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Abstract Depopulation of birds has always been an effective method not only to
control the transmission of avian influenza in bird populations but also to eliminate
influenza viruses.We introduce aFilippov avian-onlymodelwith culling of susceptible
and/or infected birds. For each susceptible threshold level Sb, we derive the phase
portrait for the dynamical system as we vary the infected threshold level Ib, focusing
on the existence of endemic states; the endemic states are represented by real equilibria,
pseudoequilibria and pseudo-attractors. We show generically that all solutions of this
model will approach one of the endemic states. Our results suggest that the spread
of avian influenza in bird populations is tolerable if the trajectories converge to the
equilibrium point that lies in the region below the threshold level Ib or if they converge
to one of the pseudoequilibria or a pseudo-attractor on the surface of discontinuity.
However, we have to cull birds whenever the solution of this model converges to an
equilibrium point that lies in the region above the threshold level Ib in order to control
the outbreak. Hence a good threshold policy is required to combat bird flu successfully
and to prevent overkilling birds.
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1 Introduction

Avian influenza is induced by type A viruses. These viruses can be classified into
two categories: low pathogenic avian influenza (LPAI) and highly pathogenic avian
influenza (HPAI) (Public Health Agency of Canada 2006; Canadian Food Inspection
Agency 2012; Centers for Disease Control and Prevention 2012). Infection by LPAI
viruses usually causes mild or no illness at all, whereas infection by HPAI viruses
can cause severe disease with high disease-death rate. These two types of viruses can
potentially infect domesticated birds (such as chickens, quails and turkeys) rapidly,
as well as wild birds and humans (Public Health Agency of Canada 2006; Canadian
Food Inspection Agency 2012; Centers for Disease Control and Prevention 2012).

Waterfowl are carriers of the avian influenza viruses but do not show any symptoms.
They spread the virus through excretions; the virus can be easily spread to domesticated
birds when they come in contact with waterfowl or via contaminated area/objects. As
a result, this allows the virus to proliferate, which may further induce viral mutation
(Public Health Agency of Canada 2006; Centers for Disease Control and Prevention
2012; Jacob et al. 2013).

Currently, there is no effective treatment for birds infected with avian influenza.
Although vaccination, biosecurity and surveillancemeasures reduce the infection rate,
these measures do not eliminate the virus (Canadian Food Inspection Agency 2012;
International Animal Health Organisation 2015; Jacob et al. 2013). Thus, whenever a
highly pathogenic avian influenza outbreak occurs, culling birds is usually an effective
method to control the spread of the disease. However, susceptible birds are also at risk
of being killed in the course of preventing the disease (FAO 2006, 2008, 2011; Centers
for Disease Control and Prevention 2012; International Animal Health Organisation
2015; Kimman et al. 2013; Perez and Garcia-Sastre 2013). Hence an efficient culling
strategy is needed to avoid overkilling and reduce the economic impact, particularly
where the poultry business is concerned (FAO2008, 2011; Centers forDiseaseControl
and Prevention 2012; Gulbudak and Martcheva 2013).

A number of studies involving the culling strategy in bird populations to combat
avian influenza have been carried out (Dorigatti et al. 2010; Gulbudak and Martcheva
2013; Iwami et al. 2008, 2009; Menach et al. 2006; Shim and Galvani 2009). Menach
et al. (2006) proposed a model that employs stochastic and deterministic processes to
examine the impact and efficiency of control strategies. For instance, the spread of the
disease within a farm is modelled stochastically by discrete-time model formulation,
whereas the changes of farm’s disease status is studied by using a deterministic model.
Based on the results obtained, an immediate culling of infected flocks upon an accurate
and quick diagnosis will be better at controlling the outbreak compared to the strategy
of only stamping out the surrounding flocks.
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Shim and Galvani (2009) proposed a mathematical model parameterized by clin-
ical, epidemiological and poultry data to assess the evolutionary consequences of
mass avian depopulation on both host and pathogen. They also investigated the
selection of a dominant allele that confers resistance against avian influenza and
the level of pathogenicity of influenza. Their results showed that, by increasing the
culling rate, less host resistance is needed to eradicate the disease and the selection
for the resistant allele would be reduced. As a consequence, the implementation of
mass depopulation would elevate the virulence level of influenza. So, although an
avian influenza outbreak can be eliminated by employing mass avian culling con-
trol strategy, it brings several detrimental evolutionary consequences such as the
decreasing of influenza resistance and the increasing of host mortality and influenza
virulence.

Dorigatti et al. (2010) considered an SEIR (Susceptible-Exposed-Infected-
Removed) model with a spatial transmission kernel to model the diffusion of H7N1
in Italy. The infection of H7N1 between farms was investigated. They found that the
transmissibility of virus between the first phase and the subsequent phases is decreas-
ing, and there is a variation of susceptibility in between poultry species. Further, they
discovered that banning restocking on empty farms was the most effective control
method.

During the emerging phase of an infectious disease, applying control measures to
prevent the infection may be disregarded by the public. However, when the number
of infected individuals has gone beyond a certain threshold level, the public will be
alerted and immediate actions have to be taken in order to avoid a deadly outbreak.
Hence a good threshold policy is required to provide useful information in disease-
management strategy not only to the public but also to the public authorities, so that
the disease can be eradicated or at least reduced to a minimum level (Tang et al. 2012;
Xiao et al. 2012; Zhao et al. 2013).

Xiao et al. (2013) proposed an infectious disease model with a piecewise smooth
incidence rate that incorporated media/psychology effects by converting the implicitly
defined classical model based on the properties of the Lambert W function. The global
dynamics of this system were analyzed. They discovered that the disease-free equi-
librium is globally asymptotically stable if the basic reproduction number is less than
one, whereas the endemic equilibrium is globally stable whenever the basic repro-
duction number is larger than one. Moreover, the effect of media does not affect the
epidemic threshold or disease eradication. However, it does reduce the number of
infected individuals and the prevalence significantly.

Furthermore,Wang andXiao (2014) designed aFilippovSIR (Susceptible-Infected-
Recovered) model to describe the media effects on the spread of infectious diseases.
The mass media will have an effect whenever the number of infected individuals
reaches a certain threshold level. A bifurcation analysis was conducted and all possible
dynamic behaviours were determined. Based on the primary results, the model will
achieve stability either at the two endemic equilibria or the pseudoequilibrium. They
inferred that a good threshold policy with media coverage can assist in controlling and
combating an emerging infectious disease.

In Sect. 2 of this paper, we propose a Filippov avian-only model incorporating
culling of susceptible and/or infected birds. We extend our previous work on the
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avian-onlymodel (Chong and Smith? 2015) by considering not only culling of infected
birds but also the effort to stamp out susceptible birds if the numbers of susceptible
and infected birds exceed certain threshold levels. Previously, we only considered
culling of infected birds for the avian-only model as a control measure (Chong and
Smith? 2015). In Sects. 3–6, we analyse all the possible dynamics of this model
by varying the threshold levels of the infected and susceptible birds. We prove the
existence of equilibria, pseudoequilibria and pseudo-attractors. The prefix pseudo
was added to equilibria and attractors to distinguish them from the standard equilibria
and attractors. For a pseudoequilibrium, some orbits may converge to it in a finite time.
For the pseudo-attractor, all orbits will converge to it in a finite time. Finally, Sect. 7
will present several concluding remarks together with the discussion pertaining to the
study.

2 The avian-only Filippov model

In this section, we propose a threshold policy in an avian-only model with culling
of susceptible and/or infected birds. We only consider domestic birds for the avian
population. To control the spread of the disease and reduce the transmission level,
immediate action (i.e., a culling strategy) has to be taken once the numbers of suscep-
tible and infected birds exceed the threshold levels.

In this paper, we will focus on the effects of tolerance thresholds of suscep-
tible birds Sb and infected birds Ib, which can provide useful information for
disease management. Namely, in which cases do we have to apply culling of sus-
ceptible and/or infected birds in order to suppress the infection rate? We use a
Filippov model to determine threshold criteria for culling. Filippov models consist
of ordinary differential equations with discontinuous conditions on the derivatives,
whereby the solution undergoes a rapid change in motion when certain conditions are
met.

We assume that the infection is within the tolerable range when the number of
infected birds I is less than the tolerance threshold Ib, so no control strategy is required
under this condition, and that an outbreak might occur if I > Ib, which requires a
control strategy to reduce the infection to a safer level. In this model, we do not apply
any control strategies when I < Ib. However, for I > Ib, we kill only infected birds
at a rate of c2 if the number of susceptible birds S is less than the threshold level
Sb, and we cull both susceptible and infected birds at rates of c1 and c3 respectively
if S > Sb. We assume that c2 < c3 and c1, c2, c3 > 0 in this model. We not only
consider culling infected birds with a higher cull rate c3 when S > Sb but we also
reduce the population of susceptible birds. The reason for this choice is that we may
have a lot of susceptible birds that may get infected by avian influenza later and more
severely affect the outbreak.

We consider an avian-only population that is divided into susceptible and infected
birds. Infected birds are assumed to remain in the infected class in this model. The
sum of S(t) and I (t) is the total population of domestic birds N (t) at time t . This
avian-only Filippov model is governed by nonlinear ordinary differential equations
with discontinuous right-hand sides as follows:
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(
S′

I ′

)
= F(S, I ) ≡

(
Λ − βSI − (µ+ u1)S
βSI − (µ+ d + u2)I

)
(2.1)

with

(u1, u2) =






(0, 0) for I < Ib
(0, c2) for S < Sb and I > Ib
(c1, c3) for S > Sb and I > Ib,

(2.2)

where Sb, Ib > 0 are the tolerance thresholds, Λ (individual/day) is the bird inflow, β
(/day × /individual) is the rate at which birds contract avian influenza, µ (/day) is the
natural death rate of birds, and d (/day) is the additional disease-specific death rate
due to avian influenza in birds.

We divide the S, I space R2
+ into five regions as follows:

G1 ≡
{
(S, I ) ∈ R2

+ : I < Ib
}

G2 ≡
{
(S, I ) ∈ R2

+ : S < Sb and I > Ib
}

G3 ≡
{
(S, I ) ∈ R2

+ : S > Sb and I > Ib
}

M1 ≡
{
(S, I ) ∈ R2

+ : I = Ib
}

and

M2 ≡ {(S, I ) ∈ R2
+ : S = Sb and I > Ib}.

The dynamics in region Gi are governed by fi , for i = 1, 2 and 3, where

f1(S, I ) =
(

Λ − βSI − µS
I
(
βS − (µ+ d)

)
)

(2.3)

f2(S, I ) =
(

Λ − βSI − µS
I
(
βS − (µ+ d + c2)

)
)

(2.4)

and

f3(S, I ) =
(

Λ − βSI − (µ+ c1)S
I
(
βS − (µ+ d + c3)

)
)
. (2.5)

Moreover, the normal vectors that are perpendicular to M1 and M2 are defined as
n1 = (0, 1)T and n2 = (1, 0)T , respectively.

To give a sense of the flow of the dynamical system on the boundaries Mi between
the regions Gi , we use Filippov’s convex method (Filippov 1988). The basic idea of
Filippov’s method is to replace the vector field F in (2.1) by the set-valued function
F̂ , where F̂(S, I ) is the closed convex hull of the set

{(
U
V

)
:
(
U
V

)
= lim

(u,v)→(S,I )
F(u, v) for (u, v) ∈ Gi

}
.
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Then (2.1) becomes
(
S′

I ′

)
∈ F̂(S, I ).

There is a theory of existence and uniqueness of solutions for such systems. Since F |Gi

is continuously differentiable on the closure ofGi , wemay give a simple interpretation
ofFilippov’smethod.At the points (S, I )where F is continuous, F̂(S, I ) = {F(S, I )},
and hence we may still use the formulation in (2.1). To be able to write

(
S′

I ′

)
= F(S, I ).

at the points (S, I ) ∈ Mi (i = 1 or 2) where F is discontinuous, we choose a
representative value for F̂(S, I ) as follows. Let F+(S, I ) = lim(u,v)→(S,I ) F(u, v)
for (u, v) on one side of Mi and F−(S, I ) = lim(u,v)→(S,I ) F(u, v) for (u, v) on the
other side of Mi . Then

F̂(S, I ) = {αF+(S, I )+ (1 − α)F−(S, I ) : 0 ≤ α ≤ 1}.

At a point (S, I ) of Mi where the flow of F approaches (S, I ) on one side of Mi
and moves away from (S, I ) on the other side of Mi , we may choose any vector in
F̂(S, I ). This will not influence the dynamics because this vector will point in the
local direction of the vector field.

The more interesting situation is when the flow of F approaches Mi from all sides
or moves away from Mi from all sides.

Definition 2.1 The set of all points (S, I ) on Mi such that the flow of F (outside Mi )
approaches (S, I ) from all sides is an attraction sliding mode. When the attraction
sliding mode is formed of only one point, we call this point a pseudo-attractor. The
repulsion sliding mode is the set of all points (S, I ) on Mi such that the flow of F
(outside Mi ) moves away from (S, I ).

At a point (S, I ) on Mi where the flow of F approaches (S, I ) from both sides (or
moves away from both sides), we choose F(S, I ) = αF+(S, I ) + (1 − α)F−(S, I ),
where α = (n(

i F−(S, I ))/(n(
i (F−(S, I ) − F+(S, I ))) and ni is a normal vector to

Mi . With this choice, the flow entering the sliding mode will remain on it for at least
a finite time. We have n1 = (0, 1)T and n2 = (1, 0)T .

The vector field F that we defined on sliding modes may have an equilibrium point;
such an equilibrium point is called a pseudoequilibrium. Themajor difference between
this type of equilibrium point and the classical equilibrium points for a continuously
differentiable vector field in R2 is that some of the orbits inside Gi may converge to
this equilibrium in a finite period as time increases or decreases.

We now identify the existence of a positively invariant and globally (inR2
+) attract-

ing region for the system (2.1).

Lemma 2.2 D ≡ {(S, I ) ∈ R2
+ : S + I ≤ Λ

µ } is a positively invariant and attracting
region in R2

+ for the system (2.1).
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If you ignore the lines M1 and M2, where the vector field F is discontinuous, the
proof will look like this. Let N = S + I . Taking the sum of S′ and I ′ given by (2.1)
yields

N ′ = Λ − µ(S + I ) − u1S − (d + u2)I ≤ Λ − µN .

Thus

d

ds

(
N (s)eµs

)
= eµs(N ′(s)+ µN (s)) ≤ Λeµs .

Integrating both sides between 0 and t gives

N (t)eµt − N (0) =
t∫

0

d

ds

(
N (s)eµs

)
ds ≤

t∫

0

Λeµsds = Λ

µ

(
eµt − 1

)
.

If N (0) ≤ Λ
µ , then we get

N (t)eµt ≤ N (0)+ Λ

µ

(
eµt − 1

)
≤ Λ

µ
eµt ,

and thus N (t) ≤ Λ
µ . This proves that D is positively invariant.

To prove that D is attractive, let’s suppose that N > Λ
µ and let φ = Λ

µ . We have
proved above that N ′ ≤ Λ − µN . Thus N ′ ≤ µφ − µN = µ(φ − N ) < 0.

A simple but lengthy justification could be given to handle the situation where the
vector field F is discontinuous.

We have from the lemma that the ω-limit sets of (2.1) are contained in D.

2.1 The system f1

In this section, we study the dynamics of f1 given by (2.3) on R2
+. In particular,

we examine the linear stability of the two equilibria of this system: the disease-free
equilibrium (DFE) E10 =

(
Λ
µ , 0

)
and the endemic equilibrium (EE)

E11 ≡ (h1, g1) =
(
µ+ d

β
,
Λβ − µ(µ+ d)

β(µ+ d)

)

.

The basic reproduction number (Driessche and Watmough 2002; Li et al. 2011) of
this system is
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R1 =
Λβ

µ(µ+ d)
.

The Jacobian matrix for (2.3) is

J1(S, I ) =
(−β I − µ −βS

β I βS − (µ+ d)

)
.

Theorem 2.3 E10 is locally asymptotically stable for R1 < 1andunstable for R1 > 1.

Proof The eigenvalues of J1(E10) are obtained from

|J1(E10) − λI | = −(µ+ λ)

(
Λβ − µ(µ+ d)

µ
− λ

)

= 0.

Thus λ = −µ < 0 and λ = Λβ−µ(µ+d)
µ is negative for R1 < 1 and positive for

R1 > 1, where all parameters are positive. )*
Theorem 2.4 E11 is locally asymptotically stable for R1 > 1.

Proof The eigenvalues of J1(E11) are

λ± = 1

2

(

− Λβ

µ+ d
± √

ν

)

, where ν =
(

Λβ

µ+ d

)2

− 4 (Λβ − µ(µ+ d)) .

For R1 > 1, we have Λβ − µ(µ+ d) > 0. Hence ν <
(

Λβ
µ+d

)2
and λ± < 0. )*

2.2 The system f2

This time, we study the dynamics of f2 given by (2.4) onR2
+. There are two equilibria

for this system: the EE,

E21 ≡ (h2, g2) =
(
µ+ d + c2

β
,
Λβ − µ(µ+ d + c2)

β(µ+ d + c2)

)

,

and the DFE, E20 =
(

Λ
µ , 0

)
. To determine their linear stability, we need the basic

reproduction number

R2 =
Λβ

µ(µ+ d + c2)

of this model. The Jacobian matrix of (2.4) is

J2(S, I ) =
(−β I − µ −βS

β I βS − (µ+ d + c2)

)
.
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Theorem 2.5 The DFE E20 is locally asymptotically stable if R2 < 1 and unstable
if R2 > 1.

The proof of this theorem is similar to the proof of Theorem 2.3.

Theorem 2.6 The EE E21 is locally asymptotically stable if R2 > 1.

Proceeding as in the proof of Theorem 2.4, one can show that E21 is either a stable
spiral or a stable node if R2 > 1.

2.3 The system f3

Finally, we study the dynamics of f3 given by (2.5) on R2
+. There are two equi-

libria for this system, the DFE, E30 = ( Λ
µ+c1

, 0), and the EE, E31 ≡ (h3, g3) =
(µ+d+c3

β , Λβ−(µ+c1)(µ+d+c3)
β(µ+d+c3)

). The basic reproduction number of (2.5) is R3 =
Λβ

(µ+c1)(µ+d+c3)
.

Theorem 2.7 The DFE E30 is locally asymptotically stable if R3 < 1 and unstable
whenever R3 > 1.

Theorem 2.7 is proved as Theorem 2.3 is proved.

Theorem 2.8 The EE E31 is locally asymptotically stable if R3 > 1.

A proof similar to the proof of Theorem 2.4 shows that all eigenvalues of the
linearization of (2.5) at E31 are either negative real numbers or complex numbers
with negative real parts.

3 Case A: Sb < h1

In this and the following three sections, we determine the existence of sliding modes
on M1 and M2 and study the dynamics of (2.1) and (2.2). We have h1 < h2 < h3
and g3 < g2 < g1. We consider the 16 cases generated by Sb < h1, h1 < Sb < h2,
h2 < Sb < h3 and h3 < Sb, and Ib < g3, g3 < Ib < g2, g2 < Ib < g1 and g1 < Ib.
They each require a distinct mathematical analysis. However, we will show in the
conclusion that many of these cases are identical from a biological point of view. The
endemic equilibrium may mathematically change from one case to the other but may
still produce the same biological phenomena.

The conclusions of the results in Sects. 3–6 are summarized in the table at the end
of the paper. We list the equilibria of the dynamical system (2.1) when the thresholds
Sb and Ib vary, as well as the corresponding culling strategy to be implemented.

3.1 Existence of a sliding mode on M1 and its dynamics

There are several types of regions on a discontinuity surface and several types of
equilibrium points for a Filippov system. See Appendices A and B of Chong and
Smith? (2015), respectively.
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Proposition 3.1 (Zhao et al. 2013) If 〈n1, f1〉 > 0 and 〈n1, f3〉 < 0 on Ω1 ⊂ M1,
then Ω1 is a sliding region.

From 〈n1, f1〉 > 0 and 〈n1, f3〉 < 0, we get

h1 =
µ+ d

β
< S <

µ+ d + c3
β

= h3.

Thus
Ω1 = {(S, I ) ∈ M1 : Sb < h1 < S < h3} . (3.1)

Sliding-mode equations can be found by using Filippov convex method (Filippov
1988; Leine 2000) as follows:

(
S′

I ′

)
= ψ f1 + (1 − ψ) f3 , where ψ = 〈n1, f3〉

〈n1, f3 − f1〉
.

Thus

(
S′

I ′

)
=



Λ − βSI − (µ+ c1)S + c1S ((µ+ d + c3) − βS)

c3
0



 . (3.2)

The differential equation for S has two steady states, given by

S = B ±
√
B2 − 4AC

2βc1
, where A = −βc1, B = c1(µ+ d) − c3(β Ib + µ)

and C = Λc3.

However, B2 − 4AC > B2 > 0 because A < 0 and C > 0. Thus there is only one
positive steady state, given by

S = h4 ≡ B +
√
B2 − 4AC

2βc1
.

Hence ES1 = (h4, Ib) ∈ Ω1 ⊂ M1 is an equilibrium for (3.2) if h1 < h4 < h3. It is
locally asymptotically stable because

∂

∂S

(
− βc1S2+(c1(µ+ d) − c3(β Ib + µ)) S+Λc3

c3

) ∣∣∣∣
ES1

= −
√
B2 − 4AC

c3
<0.

We now show that ES1 is globally asymptotically stable if

g3 < Ib < g1. (3.3)
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An avian-only Filippov model incorporating culling 761

We note that the equilibria E11, E21 and E31 for f1, f2 and f3, respectively, do not
appear in this case, because they are outside the considered domain for f1, f2 and f3.
For this reason, we call them virtual equilibria for (2.1).

Theorem 3.2 ES1 ∈ Ω1 ⊂ M1 is globally asymptotically stable if g3 < Ib < g1 and
R1 > 1.

Proof We first prove that there cannot be any periodic solution entirely included in
one of the regions Gi . Consider a Dulac function B1(S, I ) = 1

SI for (S, I ) ∈ R2
+.

Then

∂(B1 f1,1)
∂S

+ ∂(B1 f1,2)
∂ I

= ∂

∂S

(
Λ

SI
− β − µ

I

)

+ ∂

∂ I

(

β − µ+ d

S

)

= − Λ

S2 I
< 0

on R2
+, where f1,1 is the first component of f1 and f1,2 is the second component of

f1. We have a similar result for f2 and f3. From Dulac’s Theorem (Perko 2001), we
know that there will not be any periodic solution included in R2

+\{M1,M2}.
Because the vector field F in (2.1) is discontinuous, we cannot use Dulac’s The-

orem to prove that there are no periodic solution crossing the regions Mi . However,
proceeding as in the proof of Dulac’s Theorem, using Green’s Theorem, we can reach
this conclusion for our system as we now show.

Suppose that Γ is a periodic orbit around Ω1 as in Fig. 1. Let Γ = Γ1 + Γ2 + Γ3,
where Γi = Γ ∩ Gi . Let H be the bounded region delimited by Γ and Hi = H ∩ Gi
for i = 1, 2 and 3. Then

Fig. 1 Limit cycle Γ
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∫∫

H

(
∂(B1F1)

∂S
+ ∂(B1F2)

∂ I

)
dSd I

=
3∑

i=1

∫∫

Hi

(
∂(B1 fi,1)

∂S
+ ∂(B1 fi,2)

∂ I

)
dSd I < 0, (3.4)

where F1 is the first component of F and F2 is the second component of F . We have

∫∫

Hi

(
∂(B1 fi,1)

∂S
+ ∂(B1 fi,2)

∂ I

)
dSd I = lim

ε→0

∫∫

H̃i

(
∂(B1 fi,1)

∂S
+ ∂(B1 fi,2)

∂ I

)
dSd I,

where H̃i is the region bounded by the curves Γ̃i , C̃i and D̃i (if necessary) as illustrated
in Fig. 1. H̃i and Γ̃i depend on ε and converge to Hi and Γi as ε approaches 0.

By applying Green’s Theorem to the region H̃1, we get

∫∫

H̃1

(
∂(B1 f1,1)

∂S
+ ∂(B1 f1,2)

∂ I

)
dSd I =

∮

∂ H̃1

B1 f1,1d I − B1 f1,2dS

=
∫

Γ̃1

B1 f1,1d I − B1 f1,2dS +
∫

C̃1

B1 f1,1d I − B1 f1,2dS

= −
∫

C̃1

B1 f1,2dS (3.5)

because dS = f1,1dt and d I = f1,2dt along Γ̃1, and d I = 0 along C̃1. Note that ∂ H̃1
denotes the boundary of H̃1.

Proceeding as we just did, we get

∫∫

H̃2

(
∂(B1 f2,1)

∂S
+ ∂(B1 f2,2)

∂ I

)
dSd I =

∫

D̃2

B1 f2,1d I −
∫

C̃2

B1 f2,2dS (3.6)

and
∫∫

H̃3

(
∂(B1 f3,1)

∂S
+ ∂(B1 f3,2)

∂ I

)
dSd I =

∫

D̃3

B1 f3,1d I −
∫

C̃3

B1 f3,2dS. (3.7)

From (3.4) to (3.7), we see that

0 >

3∑

i=1

∫∫

Hi

(
∂(B1 fi,1)

∂S
+ ∂(B1 fi,2)

∂ I

)
dSd I

= lim
ε→0



−
∫

C̃1

B1 f1,2dS +
∫

D̃2

B1 f2,1d I −
∫

C̃2

B1 f2,2dS +
∫

D̃3

B1 f3,1d I −
∫

C̃3

B1 f3,2dS



 .
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If q1 and q3 are the intersections of Γ with the line I = Ib, q4 is the intersection of Γ

with the line S = Sb with I > Ib and q2 = (Sb, Ib), then the previous inequality can
be written

0 >−
q1,1∫

q3,1

(

β − µ+ d

S

)

dS +
q4,2∫

q2,2

(
Λ

SI
− β − µ

I

)

d I −
q2,1∫

q1,1

(

β − µ+ d + c2
S

)

dS

+
q2,2∫

q4,2

(
Λ

SI
− β − µ+ c1

I

)

d I −
q3,1∫

q2,1

(

β − µ+ d + c3
S

)

dS

= c1(ln q4,2 − ln Ib)+ c2(ln Sb − ln q1,1)+ c3(ln q3,1 − ln Sb) > 0

since q1,1 < Sb < q3,1 and q4,2 > Ib. This is a contradiction. So the periodic solution
Γ cannot exist.

Similar computations show that no periodic orbit can cross only M1 or only M2.
The condition R1 > 1 implies that E10 is unstable. This condition is always satisfied

in the model that we consider. )*

Remark It should be noted that Dulac’s Theorem relies on continuity and hence cannot
be applied directly to Filippov systems. However, our proof follows the same idea as
Dulac’s Theorem, by using Green’s Theorem and considering the boundary to be away
from the discontinuities, in order to produce the result.

3.2 Sliding mode on M2 and its dynamics

Proposition 3.3 (Zhao et al. 2013) The sliding region Ω2 is the set of all points on
M2 such that 〈n2, f2〉 > 0 and 〈n2, f3〉 < 0.

We have 〈n2, f2〉 > 0 for I < g4 ≡ (Λ − µSb)
/
(βSb) and 〈n2, f3〉 < 0 for

I > g5 ≡
(
Λ − (µ+ c1)Sb

)/
(βSb). We have g5 < g4 because c1 > 0. So, as long as

Ib < g4, we get the sliding domain Ω2 ⊂ M2 defined as

Ω2 =
{
(S, I ) ∈ M2 : max{g5, Ib} < I < g4

}
. (3.8)

The condition Sb < h1 implies that g3 < g5 because c3 > 0, and g1 < g4. Thus

g3 < g1, g5 < g4. (3.9)

There is no sliding domain on M2 for Ib > g4.
Again, by the Filippov convex method, the sliding mode equation on Ω2 is given

by
(
S′

I ′

)
= ψ2 f2 + (1 − ψ2) f3, where ψ2 =

〈n2, f3〉
〈n2, f3 − f2〉

.
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Thus

(
S′

I ′

)
=




0

I

(

βS − (µ+ d + c3)+
(c3 − c2) (βSI + (µ+ c1)S − Λ)

c1S

)


 . (3.10)

System (3.10) has an obvious equilibrium point given by ES2 ≡ (Sb, g6), where

g6 =
c1Sb ((µ+ d + c3) − βSb)+ (c3 − c2) (Λ − Sb(µ+ c1))

βSb(c3 − c2)
.

This becomes a pseudoequilibrium in our system only if

max{g5, Ib} < g6 < g4. (3.11)

However, it is unstable on Ω2.

Theorem 3.4 ES2 is an unstable sliding equilibrium on Ω2 ⊂ M2. This is true inde-
pendently of the value of Sb.

Proof

∂

∂ I

(
I
(
c1Sb

(
βSb−(µ+d+c3)

)
+(c3−c2)

(
Sb(µ+ c1) − Λ

)
+βSb(c3 − c2)I

)

c1Sb

) ∣∣∣∣
g6

= c1Sb
(
(µ+ d + c3) − βSb

)
+ (c3 − c2)

(
Λ − Sb(µ+ c1)

)

c1Sb
> 0

because g6 > 0 and c3 > c2. )*

3.3 Stability of the endemic states

In this section, we are going to investigate the stability of endemic states with a fixed
tolerance threshold Sb < h1 as we vary the tolerance threshold Ib. Since Sb < h1 < h2
in Case A, the equilibrium E21 is not present in the system (it is a virtual equilibrium)
for any values of Ib. So there is no real equilibrium in region G2. However, equilibria
E11 and E31 may be present depending on the value of the tolerance threshold Ib.

Moreover, we assume that R1 > 1. Thus the equilibrium E10 on the S-axis is
unstable according to Theorem 2.3.

3.3.1 Case 1: Ib < g3 < g2 < g1

In this case, E11 and E21 are not present in the system (2.1) but E31 is. ES1 /∈ Ω1 ⊂ M1
since (3.3) is not satisfied. Moreover, since Sb < h1 = µ+d

β , we have

g6 = g4 +
c1(µ+ d + c2 − βSb)

β(c3 − c2)
> g4.
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Fig. 2 E31 is globally asymptotically stable if R1 > 1, Sb < h1 and Ib < g3 < g2 < g1. Inset Behaviour
when the number of infected birds is large

Thus ES2 is not in Ω2. We claim that E31 is globally asymptotically stable if Ib <

g3 < g2 < g1.

Theorem 3.5 E31 is globally asymptotically stable if Ib < g3 < g2 < g1 and R1 > 1.

Proof The proof is identical to the proof of Theorem 3.2. )*
From Fig. 2, where Ib = 1 is chosen, we can see that all solutions of model (2.1)

will approach E31 as t → ∞ as stated in Theorem 3.5. Note that for the chosen
parametric values, we have R1 > 1 and E10 is unstable.

Throughout this paper, the S-nullclines and I -nullclines of model (2.1) are rep-
resented by the dashed curves and asterisk dashed lines, respectively. The curve
{(S, I ) ∈ R2

+ : I = 1
β (

Λ
S − µ)} is the S-nullcline of systems f1 and f2, whereas

the curve {(S, I ) ∈ R2
+ : I = 1

β (
Λ
S − (µ + c1))} is the S-nullcline of system f3.

Furthermore, S = h1, h2 and h3 are the I -nullclines of systems f1, f2 and f3, respec-
tively. All associated parameters that are used in the numerical simulations are stated
in Table 1. Nevertheless, there is one exception: to get all figures of manageable size,
we define µ = 0.4. For Case A, we pick Sb = 1.

3.3.2 Case 2: g3 < Ib < g2 < g1 or g3 < g2 < Ib < g1

In both cases, E11, E21 and E31 are virtual equilibria because g1 > Ib, h2 > Sb and
g3 < Ib respectively. Thus, E11, E21 and E31 are not present in system (2.1).
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Table 1 Avian-only model (2.1) parameters

Description Sample value Units References

Λ Bird inflow 2060/365 Individuals per day
Martcheva (2014)

µ Natural death of birds 1/(2 × 365) Per day
Tuncer and Martcheva
(2013)

β Rate at which birds contract
avian influenza

0.4 Per individual per day
Gumel (2009)

d Disease death rate due to
avian influenza in birds

0.1 Per day
Tuncer and Martcheva
(2013)

c1 Culling rate of susceptible
birds for S > Sb and I > Ib

0.5 Per day Assumed

c2 Culling rate of infected birds
for S < Sb and I > Ib

0.5 Per day Assumed

c3 Culling rate of infected birds
for S > Sb and I > Ib

0.8 Per day Assumed
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Fig. 3 ES1 ∈ Ω1 ⊂ M1 is globally asymptotically stable if Sb < h1, g3 < Ib < g2 < g1 and R1 > 1

ES1 ∈ Ω1 ⊂ M1 is a pseudoequilibrium since (3.3) is satisfied. Moreover, ES1 is
globally asymptotically stable according to Theorem 3.2.

Theorem 3.6 ES1 is a globally asymptotically stable pseudoequilibrium if g3 < Ib <

g2 < g1 or g3 < g2 < Ib < g1, and R1 > 1.

The phase portrait for Case 2 with g3 < Ib < g2 < g1 is represented in Fig. 3,
where Ib = 3 is chosen. The phase portrait for g3 < g2 < Ib < g1 is similar to Fig. 3
and will not be given.
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3.3.3 Case 3: g3 < g2 < g1 < Ib

We have the equilibrium E11 ∈ G1 because g3 < g2 < g1 < Ib. However, this
condition also implies that E21 and E31 are not present in the system. Moreover,
ES1 /∈ Ω1 ⊂ M1 since (3.3) is not satisfied.

Theorem 3.7 There is no closed orbit lying in region G1.

Proof We have f1,1 = Λ−βSI −µS and f1,2 = βSI − (µ+d)I . Consider a Dulac
function B1(S, I ) = 1

SI for all (S, I ) ∈ G1. We get

∂
(
B1 f1,1

)

∂S
+ ∂

(
B1 f1,2

)

∂ I
= ∂

∂S

( Λ

SI
− β − µ

I

)
+ ∂

∂ I

(
β − µ+ d

S

)

= − Λ

S2 I
< 0 ∀(S, I ) ∈ G1.

Therefore, by the Bendixson–Dulac theorem, there is no closed orbit lying entirely
within region G1. )*
Theorem 3.8 E11 is globally asymptotically stable if g3 < g2 < g1 < Ib and R1 > 1.

Proof We define regions D1, D2, D3 and D4 as follows:

D1 =
{
(S, I ) ∈ R2

+ : S ≤ h3 and I > Ib
}
,

D2 =
{
(S, I ) ∈ R2

+ : S > h3 and I > Ib
}
,

D3 =
{
(S, I ) ∈ R2

+ : I > 1

β

(
Λ

S
− µ

)

and I ≤ Ib

}
and

D4 =
{
(S, I ) ∈ R2

+ : I < 1

β

(
Λ

S
− µ

)

and I ≤ Ib

}
.

The vector field in each region is denoted by arrows, as shown in Fig. 4 with Sb = 1
and Ib = 12. The flow to the right of the S-nullcline is moving to the left, while to the
left of the S-nullcline it is moving to the right.

In addition, by Theorems 2.4 and 3.7, E11 is locally asymptotically stable and there
is no limit cycle in region G1. The possible trajectories for this case are as follows:

(i) A trajectory with initial point in region D4 either converges to E11 directly or
moves downward for S < h1, then upward for S > h1 and finally crosses the
S-nullcline to enter the region D3 and converge to E11.

(ii) A trajectory with initial point in region D3 converges to E11 directly or moves
upward for S > h1, then downward for S < h1 and finally crosses the S-nullcline
to enter the region D4 and converge to E11. An orbit starting in D3 may also go
up until it enters the region D2 through I = Ib or reaches the sliding domain. In
both cases, the orbit goes on to enter D3 or D4 with S < h1 and converges to
E11.
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Fig. 4 E11 is globally asymptotically stable if Sb < h1, g3 < g2 < g1 < Ib and R1 > 1

(iii) A trajectory that begins in region D1 moves downward to either enter the region
D3 through I = Ib or the region D4.

(iv) A trajectory with initial condition in region D2 moves to the left to either enter
the region D1 through the line S = h3 and then heads to region D3 or D4 with
S < h1. In all cases, the orbit finally converges to E11.

Since E10 is unstable whenever R1 > 1, we conclude that E11 is globally asymp-
totically stable in R2

+ if g3 < g2 < g1 < Ib. )*

4 Case B: h1 < Sb < h2

Wewill proceed as in Sect. 3 to study the dynamics of (2.1) including the sliding mode
on M1 and M2 and the stability of endemic states.

4.1 Sliding mode on M1 and its dynamics

For Case B, we have two sliding domains on M1.

Ω3 = {(S, I ) ∈ M1; h1 < S < Sb}

and

Ω4 = {(S, I ) ∈ M1; Sb < S < h3} .
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The dynamics on Ω4 ⊂ M1 are described by (3.2), whereas on Ω3 ⊂ M1, they are
governed by (

S′

I ′

)
=
(

Λ − β IbS − µS
0

)
. (4.1)

There is a sliding equilibrium for (4.1) at ES3 = (h5, Ib), where h5 = Λ
β Ib+µ , and

a sliding equilibrium for (3.2) at ES1 = (h4, Ib).
ES3 is a pseudoequilibrium if

h1 < h5 < Sb (4.2)

and ES1 is a pseudoequilibrium if

Sb < h4 < h3. (4.3)

Proposition 4.1 We have

h1 < h5 < Sb ⇔ g4 < Ib < g1 (4.4)

and

Sb < h4 < h3 ⇔ g3 < Ib < g8 ≡ g4 +
c1(µ+ d − βSb)

βc3
. (4.5)

The proof is lengthy, but trivial.
In (4.5), g3 < g2 − c1c2

βc3
< g8 < g4 < g1 since h1 < Sb < h2 yields − c1c2

βc3
<

c1(µ+d−βSb)
βc3

< 0.

Corollary 4.2 The pseudoequilibria ES1 and ES3 are mutually exclusive.

We note that h1 < Sb < h2 implies that g2 < g4 < g1; this last inequality will
play a crucial role in the cases below.

4.2 Sliding mode on M2 and its dynamics

By Definition 3.3, the sliding domain Ω2 ⊂ M2 for I < g4 is given by (3.8), and
there is no sliding domain for I > g4. As we have seen, we get g2 < g4 < g1 from
h1 < Sb < h2. Moreover, h1 < Sb < h2 yields

g3 <
Λβ − (µ+ c1)(µ+ d + c2)

β(µ+ d + c2)
< g5 <

Λβ − (µ+ d)(µ+ c1)

β(µ+ d)
< g1.

The sliding mode on Ω2 is governed by Eq. (3.10) and the sliding equilibrium
ES2 = (Sb, g6), if present in the system, is unstable on Ω2 ⊂ M2 as proven in
Theorem 3.4. Since g6 = g4 − c1

β + c1(µ+d+c3−βSb)
β(c3−c2)

> g4 whenever h1 < Sb < h2,
then ES2 /∈ Ω2 ⊂ M2.
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4.3 Stability of the endemic states

For a fixed threshold level Sb such that h1 < Sb < h2, E21 is a virtual equilibrium
and so it is not present in system (2.1). However, E11 and E31 are real equilibria if
E11 ∈ G1 and E31 ∈ G3, respectively. In the following subsections, we are going to
study the stability of the endemic states that we will illustrate with several numerical
simulations. The associated parameters involved in the numerical simulations are
defined in Table 1.

4.3.1 Case 4: Ib < g3 < g2 < g1

Under these conditions, E11 and E21 are virtual equilibria, whereas E31 is a real
equilibrium. It follows fromProposition 4.1 that ES1 and ES3 are not pseudoequilibria;
namely, ES1 /∈ Ω4 and ES3 /∈ Ω3.

Proceeding as we did for Theorem 3.5, we get the following result.

Theorem 4.3 E31 is globally asymptotically stable for Ib < g3 < g2 < g1 and
R1 > 1.

Theorem 4.3 is illustrated in Fig. 5 with Sb = 2 and Ib = 1. All solutions with any
initial conditions in R2

+ converge to E31 as t increases.

4.3.2 Case 5: g3 < Ib < g2 < g1

In the present case, E11, E21 and E31 are virtual equilibria and so not present in the
system (2.1). This case must be divided in two subcases: g8 > g2 and g8 < g2.
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Fig. 5 E31 is globally asymptotically stable for h1 < Sb < h2, Ib < g3 < g2 < g1 and R1 > 1
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Fig. 6 EG is a global pseudo-attractor whenever h1 < Sb < h2, g3 < g8 < Ib < g2 < g1 and R1 > 1

First, we note that ES3 is not a pseudoequilibrium in the present case. Moreover,
using a technique similar to the one used in the proof of the non-existence of limit
cycles in Theorem 3.2, the reader can prove the following theorem.

Theorem 4.4 Since g3 < Ib < g8, then ES1 ∈ Ω4 ⊂ M1 is globally asymptotically
stable if R1 > 1.

If g3 < Ib < g2 < g8 < g1, the point ES1 ∈ Ω4 ⊂ M1 is a globally asymptotically
stable pseudoequilibrium. The phase space in this case is similar to the phase portrait
represented in Fig. 3 and will not be given.

If g3 < Ib < g8 < g2, then we have the same dynamic as above. However, if
g3 < g8 < Ib < g2, no equilibrium exists in the system. However, all orbits will
converge in a finite time to EG = (Sb, Ib); we call such an attracting point a pseudo-
attractor. The phase portrait in this case is represented in Fig. 6 with Sb = 2.4 and
Ib = 4.4.

4.3.3 Case 6: g3 < g2 < Ib < g1

We have that E11, E21 and E31 are virtual equilibria; so, they are not present in (2.1).
As in Case 5, we have to consider g8 < g2 and g8 > g2.

Recall that g2 < g4 < g1 in Case B. If g4 < Ib < g1, independently of g8 < g2
or g8 > g2, it follows from (4.4) that ES3 is a pseudoequilibrium. Again, using an
approach similar to the one used in the proof of the non-existence of limit cycles in
Theorem 3.2, we get the following theorem.

Theorem 4.5 If g4 < Ib < g1, then ES3 ∈ Ω3 ⊂ M1 is globally asymptotically
stable if R1 > 1.
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Fig. 7 ES3 ∈ Ω3 ⊂ M1 is a globally asymptotically stable pseudoequilibrium if h1 < Sb < h2,
g3 < g8 < g2 < g4 < Ib < g1 and R1 > 1

If g8 < g2 < g4 < Ib < g1 or g2 < g8 < g4 < Ib < g1, we get the same phase
space. So for this case, we only depict the numerical result of g3 < g8 < g2 < g4 <

Ib < g1 with Sb = 2.3 and Ib = 6, which is as shown in Fig. 7.
If g2 < g8 < Ib < g4 < g1 or g8 < g2 < Ib < g4 < g1, then no equilibrium can

be found in this system and EG becomes again a global pseudo-attractor. The phase
portrait for the case g2 < g8 < Ib < g4 < g1 is given in Fig. 8, where Sb = 2.2 and
Ib = 5.

Finally, if g2 < Ib < g8, then we may use Theorem 4.4 to conclude that ES1 is
a globally asymptotically stable pseudoequilibrium. The point ES3 is not a pseudoe-
quilibrium according to (4.4). The phase portrait of this case is similar to the phase
portrait in Fig. 3.

4.3.4 Case 7: g3 < g2 < g1 < Ib

In this case, E21 and E31 are not equilibria for (2.1), but E11 is an equilibrium.
Moreover, ES3 and ES1 are not pseudoequilibria as the requirements of (4.2) and
(4.3) are not met, according to Proposition 4.1.

Theorem 4.6 The equilibrium E11 is globally asymptotically stable if Ib > g1 and
R1 > 1.

Theproof of this theorem is identical to the proof ofTheorem3.8 since E11 is asymp-
totically stable inG1 by Theorem 2.4. It is globally asymptotically stable because there
are no periodic orbits in G1 and, eventually, all orbits enter the region G1 and do not
leave it. The phase portrait for this case is similar to Fig. 4.
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Fig. 8 EG is a global attractor if h1 < Sb < h2 and g3 < g2 < g8 < Ib < g4 < g1

5 Case C: h2 < Sb < h3

5.1 Sliding mode on M1 and its dynamics

The sliding domains on M1 are

Ω5 = {(S, I ) ∈ M1; h1 < S < h2} and Ω6 = {(S, I ) ∈ M1; Sb < S < h3} .

The dynamics onΩ5 are governed by (4.1), whereas the dynamics onΩ6 are governed
by (3.2).

ES3 = (h5, Ib) and ES1 = (h4, Ib) are the sliding equilibria on Ω5 and Ω6,
respectively. The following proposition gives the conditions for ES3 and ES1 to be
pseudoequilibria.

Proposition 5.1 Let g7 = g4 − c1[βSb−(µ+d)]
βc3

. Since h2 < Sb < h3, we have g3 <

g7 < g4 < g2. Moreover,

Sb < h4 < h3 ⇔ g3 < Ib < g7 (5.1)

and

h1 < h5 < h2 ⇔ g2 < Ib < g1. (5.2)

Thus ES1 is a pseudoequilibrium if g3 < Ib < g7 and ES3 is a pseudoequilibrium
if g2 < Ib < g1.

123



774 N. S. Chong et al.

5.2 Sliding mode on M2 and its dynamics

Everything from Sect. 3.2 is still valid. In particular, the sliding region Ω2 ⊂ M2
is defined in (3.8). There is a pseudoequilibrium ES2 = (Sb, g6) only if (3.11) is
satisfied. It is always unstable.

We note that h2 < Sb < h3 yields g3 < g5 < g4 < g2. Moreover, since Sb <

h3 = µ+d+c3
β , we get

g6 =
c1(µ+ d + c3 − βSb)

β(c3 − c2)
+ Λ − (µ+ c1)Sb

βSb
>

Λ − (µ+ c1)Sb
βSb

= g5,

and since Sb > h2 = µ+d+c2
β , we get

g6 =
c1(µ+ d + c3 − βSb)

β(c3 − c2)
+Λ − (µ+ c1)Sb

βSb
= g4 +

c1(µ+d + c2 − βSb)
β(c3 − c2)

<g4.

The condition (3.11) is therefore always satisfied and the pseudoequilibrium ES2 is
always present if Ib < g6.

5.3 Stability of the endemic states

A similar analysis as exhibited in Sects. 3.3 and 4.3 is applied here. For Case C, we
pick Sb = 3 to execute several numerical simulations in order to demonstrate the
theoretical results.

5.3.1 Case 8: Ib < g3 < g2 < g1

In the present case, E21 and E31 are real equilibria,whereas E11 is a virtual equilibrium.
Furthermore, there is no pseudoequilibrium other than ES2 whenever Ib < g3 < g2 <
g1. In the following theorem, it is proven that E21 and E31 are locally asymptotically
stable.

Theorem 5.2 If h2 < Sb < h3, then E21 is locally asymptotically stable for Ib < g2
and E31 is locally asymptotically stable for Ib < g3.

Proof The linearization J2(E21) of (2.1) at E21 has the eigenvalues

λ± = 1
2

{

− Λβ

µ+ d + c2
±
√

32

}

where

32 =
(

Λβ

µ+ d + c2

)2

− 4
[
Λβ − µ(µ+ d + c2)

]
.
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Since Ib < g2, we have Λβ − µ(µ + d + c2) > β Ib(µ + d + c2) > 0, where all

associated parameters are positive. Thus 32 <
(

Λβ
µ+d+c2

)2
. Hence the real part of λ±

is always negative. We can have 32 ≥ 0 or 32 < 0; thus E21 is either a stable node
in the first case or a stable spiral in the latter case.

A similar argument shows that E31 is also locally asymptotically stable if Ib <

g3 < g2 < g1. )*
Since there are no periodic orbits in R2

+, almost all solutions of (2.1) in R2
+ will

converge to either E21 or E31 as t → ∞. The exceptions are the twoorbits associated to
the stable manifold of the equilibrium ES2; together, they form the separatrix between
the ω-limit sets of E21 and E31.

Figure 9 displays the phase portrait for Case 8 with Ib = 1.

5.3.2 Case 9: g3 < Ib < g2 < g1

In this case, E21 is a real equilibrium, but E11 and E31 are virtual equilibria. We also
have that ES2 is an unstable pseudoequilibrium as long as Ib < g6.

A simple computation gives

h2 < Sb < h3 ⇔ g5 < g7 < g4 − c1c2
βc3

.

Proposition 5.3 Since c3 > c2 > 0 and h2 < Sb < h3, then

g6 = g7 +
c1c2 (µ+ d + c3 − βSb)

βc3(c3 − c2)
> g7.
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Fig. 9 E21 and E31 are locally asymptotically stable if h2 < Sb < h3, Ib < g3 < g2 < g1 and R1 > 1
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Hence g3 < g5 < g7 < g6 < g4 < g2 < g1.

This is a consequence of the fact that h2 < Sb < h3 implies 0 < µ+ d + c3 − βSb <

c3 − c2.
If g3 < Ib < g7, we have one equilibrium, E21, and two pseudoequilibria, ES1

and ES2. We have seen in Theorem 5.2 that E21 is locally asymptotically stable, and
in Theorem 3.4 that ES2 is always unstable. The following theorem addresses the
stability of ES1.

Theorem 5.4 ES1 ∈ Ω6 ⊂ M1 is locally asymptotically stable if g3 < Ib < g7.

Proof ES1 ∈ Ω6 ⊂ M1 is locally asymptotically stable since

∂

∂S

(−βc1S2 + (c1(µ+ d) − c3(β Ib + µ))S + Λc3
c3

)∣∣∣∣
h4

= −2βc1S + c1(µ+ d) − c3(µ+ β Ib)
c3

∣∣∣∣
h4

= −
√
B2 − 4AC
c3

< 0,

where c3,
√
B2 − 4AC > 0. )*

Hence the orbits in R2
+ of the system (2.1) will either converge to ES1 or E21 as

t increases except for the two orbits associated to the stable manifold of the unstable
pseudoequilibrium ES2. The phase portrait for this case can be found in Fig. 10 with
Ib = 2.3.

If g7 < Ib < g6, the system (2.1) has a pseudo-attractor EG , a locally asymptoti-
cally stable equilibrium E21 and an unstable pseudoequilibrium ES2. All trajectories
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Fig. 10 E21 and ES1 ∈ Ω6 ⊂ M1 are locally asymptotically stable if h2 < Sb < h3 and g3 < Ib <
g7 < g6 < g4 < g2 < g1
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Fig. 11 E21 is locally asymptotically stable and EG is a pseudo-attractor if h2 < Sb < h3 and g3 < g7 <
Ib < g6 < g4 < g2 < g1

with arbitrary initial points in R2
+ will either converge to E21 or EG as t increases.

The two orbits associated to the stable manifold of the unstable pseudoequilibrium
ES2 form a separatrix between the ω-limit sets of E21 and EG . The phase portrait of
this system is given in Fig. 11, where Ib = 2.7.

If g6 < Ib < g2, we have only the equilibrium E21. Therefore E21 is globally
asymptotically stable. The phase portrait of the system for g6 < Ib < g4 < g2 is
given in Fig. 12, where Ib = 3.2. The phase portrait for the case g6 < g4 < Ib < g2
is qualitatively similar to the one given in Fig. 12 and is not given here.

5.3.3 Case 10: g3 < g2 < Ib < g1

E11, E21 and E31 are all virtual equilibria. Moreover, from (4.5), we find that ES1 is
not a pseudoequilibrium because Ib > g2 > g7 and the sliding domain on M2 (i.e.,
Ω2) does not exist as Ib > g2 > g4. The system (2.1) has only the pseudoequilibrium
ES3 since (5.2) is fulfilled.

The following theorem proves that ES3 ∈ Ω5 ⊂ M1 is globally asymptotically
stable.

Theorem 5.5 ES3 ∈ Ω5 ⊂ M1 is globally asymptotically stable if h2 < Sb < h3,
g3 < g2 < Ib < g1 and R1 > 1.

The proof of Theorem 5.5 is similar to the proof of Theorem 3.2.
Furthermore, the phase portrait of Case 10 is described in Fig. 13, where Ib = 7.
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Fig. 12 E21 is globally asymptotically stable if h2 < Sb < h3 and g3 < g7 < g6 < Ib < g4 < g2 < g1
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Fig. 13 ES3 ∈ Ω5 ⊂ M1 is globally asymptotically stable if h2 < Sb < h3, g3 < g2 < Ib < g1 and
R1 > 1

5.3.4 Case 11: g3 < g2 < g1 < Ib

E21 and E31 are virtual equilibria, and E11 is a real equilibrium. It also follows from
Sects. 5.1 and 5.2 that there are no pseudoequilibria. We show below that E11 is
globally asymptotically stable. Case 11 is similar as Case 7.
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Fig. 14 E11 is globally asymptotically stable if h2 < Sb < h3, g3 < g2 < g1 < Ib and R1 > 1

Theorem 5.6 E11 is globally asymptotically stable if h2 < Sb < h3, g3 < g2 <

g1 < Ib and R1 > 1.

The proof of this theorem is similar to the proof of Theorem 4.6, and so it is omitted.
The phase portrait for this case is given in Fig. 14.

6 Case D: Sb > h3

6.1 Sliding mode on M1 and its dynamics

There exists a sliding domain Ω5 = {(S, I ) ∈ M1 : h1 < S < h2} on M1 and its
dynamics are governed by (4.1). The sliding equilibrium ES3 = (h5, Ib) ∈ Ω5 ⊂ M1
is a pseudoequilibrium if (5.2) is satisfied.

6.2 Sliding mode on M2 and its dynamics

We have that 〈n2, f2〉 > 0 and 〈n2, f3〉 < 0 for g5 < I < g4 as in Sect. 3.2.
Furthermore, Sb > h3 implies that

g5 =
Λ

βSb
− µ+ c1

β
<

Λ

µ+ d + c3
− µ+ c1

β
= g3

and similarly g4 < g2. Recall that

Ω2 = {(S, I ) ∈ M2 : max{g5, Ib} < I < g4}
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for Ib < g4, while Ω2 does not exist if Ib ≥ g4. The dynamics on Ω2 are governed
by (3.10). Furthermore, h3 < Sb implies that

g6 =
c1(µ+ d + c3 − βSb)

β(c3 − c2)
+ Λ − (µ+ c1)Sb

βSb
<

Λ − (µ+ c1)Sb
βSb

= g5.

Thus ES2 = (Sb, g6) is never a pseudoequilibrium for h3 < Sb.

6.3 Stability of the endemic states

The same approach as shown in Sects. 3.3, 4.3 and 5.3 is implemented in this section.
E31 is always a virtual equilibrium because of Sb > h3. Several numerical simulations
are performed in this section by choosing Sb = 4.

6.3.1 Case 12: Ib < g3 < g2 < g1 or g3 < Ib < g2 < g1

There is only one equilibrium at E21. The points E11 and E31 are virtual equilibria,
and ES2 and ES3 are not pseudoequilibria. A simple analysis with the nullclines as
we have done for the proof of Theorem 3.8 gives the following result.

Theorem 6.1 E21 is globally asymptotically stable if Ib < g3 < g2 < g1 or g3 <

Ib < g2 < g1, Sb > h3 and R1 > 1.

Figure 15 depicts the numerical result of Ib < g3 < g2 < g1. We choose Ib = 1 in
Fig. 15. The numerical result of g3 < Ib < g2 < g1 is omitted here since it is similar
to Fig. 15.

6.3.2 Case 13: g3 < g2 < Ib < g1

In this case, E11, E21 and E31 are virtual equilibria. As we said before, ES2 is not
a pseudoequilibrium. There is only one pseudoequilibrium ES3 in system (2.1). The
phase portrait for this case is given in Fig. 16, where Ib = 6.

6.3.3 Case 14: g3 < g2 < g1 < Ib

The equilibrium E11 is globally asymptotically stable whenever g3 < g2 < g1 < Ib.
The points E21 and E31 are virtual equilibrium, and ES2 and ES3 are not pseudoequi-
libria.

Theorem 6.2 E11 is globally asymptotically stable if Sb > h3, g3 < g2 < g1 < Ib
and R1 > 1.

The numerical result of this case is relatively similar to the phase portrait given in
Fig. 4.
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Fig. 15 E21 is globally asymptotically stable if Sb > h3, Ib < g3 < g2 < g1 and R1 > 1
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Fig. 16 ES3 ∈ Ω5 ⊂ M1 is globally asymptotically stable if Sb > h3, g3 < g2 < Ib < g1 and R1 > 1

7 Conclusion and discussion

The model we considered here used nonlinear ordinary differential equations with
discontinuous right-hand sides, extending our previouswork (Chong andSmith? 2015)
by taking into account culling susceptible birds, instead of only infected birds. Since
culling birds is one of the most effective strategies to control the transmission of bird
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Table 2 Conclusions for Sects. 3–6

flu, it was also essential for us to look into other efficient culling strategies that not only
control the disease, but reduce the socio-economic impact as well (FAO 2008; Centers
for Disease Control and Prevention 2012; International Animal Health Organisation
2015; Gulbudak and Martcheva 2013; Menach et al. 2006). To achieve this objective,
the numbers of susceptible and infected birds were employed as reference indices in
our disease-management strategy in order to determine whether or not we need to call
for culling birds as a control measure.

In this model, depopulation of birds was only carried out if the number of infected
birds was greater than the threshold level Ib; no application of culling strategy was
carried out whenever the number of infected birds was below the threshold level Ib.
When the number of infected birds was above Ib, infected birds were culled with
rates c2 and c3 if the numbers of susceptible birds were less than or greater than the
threshold level Sb, respectively. Moreover, we culled susceptible birds with rate c1 if
the number of susceptible birds exceeded the threshold level Sb, in order to prevent a
serious infection among the avian population.

The results fromSects. 3–6 are summarised in Table 2, with the following biological
outcomes:

I. For these choices of infected and susceptible threshold levels Ib and Sb, there is
no risk of an epidemic because the infected level will always eventually converge
to a level below or equal to Ib, as we can see from Figs. 3, 4, 6, 7, 8, 12, 13,
14 and 16. In these cases, there is a globally asymptotically stable equilibrium,
pseudoequilibrium or pseudo-attractor below or on I = Ib.

II. It is virtually impossible to avoid an epidemic if the infected threshold level Ib
is sufficiently low. As can be seen in Figs. 2, 5 and 15, as soon as there are
some infected birds, the number will rise above Ib to reach the level of a globally
asymptotically stable equilibrium.

III. If there are initially a small number of infected birds, this number may rise but will
stay at a level inferior or equal to the infected threshold level Ib. However, if there
are initially too many infected birds, the number of infected birds will balloon to
a level higher than Ib. As can be seen in Figs. 10 and 11, for initial conditions
with the number of infected birds I small enough, the orbits will converge to a
pseudo-attractor or a locally stable pseudoequilibrium on I = Ib. However, for
initial conditions with I (0) large enough, the orbits will converge to the locally
asymptotically stable equilibrium above I = Ib.
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IV. This case is similar toCase II, in the sense that it is impossible to avoid an epidemic.
However, the reason for this conclusion is slightly different. As seen in Fig. 9, there
are two locally asymptotically stable equilibria. Since both are above the infected
threshold level Ib, the number of infected birds will converge to one of these
equilibria, depending on initial conditions, and an epidemic will ensue.

In Case I, there is no need to modify the culling policy. The number of infected
birds will eventually be below the infected threshold level Ib. In Cases II and IV, the
infected threshold level is not realistic for this bird population and must be modified.

In Case III, there may not be any need to modify the culling policy if the initial
number of infected birds is kept low. However, there is a risk of epidemic if there is a
large inflow of infected birds.

Our model has several limitations, which should be acknowledged. We assumed
that the bird inflow in this model was a fixed constant, the culling rate c3 was greater
than the culling rate c2 and infected birds were presumed not to move to other classes;
i.e., the infected birdswill only remainwithin the infected class.We also assumedmass
action transmission, which carries with it the assumption of homogeneous contact.

In addition, a deterministic model like (2.1) is valid as long as we consider a large,
well-mixed and homogeneous population in a limited area. This is the situation that
we have in most large-scale industrial bird farms. If some of these conditions are not
respected and the randomness in the evolution of a disease has to be considered, then a
stochastic model will become more appropriate. This is, however, out of the scope of
this paper. Stochastic effects are important for determining the viability of a population
when the number of infected individuals is lowor sparsely distributed; an epidemic that
would be predicted to balloon may not if there were very few individuals. However,
when dealing with large, dense populations, a threshold policy provides guidance for
stemming a large-scale outbreak.

Our results have demonstrated that, by choosing appropriate threshold levels Sb
and Ib, the avian influenza outbreak could either be prevented or at least stabilized at a
desired level. However, we could suppress the infection of avian influenza by culling
susceptible and/or infected birds whenever an avian influenza outbreak emerges.
Hence, in order for us to combat or eradicate influenza in the avian population effi-
ciently, a good threshold policy is required.
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