3. Existence of a sliding mode and its dynamics

Definition 2.1 ([23]). If ⟨nd, f1d⟩ > 0 and ⟨nd, f2d⟩ < 0 onΩd ⊂ Md, thenΩd is the sliding region.

Types of regions on discontinuity surfaces are given in Appendix A.
The existence of a sliding mode is assured if ⟨nd, f1d⟩ > 0 and ⟨nd, f2d⟩ < 0. In this case, we have

⟨nd, f1d⟩ > 0 if Sd > h1d ≡
µd + dd
βd

and ⟨nd, f2d⟩ < 0 if Sd < h2d ≡
µd + dd + c

βd
.

Note that we have h1d < h2d whenever c > 0. So the sliding domainΩd ⊂ Md is defined as follows:

Ωd =


(Sd, Id) ∈ Md;

µd + dd
βd

< Sd <
µd + dd + c

βd


= {(Sd, Id) ∈ Md; h1d < Sd < h2d} .

Next, we find the sliding mode equations using Filippov convex method [33,34], which is demonstrated as follows:

fd = αf1d + (1 − α)f2d where fd =


S ′

d(t)
I ′d(t)


and α =

⟨nd, f2d⟩
⟨nd, f2d − f1d⟩

∴ fd =


S ′

d(t)
I ′d(t)


=


Λd − βdSdId − µdSd

0


.

(2.6)

Since the sliding mode only exists on Ωd ∈ Md and there is no change of Id with respect to time t , we can rewrite (2.6) on
Ωd in following manner.

S ′

d(t) = Λd − βdSdIT − µdSd. (2.7)

The sliding equilibrium, Ed =


Λd

βdIT+µd
, IT

, is a unique pseudoequilibrium (refer to Appendix B for further discussion of

types of equilibrium points for a Filippov system) if

µd + dd
βd

<
Λd

βdIT + µd
<
µd + dd + c

βd
. (2.8)

By manipulating (2.8), we infer that Ed lies onΩd if

h3d ≡
Λdβd − µd(µd + dd + c)

βd(µd + dd + c)
< IT <

Λdβd − µd(µd + dd)
βd(µd + dd)

≡ h4d.

In conclusion, Ed is locally asymptotically stable on Ωd since ∂
∂Sd
(Λd − βdSdId − µdSd) = −βdIT − µd < 0 where

µd, βd, IT > 0; i.e., the eigenvalue of (2.7) is negative.

2.4. Global stability of the endemic equilibria

We divide (Sd, Id) ∈ R2
+
into three regions, G1d,Md and G2d. For each region, there exists equilibrium points, Ed, E11d and

E21d, which are located in regions Md,G1d and G2d, respectively. In this section, we represent Ed, E11d, E21d and the initial
point in Figs. 2–6 by symbols ◦, •,× and �, respectively. Next, the stability of equilibria Ed, E11d and E21d is discussed in the
following subsections and some numerical simulations have been shown to depict the stability of the equilibrium point. All
parameters are given in Table 1, unless otherwise stated.

2.4.1. Case 1: E11d and E21d are virtual equilibria if h3d < IT < h4d

Let us denote the virtual equilibria E11d and E21d as EV
11d and EV

21d. These two equilibria are located in regions G2d and G1d,
respectively. In this case, we claim that Ed ∈ Ωd ⊂ Md is globally asymptotically stable if h3d < IT < h4d in the following
theorem. So if a limit cycle does not exist in model (2.1), then our claim is valid.
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Table 1
Avian-only model (2.1) parameters.

Parameter Description Sample value Units Reference

Λd Bird inflow 2060
365 Individuals per day [35]

µd Natural death of birds 1
2×365 per day [36]

βd Rate at which birds contract avian influenza 0.4 per individual per day [37]
dd Disease death rate due to avian influenza in birds 0.1 per day [36]
c Culling rate of infected birds 1.5 per day Assumed

Theorem 2.6. Ed ∈ Ωd ⊂ Md is globally asymptotically stable if h3d < IT < h4d.

Proof. Let g1 = Λd−βdSdId−µdSd, g2 = βdSdId−(µd+dd)Id, g3 = βdSdId−(µd+dd+udc)Id and g4 = βdSdId−(µd+dd+c)Id.
Consider a Dulac function, B(Sd, Id) =

1
SdId

for regions Id < IT and Id > IT where IT > 0 and (Sd, Id) ∈ R2
+
.

For regions Id < IT and Id > IT , we obtain

∂(Bg1)
∂Sd

+
∂(Bg3)
∂ Id

=
∂

∂Sd


Λd

SdId
− βd −

µd

Id


+

∂

∂ Id


βd −

µd + dd + udc
Sd


= −

Λd

S2d Id

< 0 ∀(Sd, Id) ∈ R2
+

\ Md. (2.9)

We refer to [22], which has demonstrated that Dulac’s theorem (see Theorem C.3 in Appendix C for more details) can be
used to prove the non-existence of a limit cycle for a discontinuous dynamical system. In this case, the dynamical system
(2.1) with (2.2) is discontinuous at the line Id = IT and (2.9) is satisfied for Id ≠ IT . In order to show the non-existence of limit
cycle Γ that surrounds the sliding equilibrium Ed, we have to show that


Gid


∂(Bg1)
∂Sd

+
∂(Bg3)
∂ Id


dSddId < 0 for i = 1, 2, by

Green’s Theorem.We would like to show this by contradiction. Assume that there exists a limit cycle Γ that passes through
the discontinuous manifoldMd containing Ed and the sliding domainΩd in its interior. Suppose this limit cycle Γ has period
T and direction as shown in Fig. 1. Let us denote the intersection points of Γ and Md (i.e., the line Id = IT ) as P and Q ,
the intersection points of Γ and the line Id = IT − δ as P1 = P + a1(δ) and Q1 = Q − a2(δ), and the intersection points
of Γ and the line Id = IT + δ as P2 = P + b1(δ) and Q2 = Q − b2(δ) where δ > 0 is sufficiently small. Moreover, we
assume that a1(δ), a2(δ), b1(δ) and b2(δ) are continuous with respect to δ and limδ→0 ai(δ) = limδ→0 bi(δ) = 0 for i = 1, 2
are satisfied. The region G1d is bounded by Γ1 and segment P1Q1, whereas the region G2d is bounded by Γ2 and segment
P2Q2. Furthermore, the nonlinear ordinary differential equations in region G1d are denoted by g1 and g2. Let ∂G1d denote the
boundary of G1d. By Green’s Theorem, we obtain the following:

G1d


∂(Bg1)
∂Sd

+
∂(Bg2)
∂ Id


dSddId =


G1d

∂(Bg1)
∂Sd

dSddId +


G1d

∂(Bg2)
∂ Id

dSddId

=


∂G1d

(Bg1)dId −


∂G1d

(Bg2)dSd

=


Γ1

Bg1dId +


−−→
Q1P1

Bg1dId −


Γ1

Bg2dSd +


−−→
Q1P1

Bg2dSd


=


Γ1


Bg1 · g2 − Bg2 · g1


dt −


−−→
Q1P1

Bg2dSd

= −


−−→
Q1P1

Bg2dSd (2.10)

where dSd
dt = g1 =⇒ dSd = g1dt,

dId
dt = g2 =⇒ dId = g2dt and there are no changes of Id in the segment P1Q1 =⇒

−−→
Q1P1

Bg1dId =
 IT−δ

IT−δ
Bg1dId = 0.

Similarly, in G2d the dynamical system is represented by g1 and g4. By Green’s Theorem, we have
G2d


∂(Bg1)
∂Sd

+
∂(Bg4)
∂ Id


dSddId = −


−−→
P2Q2

Bg4dSd. (2.11)

Suppose G20 ⊂ G2d. Let ζ =


G20


∂(Bg1)
∂Sd

+
∂(Bg4)
∂ Id


dSddId =


∂G20


Bg1dId − Bg4dSd


< 0 from (2.9). Thus we have

0 > ζ > −


−−→
Q1P1

Bg2dSd +


−−→
P2Q2

Bg4dSd


. (2.12)
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Fig. 1. Limit cycle Γ .

Fig. 2. Ed ∈ Ωd ⊂ Md is globally asymptotically stable if h3d < IT < h4d .

Moreover, by taking the limit δ → 0 of the addition of (2.10) and (2.11), we obtain

lim
δ→0


−


−−→
Q1P1

Bg2dSd −


−−→
P2Q2

Bg4dSd


= lim

δ→0

 Q−a2(δ)

P+a1(δ)


βd −

µd + dd
Sd


dSd −

 Q−b2(δ)

P+b1(δ)


βd −

µd + dd + c
Sd


dSd


=


βdSd − (µd + dd) ln Sd

Q
P

−


βdSd − (µd + dd + c) ln Sd

Q
P

= c(lnQ − ln P) > 0

since Q > P , which contradicts (2.12). Thus there are no limit cycles surrounding the sliding domain Ωd and the sliding
equilibrium Ed. Hence Ed ∈ Ωd ⊂ Md is globally asymptotically stable if h3d < IT < h4d. �

Fig. 2 shows that all the trajectories with arbitrary initial conditions in R2
+
will converge to Ed ∈ Ωd ⊂ Md if h3d < IT < h4d,

as per Theorem 2.6. We pick IT = 20 in this figure. Trajectories denoted by (a) will hit and slide to the right of Ωd before
converging to Ed. Meanwhile, trajectories (b) will hit and slide to the left ofΩd and then move towards Ed.

Since Λd
µd

(from Table 1) is large, it is unlikely we can show clearly that Case 1 will remain in the positively invariant and

attracting region, Dd =


(Sd, Id) ∈ R2

+
; Id + Sd ≤

Λd
µd


, as t → ∞. For this reason, we increase µd to 0.3 in Fig. 3 to depict

the convergence of solutions of Case 1 in region Dd and define IT = 8. From Fig. 3, we found that the possible trajectories for
this case are

(a) a trajectory that hitsΩd from the region G1d slides to the left ofΩd and moves towards Ed.
(b) a trajectory with initial point located either inside or outside the attraction region Dd will crossMd from G1d to G2d. Then

the trajectory hits and slides to the left ofΩd before converging to Ed.
(c) a trajectory with initial point located in G2d either inside or outside of the attraction region Dd will hit and slide to the

right ofΩd before moving towards Ed.
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Fig. 3. All trajectories move towards Ed ∈ Ωd ⊂ Md in the positively invariant and attracting region Dd =


(Sd, Id) ∈ R2

+
; Id + Sd ≤

Λd
µd


if h3d < IT < h4d

is fulfilled.

Fig. 4. ER
11d ∈ G1d is globally asymptotically stable if IT > h4d .

Fig. 5. All solutions of Case 2, where IT > h4d , will approach ER
11d ∈ G1d in region Dd =


(Sd, Id) ∈ R2

+
; Id + Sd ≤

Λd
µd


as t → ∞.

Fig. 6. ER
21d ∈ G2d is globally asymptotically stable if IT < h3d .
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2.4.2. Case 2: E11d is a real equilibrium, whereas E21d is a virtual equilibrium if IT > h4d

Let us denote ER
11d as a real equilibrium and EV

21d as a virtual equilibrium. Both of these equilibria are located in region G1d

and there is no equilibrium lying in region G2d. Further, we claim that ER
11d achieves global asymptotic stability if IT > h4d. In

order to show the global behavior of ER
11d in this case, we would like to consider the following Lyapunov functions for model

(2.1), which have given rise to Theorem 2.7:

V1 = V1(Sd, Id) = Sd −
µd + dd
βd

−
µd + dd
βd

ln


βdSd
µd + dd


+ Id −

Λdβd − µd(µd + dd)
βd(µd + dd)

−
Λdβd − µd(µd + dd)

βd(µd + dd)
ln


βd(µd + dd)Id
Λdβd − µd(µd + dd)


and

V2 = V2(Sd, Id) = Sd −
µd + dd + c

βd
−
µd + dd + c

βd
ln


βdSd
µd + dd + c


+ Id −

Λdβd − µd(µd + dd + c)
βd(µd + dd + c)

−
Λdβd − µd(µd + dd + c)

βd(µd + dd + c)
ln


βd(µd + dd + c)Id
Λdβd − µd(µd + dd + c)


. (2.13)

Theorem 2.7. The function

V (Sd, Id) =



V1(Sd, Id); Id < IT

V1(Sd, IT )+ V2(Sd, Id)− V2(Sd, IT ); Id = IT and Sd ≤
µd + dd
βd

V1(Sd, IT ); Id = IT and Sd >
µd + dd
βd

V1(Sd, Id); Id > IT

(2.14)

is a Lyapunov function on R2
+
for (2.1) and {ER

11d} is globally asymptotically stable if IT > h4d.

Proof. If IT > h4d, it follows thatΛdβd < βd(µd + dd)IT + µd(µd + dd) ⇔ Λdβd < (µd + dd)(βdIT + µd).

(a) We want to show that if (Sd, Id) ∈ G1d := {(Sd, Id) ∈ R2
+
; Id < IT }, then ⟨∇V , f1d⟩ ≤ 0.

In this particular case, we have the fact that V1(Sd, Id) > 0∀(Sd, Id) ∈ G1d and V1(ER
11d) = 0. Then

⟨∇V , f1d⟩ = ⟨∇V1, f1d⟩

=
[βdSd − (µd + dd)][Λd − Sd(βdId + µd)]

βdSd
+

[(µd + dd)(βdId + µd)−Λdβd][βdSd − (µd + dd)]
βd(µd + dd)

=
−Λd[βdSd − (µd + dd)]2

βdSd(µd + dd)
≤ 0 ∀(Sd, Id) ∈ G1d

where ⟨∇V , f1d⟩ = 0 when Sd =
µd+dd
βd

. Otherwise, ⟨∇V , f1d⟩ < 0.

(b) We claim that if (Sd, Id) ∈


(Sd, Id) ∈ Md; Sd ≤

µd+dd
βd


is satisfied, then we obtain sup0≤α≤1⟨∇V , αf1d + (1−α)f2d⟩ = 0.

For Id = IT and Sd ≤
µd+dd
βd

, we have V1(Sd, IT )+ V2(Sd, Id)− V2(Sd, IT ) > 0. We find that, when Id = IT ,

⟨∇V , f1d⟩ =
Λd[βdSd − (µd + dd)][(µd + dd + c)− βdSd]

βdSd(µd + dd + c)
≤ 0

where, for all Sd ≤
µd+dd
βd

, we have βdSd − (µd + dd) ≤ 0 and (µd + dd + c) − βdSd > 0. It follows that ⟨∇V , f1d⟩ = 0

when Sd =
µd+dd
βd

. Otherwise, ⟨∇V , f1d⟩ < 0.
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Again, we compute

⟨∇V , f2d⟩ =
[βdSd − (µd + dd)] [Λd − Sd(βdId + µd)]

βdSd

+
[(µd + dd + c)(βdId + µd)−Λdβd] [βdSd − (µd + dd + c)]

βd(µd + dd + c)

<
(µd + dd + c) [βdSd − (µd + dd)] [Λd − Sd(βdIT + µd)]

βdSd(µd + dd + c)

+
Sd [(µd + dd + c)(βdIT + µd)−Λdβd] [βdSd − (µd + dd)]

βdSd(µd + dd + c)
where Id = IT , (µd + dd + c)(βdIT + µd)−Λdβd > 0 and
× [(µd + dd + c)(βdIT + µd)−Λdβd] [βdSd − (µd + dd + c)]

< [(µd + dd + c)(βdIT + µd)−Λdβd] [βdSd − (µd + dd)]

=
Λd [βdSd − (µd + dd)] [(µd + dd + c)− βdSd]

βdSd(µd + dd + c)

≤ 0 ∀Sd ≤
µd + dd
βd

where βdSd − (µd + dd) ≤ 0, (µd + dd + c)− βdSd > 0 ∀Sd ≤
µd+dd
βd

and ⟨∇V , f2d⟩ = 0 when Sd =
µd+dd
βd

.
Hence sup0≤α≤1 ⟨∇V , αf1d + (1 − α)f2d⟩ = 0.

(c) We claim that, under the condition of (Sd, Id) ∈


(Sd, Id) ∈ Md; Sd >

µd+dd
βd


, we have sup0≤α≤1⟨∇V , αf1d+(1−α)f2d⟩ <

0.
For Id = IT and Sd >

µd+dd
βd

, we obtain V1(Sd, IT ) > 0. Next,

⟨∇V , f1d⟩ = ⟨∇V , f2d⟩

=
[βdSd − (µd + dd)][Λd − Sd(βdIT + µd)]

βdSd
where Id = IT

<
[βdSd − (µd + dd)]


Λd −

ΛdβdSd
µd+dd


βdSd

where − (βdIT + µd) < −
Λdβd

µd + dd

=
−Λd[βdSd − (µd + dd)]2

βdSd(µd + dd)

< 0 ∀Sd >
µd + dd
βd

.

Hence, sup0≤α≤1 ⟨∇V , αf1d + (1 − α)f2d⟩ < 0.
(d) We want to show that, whenever the condition (Sd, Id) ∈ G2d := {(Sd, Id) ∈ R2

+
; Id > IT } is satisfied, we obtain

⟨∇V , f2d⟩ < 0.

For Id > IT , it follows that V1(Sd, Id) > 0. Next,

⟨∇V , f2d⟩ = ⟨∇V1, f2d⟩

=
−Λd [βdSd − (µd + dd)]2 − cSd [(µd + dd)(µd + βdId)−Λdβd]

βdSd(µd + dd)

<
−Λd [βdSd − (µd + dd)]2 − cSd [(µd + dd)(µd + βdIT )−Λdβd]

βdSd(µd + dd)
< 0 ∀(Sd, Id) ∈ G2d

since −cSd [(µd + dd)(µd + βdId)−Λdβd] < −cSd [(µd + dd)(µd + βdIT )−Λdβd] and (µd + dd)(µd + βdIT )−Λdβd > 0.
We obtain V̇ ∗

≡ maxη∈fid(Sd,Id) ⟨∇V , η⟩ ≤ 0 ∀(Sd, Id) ∈ R2
+
and with equality only if Sd =

µd+dd
βd

where i = 1, 2 and

fid(Sd, Id) :=

f1d; (Sd, Id) ∈ G1d
αf1d + (1 − α)f2d; (Sd, Id) ∈ Md where α ∈ [0, 1]
f2d; (Sd, Id) ∈ G2d.

Thus V (Sd, Id) is a Lyapunov function on Dd and, by Lemma 2.1, Dd is compact. Let Σ1d := {(Sd, Id) ∈ R2
+
; V̇ ∗

= 0} =

G1d


µd+dd
βd

, IT

. So the largest positively invariant subset of Σ1d is {ER

11d}. Hence, by LaSalle’s Invariance Principle and
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Fig. 7. All trajectories will remain in region Dd =


(Sd, Id) ∈ R2

+
; Id + Sd ≤

Λd
µd


and converge to ER

21d ∈ G2d as t → ∞ if IT < h3d is satisfied.

Corollary C.2 (see Appendix C), every solution of (2.1) with initial conditions in R2
+
will approach ER

11d as t → ∞ if IT > h4d.
Therefore ER

11d is globally asymptotically stable if IT > h4d. �

Fig. 4 describes the possible trajectories for Case 2 with IT = 65. The solutions for Case 2 with initial points in G1d will move
to ER

11d in G1d, whereas trajectories with initial conditions in G2d will either converge to ER
11d after crossingMd or hit and slide

to the left ofΩd before moving towards ER
11d.

By applying the same reasoning as in Case 1, we choose µd = 0.3 and IT = 15 in Fig. 5. The possible trajectories, which
are illustrated in Fig. 5, are as follows:

(a) a trajectory with initial point located in G1d within Dd will converge directly to ER
11d.

(b) a trajectory with initial point located either in G1d or G2d and outside the attracting region Dd will hit and slide to the left
ofΩd before moving towards ER

11d in region G1d.
(c) a trajectory that begins in region G1d outside the attracting region Dd will cross the discontinuous surface Md. Then it

will hit and slide to the left ofΩd before converging to ER
11d in G1d.

2.4.3. Case 3: E21d is a real equilibrium, whereas E11d is a virtual equilibrium if IT < h3d

Let us denote ER
21d as a real equilibrium and EV

11d as a virtual equilibrium. Both of these equilibria are located in region G2d,
and there is no equilibrium lying in region G1d. Further, we claim that ER

21d achieves global asymptotic stability if IT < h3d.
In order to show the global behavior of ER

21d, we consider the Lyapunov function V2(Sd, Id) (2.13) for model (2.1) and the
construction of Theorem 2.8.

Theorem 2.8. The function V2(Sd, Id) (2.13) is a Lyapunov function on R2
+
for (2.1) and {ER

21d} is globally asymptotically stable
if IT < h3d.

The proof of Theorem 2.8 is similar to that of Theorem 2.7.
We depict Theorem 2.8 numerically in Fig. 6. It is clearly shown that every solution of Case 3will approach ER

21d as t → ∞

with arbitrary initial conditions in R2
+
. Trajectories, which are depicted in Fig. 6, are

(a) a trajectory that starts in region G1d or G2d will hit and slide to the right ofΩd before moving towards ER
21d.

(b) a trajectory with initial condition in G2d will approach ER
21d as t → ∞.

(c) a trajectory with initial point in G1d may pass throughMd and then proceed towards ER
21d in region G2d.

We increase the parameter µd to 0.3 in Fig. 7 to show that the numerical solutions of Case 3 remain in region Dd and
converge to ER

21d as t → ∞. In this simulation, we select IT = 1.2. From Fig. 7, we can see that

(a) a trajectory with initial point located in G1d within Dd will hit and slide to the right ofΩd ⊂ Md before moving towards
ER
21d in region G2d.

(b) a trajectory with initial point located in G2d and either within or outside of the attraction region Dd will approach to ER
21d

directly.
(c) a trajectory that begins from G2d might hitΩd ⊂ Md and slide to the right before moving towards ER

21d.

For Fig. 8, we setΛd = 100, µd = 0.3, βd = 0.01, dd = 0.05, c = 0.5 and IT = 50. We observe that all trajectories with
arbitrary initial conditions converge to ER

21d, which agrees with the theoretical result shown in Theorem 2.8.
In conclusion, the solutions of model (2.1) will converge to either one of the two endemic equilibria (i.e., either ER

11d in
G1d or ER

21d in G2d) or the sliding equilibrium Ed on sliding domainΩd ⊂ Md if the requirement of (2.8) is met.We do not have
to apply any control methods whenever h3d < IT < h4d (Case 1) or IT > h4d (Case 2) is satisfied. This is due to the number
of infected birds, which always remain below the given threshold level IT since we have proclaimed that the infection is
tolerable. Therefore, in this particular case, the trajectory of model (2.1) either converges to ER

11d in G1d or stabilizes at Ed
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Fig. 8. ER
21d ∈ G2d achieves global asymptotic stability whenever IT < h3d .

on Ωd ⊂ Md. However, the solution of (2.1) converges to ER
21d in G2d if IT < h3d (Case 3). For this case, the application of

control methods will be triggered as the number of infected birds reaches the critical level (i.e., greater than the tolerance
threshold level IT ), beyond which we proclaim that an outbreak will occur. In order to inhibit the occurrence of an outbreak
or stabilize the infection at a satisfactory level, by virtue of Theorem 2.6, we need a proper combination of control intensity
and tolerance level. Hence, in order to combat an outbreak effectively, we require a well-defined threshold policy.

3. The SIIR model with quarantine as a control measure

When six people were reported dead and 18 people infected by H5N1 in Hong Kong in 1997, it changed the general belief
that avian influenza viruses were believed to be non-infectious to humans. Most avian influenza viruses do not spread to
humans; however, H5N1, H7N2, H7N3, H7N7 and H7N9 are known to cause severe infections in humans [26,38,39]. Avian
influenza viruses transmit easily to humans through direct contact with dead or infected birds. However, there are some
reported cases that humans might be infected by the lethal virus indirectly via contaminated water, food that has been
stained by the virus or other objects contaminated with infected birds’ feces [26,40].

There are many types of control methods that have been employed to reduce the infection rate of avian influenza, such
as practicing personal protection, isolation, prescription of antiviral drugs and vaccination [18,14,15]. So in this section,
we would like to consider a Filippov SIIR avian influenza model incorporating quarantine as a control measure. This model
consists of susceptibles (S), humans infectedwith avian strain (Ia), humans infectedwithmutant strain (Im) and humanswho
have recovered from avian andmutant strains (R). Here, we assume that when the total number of infected humans, Ia + Im,
is greater than some threshold level Ic , infected humanswith either avian ormutant strainwill be isolated from susceptibles.
In otherwords, quarantinewill be implemented in order to control the spread of the disease and the quarantined individuals
will not return to the susceptible population; that is, the immunity was permanent. However, if the total number of infected
humans is below the tolerance threshold Ic , then quarantine is not required. The SIIR model equations can be expressed as:

S ′(t) = Λ− βa(1 − qu)SIa − βm(1 − qu)SIm − µS

I ′a(t) = βa(1 − qu)SIa − (µ+ d + γ + ϵ)Ia
I ′m(t) = βm(1 − qu)SIm + ϵIa − (µ+ d + γ )Im
R′(t) = γ (Ia + Im)− µR

(3.1)

with

u =


0 for Ia + Im < Ic ⇔ σ(Ia, Im) = Ia + Im − Ic < 0
1 for Ia + Im > Ic ⇔ σ(Ia, Im) = Ia + Im − Ic > 0,

(3.2)

where q is the quarantine rate and Ic > 0 is the critical threshold of the total number of infected humans. Table 2 shows the
descriptions of the associated parameters in model (3.1) and sample values.

Since R decouples from the remaining equations in model (3.1), we consider only the first three equations of model (3.1)
with (3.2). It should be noted that R always preserves local stability; i.e., the associated eigenvalue is λ = −µ < 0 where
µ > 0. We further assume that βa > βm [37]. Furthermore, we define

G1 := {(S, Ia, Im) ∈ R3
+
; Ia + Im < Ic}

G2 := {(S, Ia, Im) ∈ R3
+
; Ia + Im > Ic}

M := {(S, Ia, Im) ∈ R3
+
; Ia + Im = Ic}.
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Table 2
Descriptions of the associated parameters in SIIR model (3.1) and sample values.

Parameter Description Sample value Units Reference

Λ Human recruitment rate 1000
365 Individuals per day [36]

µ Natural mortality rate of humans 1
65×365 per day [36]

βa Transmission rate of human-to-human with avian strain 0.4 per individual per day [37]
βm Transmission rate of human-to-human with mutant strain 0.3 × βa per individual per day [37]
d Additional disease death rate of humans due to avian influenza 0.15 per day [36]
γ Recovery rate of humans with avian influenza 0.2669 per day [41]
ϵ Mutation rate 0.01 per day [37]
q Quarantine rate 0.6 Assumed

The manifold M is a discontinuous surface and it divides R3
+
into two regions, G1 and G2. We denote the normal vector

that is perpendicular toM as n = (0, 1, 1)T and all the right-hand sides of (3.1) in region Gi by fi for i = 1, 2. The dynamical
systems in regions G1 and G2 are thus represented by

f1 = f1(S, Ia, Im) =


Λ− βaSIa − βmSIm − µS
βaSIa − (µ+ d + γ + ϵ)Ia
βmSIm + ϵIa − (µ+ d + γ )Im



f2 = f2(S, Ia, Im) =


Λ− (1 − q)βaSIa − (1 − q)βmSIm − µS
(1 − q)βaSIa − (µ+ d + γ + ϵ)Ia
(1 − q)βmSIm + ϵIa − (µ+ d + γ )Im


.

(3.3)

Lemma 3.1. The set D =


(S, Ia, Im, R) ∈ R4

+
;N = S + Ia + Im + R ≤

Λ

µ


is a positively invariant and attracting region

for (3.1) with any initial conditions in R4
+
.

We can use a similar method as shown in Lemma 2.1 to prove Lemma 3.1; hence we omit the proof of this lemma.
Since D is a positively invariant and attracting region for model (3.1), the solution of (3.1) exists in D ∀t > 0 and model

(3.1) is mathematically and epidemiologically well-posed in D [30]. Thus it is sufficient to consider the dynamics of this
model in D.

3.1. Analysis in region G1

The dynamical systems in region G1 can be described by the following nonlinear ordinary differential equations.S ′(t)
I ′a(t)
I ′m(t)

 =


Λ− βaSIa − βmSIm − µS
βaSIa − (µ+ d + γ + ϵ)Ia
βmSIm + ϵIa − (µ+ d + γ )Im


:= f1. (3.4)

There are two equilibria in G1, the DFE E10 = (S, Ia, Im) =


Λ

µ
, 0, 0


and a unique positive EE

E11 = (E11S, E11Ia, E11Im)

where

E11S =
µ+ d + γ + ϵ

βa

E11Im =
ϵ [Λβa − µ(µ+ d + γ + ϵ)]

(βa − βm)(µ+ d + γ )(µ+ d + γ + ϵ)

E11Ia =
[Λβa − µ(µ+ d + γ + ϵ)] [(µ+ d + γ )(βa − βm)− ϵβm]

βa(βa − βm)(µ+ d + γ )(µ+ d + γ + ϵ)

=
[(µ+ d + γ )(βa − βm)− ϵβm] E11Im

ϵβa
.

In G1 :=

(S, Ia, Im) ∈ R3

+
; Im < −Ia + Ic


, we have E11 ∈ R3

+
, and this implies that

E11S =
µ+ d + γ + ϵ

βa
> 0 (3.5)

E11Im =
ϵ [Λβa − µ(µ+ d + γ + ϵ)]

(βa − βm)(µ+ d + γ )(µ+ d + γ + ϵ)
> 0,
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which impliesΛβa − µ(µ+ d + γ + ϵ) > 0 since βa > βm and

E11Ia =
[(µ+ d + γ )(βa − βm)− ϵβm] E11Im

ϵβa
> 0, (3.6)

which implies (µ+ d + γ )βa − (µ+ d + γ + ϵ)βm > 0 since βa > βm and E11Im > 0.
The transmission matrix F1 and transition matrix V1 of model (3.4) are defined as

F1 =


βaS 0
0 βmS


and V1 =


µ+ d + γ + ϵ 0

−ϵ µ+ d + γ


, respectively.

At the DFE, we have

F1V−1
1 =


Λβa

µ(µ+ d + γ + ϵ)
0

Λβmϵ

µ(µ+ d + γ )(µ+ d + γ + ϵ)

Λβm

µ(µ+ d + γ )


and the basic reproduction number (see [31,32] for more details) of G1 is given as follows:

R1 := max


Λβa

µ(µ+ d + γ + ϵ)
,

Λβm

µ(µ+ d + γ )


= max {R1a, R1m}

where R1a =
Λβa

µ(µ+d+γ+ϵ)
and R1m =

Λβm
µ(µ+d+γ ) .

The Jacobian matrix of model (3.4) is

J1(S, Ia, Im) =


−βaIa − βmIm − µ −βaS −βmS

βaIa βaS − (µ+ d + γ + ϵ) 0
βmIm ϵ βmS − (µ+ d + γ )


.

Further, the local asymptotic stability of E10 and E11 is shown in the following theorems.

Theorem 3.2. For model (3.4), the DFE E10 is locally asymptotically stable if R1 < 1.

As in the proof of Theorem 2.2, we can show that all eigenvalues of (3.4) at E10 are negative if R1 < 1. Hence E10 achieves
local asymptotic stability whenever R1 < 1.

Theorem 3.3. For model (3.4), the endemic equilibrium E11 is locally asymptotically stable if R1 > 1, a1, a2, a3 > 0 and
a1a2 > a3, where
a1 =

Λβa
µ+d+γ+ϵ

+
(µ+d+γ )βa−(µ+d+γ+ϵ)βm

βa
,

a2 =
[Λβa−µ(µ+d+γ+ϵ)][βa(µ+d+γ )−ϵβm]

βa(µ+d+γ ) +
Λ[βa(µ+d+γ )−βm(µ+d+γ+ϵ)]

µ+d+γ+ϵ
and

a3 =
[Λβa−µ(µ+d+γ+ϵ)][(µ+d+γ )βa−(µ+d+γ+ϵ)βm]

βa
.

Proof. At E11, the Jacobian matrix is

J1 (E11) =

A11 A12 A13
A21 A22 A23
A31 A32 A33



where A11 = −
Λβa

µ+d+γ+ϵ
, A12 = −(µ+ d + γ + ϵ), A13 = −

βm(µ+d+γ+ϵ)

βa
, A21 =

[Λβa−µ(µ+d+γ+ϵ)][(µ+d+γ )βa−(µ+d+γ+ϵ)βm]
(βa−βm)(µ+d+γ )(µ+d+γ+ϵ)

,

A22 = A23 = 0, A31 =
ϵβm[Λβa−µ(µ+d+γ+ϵ)]

(βa−βm)(µ+d+γ )(µ+d+γ+ϵ)
, A32 = ϵ and A33 =

(µ+d+γ+ϵ)βm−(µ+d+γ )βa
βa

.
By solving the characteristic equation |J1(E11)− λI| = 0, we obtain

λ3 +


Λβa

µ+ d + γ + ϵ
+
(µ+ d + γ )βa − (µ+ d + γ + ϵ)βm

βa


λ2

+



Λβa − µ(µ+ d + γ + ϵ)


βa(µ+ d + γ )− ϵβm


βa(µ+ d + γ )

+

Λ


βa(µ+ d + γ )− βm(µ+ d + γ + ϵ)


µ+ d + γ + ϵ

 λ
+


Λβa − µ(µ+ d + γ + ϵ)


(µ+ d + γ )βa − (µ+ d + γ + ϵ)βm


βa

= 0. (3.7)

If R1 > 1 =⇒ R1a > 1 =⇒ Λβa − µ(µ + d + γ + ϵ) > 0 and βa(µ + d + γ ) − βm(µ + d + γ + ϵ) > 0 from
(3.6) =⇒ βa(µ + d + γ ) − ϵβm > 0, then we obtain a1, a2, a3 > 0. Moreover, if we also have a1a2 > a3, then, by the
Routh–Hurwitz Criterion [42], all roots of (3.7) are negative or have negative real parts. Hence E11 is locally asymptotically
stable if R1 > 1 and a1a2 > a3. �
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3.2. Analysis in region G2

The dynamics in region G2 can be represented by nonlinear ordinary differential equations as follows:S ′(t)
I ′a(t)
I ′m(t)

 =


Λ− βa(1 − q)SIa − βm(1 − q)SIm − µS
βa(1 − q)SIa − (µ+ d + γ + ϵ)Ia
βm(1 − q)SIm + ϵIa − (µ+ d + γ )Im


:= f2. (3.8)

In G2, we have two equilibria: the DFE, E20 = (S, Ia, Im) =


Λ

µ
, 0, 0


, and a unique positive EE,

E21 = (E21S, E21Ia, E21Im),

where

E21S =
µ+ d + γ + ϵ

βa(1 − q)

E21Im =
ϵ [Λβa(1 − q)− µ(µ+ d + γ + ϵ)]

(1 − q)(βa − βm)(µ+ d + γ )(µ+ d + γ + ϵ)

E21Ia =
[Λβa(1 − q)− µ(µ+ d + γ + ϵ)] [(µ+ d + γ )βa − (µ+ d + γ + ϵ)βm]

βa(1 − q)(βa − βm)(µ+ d + γ )(µ+ d + γ + ϵ)

=
[(µ+ d + γ )βa − (µ+ d + γ + ϵ)βm] E21Im

ϵβa
.

Furthermore, we have E21 ∈ R3
+
, and this implies that

E21S =
µ+ d + γ + ϵ

βa(1 − q)
> 0

E21Im =
ϵ [Λβa(1 − q)− µ(µ+ d + γ + ϵ)]

(1 − q)(βa − βm)(µ+ d + γ )(µ+ d + γ + ϵ)
> 0,

which impliesΛβa(1 − q)− µ(µ+ d + γ + ϵ) > 0, where 0 < 1 − q < 1 and βa > βm =⇒ βa − βm > 0 and

E21Ia =
[(µ+ d + γ )βa − (µ+ d + γ + ϵ)βm] E21Im

ϵβa
> 0,

which implies (µ+ d + γ )βa − (µ+ d + γ + ϵ)βm > 0 with E21Im > 0.
The transmission matrix, F2, and transition matrix, V2, of model (3.8) are

F2 =


βa(1 − q)S 0

0 βm(1 − q)S


and V2 =


µ+ d + γ + ϵ 0

−ϵ µ+ d + γ


, respectively.

At the DFE E20, we have

F2V−1
2 =


Λβa(1 − q)

µ(µ+ d + γ + ϵ)
0

ϵΛβm(1 − q)
µ(µ+ d + γ )(µ+ d + γ + ϵ)

Λβm(1 − q)
µ(µ+ d + γ )


and the basic reproduction number (see [31,32] for further details) of G2 is

R2 := max


Λβa(1 − q)
µ(µ+ d + γ + ϵ)

,
Λβm(1 − q)
µ(µ+ d + γ )


= max {R2a, R2m}

where R2a =
Λβa(1−q)

µ(µ+d+γ+ϵ)
and R2m =

Λβm(1−q)
µ(µ+d+γ ) .

In addition, the Jacobian matrix of model (3.8) is

J2(S, Ia, Im) =

B11 B12 B13
B21 B22 B23
B31 B32 B33


where B11 = −βa(1 − q)Ia − βm(1 − q)Im − µ, B12 = −βa(1 − q)S, B13 = −βm(1 − q)S, B21 = βa(1 − q)Ia, B22 =

βa(1 − q)S − (µ+ d + γ + ϵ), B23 = 0, B31 = βm(1 − q)Im, B32 = ϵ and B33 = βm(1 − q)S − (µ+ d + γ ).
Furthermore, the local asymptotic stability of E21 and E21 is shown in the following theorems.

Theorem 3.4. For model (3.8), the DFE E20 is locally asymptotically stable if R2 < 1.
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We use a similar method as shown in Theorem 3.2 to prove Theorem 3.4; i.e., to show that all eigenvalues of model (3.8) at
E20 are negative if R2 < 1.

Theorem 3.5. For model (3.8), the endemic equilibrium E21 is locally asymptotically stable if R2 > 1, b1, b2, b3 > 0 and b1b2 >
b3, where

b1 =
Λβa(1 − q)
µ+ d + γ + ϵ

+
(µ+ d + γ )βa − (µ+ d + γ + ϵ)βm

βa

b2 =
[Λβa(1 − q)− µ(µ+ d + γ + ϵ)] [βa(µ+ d + γ )− ϵβm]

βa(µ+ d + γ )

+
Λ(1 − q) [βa(µ+ d + γ )− βm(µ+ d + γ + ϵ)]

µ+ d + γ + ϵ

b3 =
[Λβa(1 − q)− µ(µ+ d + γ + ϵ)] [(µ+ d + γ )βa − (µ+ d + γ + ϵ)βm]

βa
.

Similar methods as Theorem 3.3 can be used to demonstrate the proof of Theorem 3.5; thus we omit the proof of this
theorem.

3.3. Existence of sliding mode and its dynamical systems

We need to compute

⟨n, f1⟩ =

0
1
1


,


Λ− βaSIa − βmSIm − µS
βaSIa − (µ+ d + γ + ϵ)Ia
βmSIm + ϵIa − (µ+ d + γ )Im


= βaSIa + βmSIm − (µ+ d + γ )(Ia + Im)

= βaSIa + βmSIm − (µ+ d + γ )Ic (3.9)

where, onM , we have Im = −Ia + Ic and

⟨n, f2⟩ =

0
1
1


,


Λ− βa(1 − q)SIa − βm(1 − q)SIm − µS
βa(1 − q)SIa − (µ+ d + γ + ϵ)Ia
βm(1 − q)SIm + ϵIa − (µ+ d + γ )Im


= βa(1 − q)SIa + βm(1 − q)SIm − (µ+ d + γ )(Ia + Im)
= βa(1 − q)SIa + βm(1 − q)S(Ic − Ia)− (µ+ d + γ )Ic
= (βa − βm)(1 − q)SIa + βm(1 − q)SIc − (µ+ d + γ )Ic . (3.10)

A sliding mode exists if ⟨n, f1⟩ > 0 and ⟨n, f2⟩ < 0. Thus

⟨n, f1⟩ > 0 if S > h1(Ia) :=
(µ+ d + γ )Ic

(βa − βm)Ia + βmIc

⟨n, f2⟩ < 0 if S < h2(Ia) :=
(µ+ d + γ )Ic

(1 − q) [(βa − βm)Ia + βmIc ]

where 0 < 1 − q < 1. Since βa > βm, 0 < 1 − q < 1 and Ia, Ic > 0, then we obtain h2(Ia) =
h1(Ia)
1−q and h1(Ia) < h2(Ia). So

the sliding domainΩ ⊂ M is defined as

Ω := {(S, Ia, Im) ∈ M; h1(Ia) < S < h2(Ia), Ia + Im = Ic} .

Further, we can find sliding mode equations by using the Utkin equivalent control method [43]. From (3.2), we have
σ(Ia, Im) = Ia + Im − Ic . Then,

dσ
dt

=
∂σ

∂ Ia
·
dIa
dt

+
∂σ

∂ Im
·
dIm
dt

= (1 − qu)S(βaIa + βmIm)− (µ+ d + γ )(Ia + Im) from (3.1).

By setting dσ
dt = 0 and solving for u, we obtain

u =
S [(βa − βm)Ia + βmIc ] − (µ+ d + γ )Ic

qS [(βa − βm)Ia + βmIc ]
(3.11)

where, onM , we have Im = −Ia + Ic .
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From dσ
dt = 0, we also have I ′a(t)+ I ′m(t) = 0. By substituting (3.11) into (3.1), we have

S ′(t) = Λ− (µ+ d + γ )Ic − µS;

I ′a(t) = βaIa


(µ+ d + γ )Ic

(βa − βm)Ia + βmIc


− (µ+ d + γ + ϵ)Ia. (3.12)

So the sliding mode equations onΩ ⊂ M are

S ′(t) = Λ− (µ+ d + γ )Ic − µS

I ′a(t) = βaIa


(µ+ d + γ )Ic

(βa − βm)Ia + βmIc


− (µ+ d + γ + ϵ)Ia

I ′m(t) = −I ′a(t).

(3.13)

For model (3.13), there exists a unique positive pseudoequilibrium point, Es = (EsS, EsIa, EsIm), where EsS =
Λ−(µ+d+γ )Ic

µ
, EsIa =

Ic [βa(µ+d+γ )−βm(µ+d+γ+ϵ)]
(βa−βm)(µ+d+γ+ϵ)

and EsIm =
ϵβaIc

(βa−βm)(µ+d+γ+ϵ)
. Es is in Ω ⊂ M if the following constraint

is satisfied.

h1(Ia) < EsS < h2(Ia) ⇔ h1(Ia) <
Λ− (µ+ d + γ )Ic

µ
< h2(Ia).

A reduced dynamical system of (3.13) is defined as in (3.12), and the local asymptotic stability of Es is shown in the following
theorem.

Theorem 3.6. Es ∈ Ω is locally asymptotically stable if βa(µ+ d + γ )− βm(µ+ d + γ + ϵ) > 0.

A similar approach as in Theorem 2.2 can be employed to demonstrate that all eigenvalues of (3.12) at Es are negative if
βa(µ+ d + γ )− βm(µ+ d + γ + ϵ) > 0, so we omit the proof of this theorem.

3.4. Local stability of the endemic equilibria

(S, Ia, Im) ∈ R3
+
is divided into three regions, G1,M and G2. There exists an equilibrium point in each region, E11, Es and

E21 in regions G1,Ω ⊂ M and G2, respectively. In this section, let us denote the real and virtual equilibria with superscripts
R and V , respectively. We will discuss the stability of Es, E11 and E21 in the following subsections. Note that, in order to
illustrate the theoretical results, some numerical simulations are carried out in this section. All parameters shown in Table 2
are used in the numerical simulations, unless otherwise stated.

3.4.1. Case 1: E11 and E21 are virtual equilibria
If (3.14) is satisfied, then both E11 and E21 are virtual equilibria.

E11Ia + E11Im > Ic and E21Ia + E21Im < Ic . (3.14)

Here EV
11 and EV

21 are located in regions G2 and G1, respectively. In this case, we have Es ∈ Ω ⊂ M , which is locally
asymptotically stable. All trajectories will converge to Es if (3.14) is satisfied.

Theorem 3.7. The pseudoequilibrium Es cannot coexist with ER
11 and ER

21. In addition, Es ∈ Ω ⊂ M is locally asymptotically
stable if it exists.

Proof. Note that EsS − h1(EsIa) > (<)0 =⇒ Λβa −µ(µ+ d + γ + ϵ) > (<)βa(µ+ d + γ )Ic , EsS − h2(EsIa) < (>)0 =⇒

Λβa(1 − q) − µ(µ + d + γ + ϵ) < (>)βa(1 − q)(µ + d + γ )Ic where 0 < 1 − q < 1 and all associated parameters
are positive, E11Ia + E11Im =

Λβa−µ(µ+d+γ+ϵ)

βa(µ+d+γ ) and E21Ia + E21Im =
Λβa(1−q)−µ(µ+d+γ+ϵ)

βa(1−q)(µ+d+γ ) . We refer to [44] to prove that the
pseudoequilibrium Es cannot coexist with ER

11 and ER
21. So we have to show that (a) if Es ∈ Ω ⊂ M is a pseudoequilibrium,

then E11 and E21 are virtual equilibria, and (b) if Es is not a pseudoequilibrium, then E11 and E21 are real equilibria.

(a) If Es ∈ Ω ⊂ M is a pseudoequilibrium (i.e., h1(EsIa) < EsS < h2(EsIa) =⇒ EsS − h1(EsIa) > 0 and EsS − h2(EsIa) < 0),
then E11Ia + E11Im > Ic and E21Ia + E21Im < Ic indicate that E11 and E21 are virtual equilibria.

E11Ia + E11Im =
Λβa − µ(µ+ d + γ + ϵ)

βa(µ+ d + γ )
>
βa(µ+ d + γ )Ic
βa(µ+ d + γ )

= Ic

where EsS − h1(EsIa) > 0 =⇒ Λβa − µ(µ+ d + γ + ϵ) > βa(µ+ d + γ )Ic .

E21Ia + E21Im =
Λβa(1 − q)− µ(µ+ d + γ + ϵ)

βa(1 − q)(µ+ d + γ )
<
βa(1 − q)(µ+ d + γ )Ic
βa(1 − q)(µ+ d + γ )

= Ic

where EsS − h2(EsIa) < 0 =⇒ Λβa(1 − q) − µ(µ + d + γ + ϵ) < βa(1 − q)(µ + d + γ )Ic . Thus the existence of
pseudoequilibrium Es implies the non-existence of real equilibria E11 and E21.
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(a) A trajectory with initial point in G1 will hit and slide to the left onΩ ⊂ M
before moving towards Es .

(b) A trajectory which begins in region G2 will converge to Es after it hits and
slides to the right onΩ ⊂ M .

Fig. 9. Es ∈ Ω ⊂ M is locally asymptotically stable if (3.14) is satisfied.

(b) If Es is not a pseudoequilibrium (i.e., Es ∉ Ω ⊂ M =⇒ EsS −h1(EsIa) < 0 and EsS −h2(EsIa) > 0) then E11Ia +E11Im < Ic
and E21Ia + E21Im > Ic indicate that E11 and E21 are real equilibria.

E11Ia + E11Im =
Λβa − µ(µ+ d + γ + ϵ)

βa(µ+ d + γ )
<
βa(µ+ d + γ )Ic
βa(µ+ d + γ )

= Ic

where EsS − h1(EsIa) < 0 =⇒ Λβa − µ(µ+ d + γ + ϵ) < βa(µ+ d + γ )Ic .

E21Ia + E21Im =
Λβa(1 − q)− µ(µ+ d + γ + ϵ)

βa(1 − q)(µ+ d + γ )
>
βa(1 − q)(µ+ d + γ )Ic
βa(1 − q)(µ+ d + γ )

= Ic

where EsS − h2(EsIa) > 0 =⇒ Λβa(1 − q)− µ(µ+ d + γ + ϵ) > βa(1 − q)(µ+ d + γ )Ic .

So E11 and E21 are real equilibria whenever Es ∉ Ω ⊂ M . Therefore, the pseudoequilibrium Es cannot coexist with the real
equilibria E11 and E21.

Next, we would like to discuss the stability of Es ∈ Ω ⊂ M . We have shown that Es ∈ Ω ⊂ M achieves local asymptotic
stability in Theorem 3.6. For any choice of threshold level Ic in between E21Ia + E21Im and E11Ia + E11Im, the local asymptotic
stability of Es in the sliding domain always holds. Hence, Es is locally asymptotically stable in the sliding domainΩ ⊂ M if
it exists. �

Since the difference between E11Ia + E11Im and E21Ia + E21Im


i.e., qµ(µ+d+γ+ϵ)

βa(1−q)(µ+d+γ )


with µ =

1
65×365 is considerably small

(0.0001619), then we select µ = 0.3 and Ic = 2.5 while other parameters are defined in Table 2 in order to depict Case 1
clearly; i.e., Es ∈ Ω ⊂ M achieves local asymptotic stability if (3.14) is fulfilled. Fig. 9 shows that any trajectory that begins
either in region G1 or G2 will converge to Es ∈ Ω ⊂ M if (3.14) is satisfied.

3.4.2. Case 2: E11 is a real equilibrium, whereas E21 is a virtual equilibrium
If the following constraint is satisfied, then E11 is a real equilibrium and E21 is a virtual equilibrium.

E11Ia + E11Im < Ic and E21Ia + E21Im < Ic . (3.15)

Both ER
11 and EV

21 are located in region G1. In this case, we have an equilibrium point located in G1 (i.e., E11) and there is no
equilibrium point located in region G2. If (3.15) is satisfied, then all trajectories in this case will converge to ER

11. Hence, E
R
11

achieves local asymptotic stability.

Theorem 3.8. ER
11 is locally asymptotically stable if (3.15) is satisfied.
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(a) A trajectory with initial point in G2 will hit and slide to the right
onΩ ⊂ M before moving towards ER

11 .
(b) A trajectory will cross the region S < h1 onM from the direction
of G2 before moving towards ER

11 .

(c) A trajectory that begins in region G1 will converge to ER
11 without

hitting or passing through manifoldM .
(d) A trajectory will pass throughM moving towards G2 from G1 and
hit manifoldM again from the direction of G2 . Then it will slide down
onΩ ⊂ M before converging to ER

11 in G1 .

Fig. 10. ER
11 ∈ G1 is locally asymptotically stable if (3.15) is fulfilled.

We discover that ER
11 is located in region G1 if (3.15) is fulfilled. Since we have proved that the equilibrium point E11 ∈ G1

achieves local asymptotic stability in Theorem 3.3, we omit the proof of Theorem 3.8.
Case 2 is depicted in Fig. 10 with Ic = 8. Any trajectory with initial point in region G1 or G2 will converge directly to ER

11
either without hitting the manifoldM or it will hit the manifoldM , slide and then move towards the equilibrium ER

11.

3.4.3. Case 3: E21 is a real equilibrium, whereas E11 is a virtual equilibrium
E21 is a real equilibrium and E11 is a virtual equilibrium if (3.16) is satisfied.

E11Ia + E11Im > Ic and E21Ia + E21Im > Ic . (3.16)

In this case, both EV
11 and ER

21 are located in region G2. There is no equilibrium point that can be found in region G1, but
there is one equilibrium point (i.e., E21) that lies in region G2. All trajectories will converge to ER

21 if (3.16) is fulfilled. So ER
21

achieves local asymptotic stability in this case.

Theorem 3.9. ER
21 achieves local asymptotic stability if the requirement of (3.16) is met.

Note that ER
21 is located in region G2 if (3.16) is satisfied. In Theorem 3.5, we have proved that the equilibrium point E21 ∈ G2

is locally asymptotically stable. So we omit the proof of Theorem 3.9.
The result of Theorem 3.9 is illustrated in Fig. 11. All trajectories in this case with Ic = 6 will either hit or do not hit the

manifold M before converging to ER
21.

4. Conclusion and discussion

Two Filippovmodels that are governed by nonlinear ordinary differential equations with discontinuous right-hand sides
have been proposed; notably the avian-only model with culling of infected birds and the SIIR model with quarantine as
control measure. At the initial stage of an outbreak, many people are not aware of the existence of the disease. This usually
leads to rapid disease outbreak sincenodisease preventions have beenpracticedby thepublic.When the emerging infectious
disease has reached a critical stage, knownas the ‘‘threshold level’’, peoplemay start to take necessary precautions to prevent
themselves from being infected [22]. Sliding mode control is one of the desirable methods to depict this type of disease-
management phenomenon [21].

An HPAI outbreak in avian population can create havoc in the poultry industry; a large number of birds will have to be
killed since culling birds is one of the primary strategy to eradicate an avian flu outbreak, especially among the infected
avian population. Studies on culling have been carried out to identify the most effective approach to eradicating the disease
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(a) A trajectory will hit M from the direction of G2 . Then it will slide to
right onΩ ⊂ M before moving towards ER

21 in G2 .
(b) A trajectory with initial point in region G2 converges to ER

21
directly.

(c) A trajectory hitsΩ ⊂ M from G1 and then moves up onΩ before
converging to ER

21 in G2 .
(d) A trajectory crosses manifoldM from G1 to G2 and then moves
towards ER

21 .

Fig. 11. ER
21 ∈ G2 is locally asymptotically stable if (3.16) is satisfied.

and reducing the socio-economic impact [16,45]. Hence it is essential for us to look closely at which culling threshold level
should be chosen in order to eliminate the disease or at least to stabilize the infection. For instance, in the avian-only Filippov
model (2.1), whenever the trajectory is found to be converging to E11d inG1d or Ed ∈ Ωd ⊂ Md, we proclaim that the infection
of avian influenza in the avian population is still bearable. However, if the solution of model (2.1) converges to E21d in G2d,
we assume that an outbreak is emerging. As a response to the outbreak, control methods have to be implemented in order to
suppress the transmission and contain the disease. In addition, the theoretical results and numerical simulations in Section 2
show that model (2.1) achieves global asymptotic stability.

Due to the influenza pandemic history, HPAI outbreaks, mainly H5N1, have caused severe infections in humans and
resulted in many human deaths [46]. Many types of interventions have been applied to minimize the impact of avian
influenza. Quarantine is one of the conventional control methods that has been widely used, especially in the absence of
medicines and vaccines, during the onset of the outbreak to reduce the transmission rate of the disease. However, quarantine
policy (e.g., location of quarantine, timeframe, who can set up quarantine, the use of legal orders and who has the authority
to issue the orders and so on), limitations of resources (e.g., food, clean drinkingwater andmedical equipments) and the lack
of health-care workers are some of the most critical issues for public-health authorities [47,48]. Hence, an SIIR model with
quarantine as a control measure is designed to assess an appropriate quarantine threshold level that will lead to disease
elimination. In Section 3, it is shown that the solutions of model (3.1) will converge to either one of the two endemic
equilibria or the sliding equilibrium. In order to inhibit an outbreak or to stabilize the infection, we have to choose a suitable
tolerance threshold Ic such that the trajectory of model (3.1) is approaching E11 in G1 or a sliding equilibrium Es onΩ ⊂ M .

There are several limitations of these two models that should be mentioned here. Throughout the model simulations,
fixed constants of bird inflow and human recruitment have been applied in avian-only and SIIR models. We have made
assumptions that the immunity of humanswaspermanent (i.e., recoveredhumanswill notmove to susceptible class) and the
human-to-human transmission rate with avian strain is greater than the human-to-human transmission rate with mutant
strain. For the avian population, infected birds are presumed to stay infected; i.e., infected birds will not move to other
classes such as susceptible and recovered compartments. It is also noteworthy that we assumed humans with avian and
mutant strains have the same values of recovery and additional disease death rate.

Our findings show that we can either preclude the influenza outbreak or stabilize the infection at a desired level by
choosing an appropriate threshold level. A well-defined threshold policy is essential to us in order to combat an outbreak
effectively and efficiently.
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Appendix A. Types of regions on a discontinuity surfaceM

Suppose an ordinary differential equation

ẋ = f (x, t) (A.1)

with threshold policy is discontinuous on a surfaceM that is defined by equation

σ(x) = 0

where x ∈ Rn. The surface M separates the x space into domains G− and G+. Let us denote the differential equations that
represent the dynamics in the regions G− and G+ as f −(x, t) and f +(x, t), respectively.

There are three types of regions onM: sliding, sewing and escaping regions [23], which are defined as follows.

Definition A.1 ([23]).
(a) If


n, f −


> 0 and


n, f +


< 0 onΩ ⊂ M , thenΩ is known as a sliding region.

(b) If

n, f −


·

n, f +


> 0, i.e.,


n, f −


and


n, f +


have the same signs onΩ2 ⊂ M , thenΩ2 is called as a sewing region.

(c) If

n, f −


< 0 and


n, f +


> 0 onΩ3 ⊂ M , thenΩ3 is known as an escaping region.

Note that escaping and sliding regions cannot exist simultaneously; it is impossible that

n, f −


< 0 and


n, f +


> 0 exist at

the same time with

n, f −


> 0 and


n, f +


< 0.

Appendix B. Types of equilibrium points for a Filippov system

In this appendix, we will use similar notations as in Appendix A. Let us denote the sliding mode equation that describes
the motion in the sliding regionΩ ⊂ M by f 0(x, t). Suppose there exists an equilibrium point in each region G−,G+ andΩ ,
denoted by E1, E2 and Es, respectively. There are four types of equilibria that might exist in a model of ordinary differential
equations with threshold policy: real, virtual, pseudoequilibrium and boundary equilibria [23].

Definition B.1 ([23]).
(a) ER is a real equilibrium if f −(ER) = 0 and σ(ER) < 0 or f +(ER) = 0 and σ(ER) > 0.
(b) EV is a virtual equilibrium if f −(EV ) = 0 and σ(EV ) > 0 or f +(EV ) = 0 and σ(EV ) < 0.
(c) EB is a boundary equilibrium if f −(EB) = 0 and σ(EB) = 0 or f +(EB) = 0 and σ(EB) = 0.
(d) EP is a pseudoequilibrium if EP is an equilibrium point on the sliding mode; i.e., f 0(EP) = 0 and σ(EP) = 0.

Note that a stable virtual equilibrium will not be achieved as the dynamics will change once the trajectory hits the
discontinuous manifold [23].

Appendix C. Lyapunov function and theories on global stability of the Filippov system

Consider a differential equation (A.1) with f ∈ C1(G)where G is an open subset of Rn. The solution φ(t, x0) of the initial-
value problem (A.1) with x0 ∈ G will be a dynamical system on G if and only if ∀x0 ∈ G, φ(t, x0) is defined ∀t ∈ R. The
function φ(·, x) : R → G for x ∈ G defines a solution curve, trajectory or orbit of (A.1) with initial point x0 ∈ G. A trajectory
with x0 ∈ G can be described as a motion along the curve Γ = {x ∈ G; x = φ(t, x0), t ∈ R}, which is defined by (A.1) (refer
to [49] for further details).

Definition C.1 ([49]). A point E ∈ G is an ω-limit point of the trajectory φ(·, x) of (A.1) if there is a sequence tn → ∞ such
that limn→∞ φ(tn, x) = E. The set of all ω-limit points of a trajectory Γ is called the ω-limit set of Γ and it is denoted by
ω(Γ ).

Definition C.2 ([49]). Let G be an open subset of Rn, f ∈ C1(G) and φt : G → G be the flow of the differential equation (A.1)
defined ∀t ∈ R. Then a set S ⊂ G is called invariant with respect to the flow φt if φt(S) ⊂ S ∀t ∈ R and S is called positively
invariant with respect to the flow φt if φt(S) ⊂ S ∀t ≥ 0.

Let Γ1(t) := {x ∈ Rn
+
; x = φ(t, x0) for some x0 ∈ G} and ζ (G) :=


t≥0 Γ1(t).

Definition C.3 ([50,23]). A function V ∈ C1(Rn) is called a Lyapunov function of (A.1) on G ⊂ Rn if it is non-negative on G
and, ∀x ∈ G,

V̇ ∗(x) := max
η∈g(x)

⟨∇V (x), η⟩ ≤ 0 where

g(x) :=

f −(x); x ∈ G−

αf +(x)+ (1 − α)f −(x); x ∈ M where α ∈ [0, 1]
f +(x); x ∈ G+.
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Proposition C.1 ([50,23, LaSalle’s Invariance Principle]). Suppose G ⊂ Rn is an open set that satisfies ω(G) :=


x∈G ω(x) ⊂

ζ (G). Let every Filippov solution φ(t, x0) of (A.1) be unique and defined ∀t ≥ 0 and x0 ∈ G. Suppose V : Rn
→ R is a Lyapunov

function of (A.1) on ζ (G). Then ω(G) is a subset of the largest positively invariant subset of Σ whereΣ := {x ∈ G; V̇ ∗(x) = 0}.

Corollary C.2 ([50,23]). Assume that G and V : Rn
→ R satisfy Proposition C.1 and Rn

\ G is repelling in the sense that all
solutions stay in Rn

\ G for only a finite time. Let ω(Rn) = ω(G) be bounded. Then ω(Rn) is globally asymptotically stable.

Theorem C.3 ([49, Dulac’s Theorem]). Suppose

dx
dt

= f (x, y) and
dy
dt

= g(x, y) (C.1)

where f (x, y) and g(x, y) are assumed to be C1 functions. If there exists a C1 function B(x, y) (where B(x, y) is also known as a
Dulac function) in a simply connected region R such that ∂(Bf )

∂x +
∂(Bg)
∂y has constant sign and is not identically zero in any subregion,

then system (C.1) does not have a periodic orbit lying entirely in R.
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