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bstract

Recently, a vaccine for human papillomavirus was introduced, but made available only for girls and adult women aged 13–26.
ince rates of sexual activity vary by age and gender, vaccinating only an age-limited subset of one cohort may be insufficient to
ontrol the disease across all age groups and genders. We develop an age-dependent two-sex mathematical model to describe the
PV vaccination program for a vaccine targeting HPV types 16 and 18 in both childhood and adult stages. A stability analysis

s performed to determine the stability of the disease-free and endemic equilibria for different vaccination programs. The basic
eproduction number is derived for perfect childhood vaccination, perfect adult vaccination and childhood–adult vaccination. We
how that the effects of age dependency are complex, but that vaccinating a single age cohort in one gender, as current programs do,
an result in eventual control of the disease across all age groups. We also support our theoretical analysis with numerical simulations.
his provides a framework for future research and public-health policy to determine the dependence of HPV vaccination programs
n age and sexual behaviour, as well as how the vaccine can reduce the number of infections and deaths due to cervical cancer.

2011 IMACS. Published by Elsevier B.V. All rights reserved.
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. Introduction

Human papillomavirus (HPV) is the name of a group of viruses that includes more than 100 different strains or
ypes; more than 30 of these viruses are sexually transmitted. Persistent infection with high-risk types of HPV is the

ost important risk factor for cervical cancer; the development of cervical cancer is always preceded by infection with
ne of these viruses. However, the opposite is not always true; infection can occur without it leading to cancer [1].

As the infection is necessary for cancer to develop, vaccination that prevents HPV infection could potentially also
revent cervical cancer. Several such vaccines have already been developed and tested [1]. A vaccine against HPV
ypes 6, 11, 16 and 18 is now licensed for use in Canada and many other countries [4].

With promising efficacy results from HPV vaccines, policymakers are being asked to make recommendations and
ecisions regarding optimal strategies to reduce HPV infection and disease. Such decisions are increasingly being

ade with significant input from mathematical and economic models. The demand for modelling has resulted in the

evelopment of numerous mathematical and economical models examining the best strategies and the cost effectiveness
f vaccination [1,3,6,8–11,13,16,18,20].
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Age structure in epidemic models has been considered by many authors, because of the recognition that transmission
dynamics of certain diseases (such as sexually transmitted diseases) vary by age cohort. For diseases with long
transmission periods, the duration of infection, probability of transmission and natural death rate will all depend on
age. Despite the dependence of the transmission rates and the rates of sexual activity on age class, there have been
few age-structured mathematical models of HPV. Sexual contact varies by age and gender, and the vaccine is only
available for women aged 13–26. However, partnerships between older men and younger women versus older women
may facilitate disease transmission. Conversely, the effects of vaccinating a targeted age group may result in a general
reduction of viral prevalence.

Here, we develop a partial differential equation (PDE) model to study the effect of HPV vaccination for HPV types
16 and 18 (which are responsible for more than 70% of cervical cancers [10]), using a time- and age-dependent system
of PDEs, in order to evaluate a vaccination program and find parameters that play a major role in controlling the disease.
This is a generalization of [20], extending our time-dependent model to incorporate age-dependent effects.

Although age-structure could be approximated by a number of discrete classes (see, for example, [2]), these would
divide the population into mutually exclusive sexual profiles corresponding to different groups of sexual activity,
defined by their average number of different partnerships formed each year. Each group would further contain gender
and disease status, as well as vaccination status. Such a model would be extremely complex. Conversely, a continuous
model, such as the one we develop here, allows a range of age effects to be examined simultaneously and incorporates
the variation in disease and vaccination status in an elegant way.

We are interested in using our model to address the following question: can vaccinating in one age cohort and one
gender control the disease across different ages and genders? This paper is organized as follows. In Section 2, we
introduce the problem as a system of PDEs with initial and boundary conditions. In Section 3, we determine steady-state
equilibria and calculate the reproduction number. In Section 4, we study the stability of all the possible equilibria. In
Section 5, we support our results with numerical simulations. We conclude with a discussion.

2. The model

We extended the model in [20] to include sexually active women and men from all ages. The system of PDEs that
describe the dynamics of adult women and men due to birth, death and vaccination is a generalized system to the
system of ordinary differential equations in [20]. In addition to the model assumptions found in [20], we assume that
women enter the model as children at age 13, women cannot be vaccinated after age 26 and the vaccine may not confer
100% protection. The model classifies the adult population into eight classes: vaccinated susceptible adult women (Av),
unvaccinated susceptible adult women (Au), vaccinated infected adult women (Iv), unvaccinated infected adult women
(Iu), recovered women (Rw), susceptible adult men (M), infected adult men (N) and recovered men (Rm). A childhood
vaccine results in a proportion (p) of adult women initially being vaccinated. Unvaccinated adult women (Au) can
either be vaccinated when they are in the age range 13–26 (represented by χ[13,26]) or become infected (Iu), with rate
βm depending on age and time, when they meet an infected man N. Vaccinated adult women (Av) can also become
infected (Iv) with rate (1 − ψ)βm, where ψ is the efficacy of the vaccine. Unvaccinated men (M) become infected
upon contact with infected women (Iu or Iv), with a rate βw or ηβw depend on age and time. Infected women (Iu and
Iv) recover at rates ru and rv, while infected men recover with a rate rm. Since we are interested in studying the effect
of vaccination for HPV types 16 and 18, we assume that recovering from these HPV types means immunity to these
types [12,17]. The age-dependent natural death rate is μ and the age-dependent disease death rate for unvaccinated
females is du, for vaccinated females is dv and for males is dm. The model is illustrated in Fig. 1. Parameters can be
found in Table 1.

The reported number of annual partners per year is given in Fig. 2.
The system of PDEs is

(
1

)

∂tAu + ∂aAu = −(μ(a) + βm(t, a))Au −

13
a− 1 χ[13,26]f (p)Au (1)

∂tIu + ∂aIu = βm(t, a)Au − (μ(a) + du(a) + ru(a))Iu (2)
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Fig. 1. The mathematical model. Men can be susceptible (M), infected (N) or recovered (Rm). Women can be susceptible and unvaccinated (Au),
infected and unvaccinated (Iu), susceptible and vaccinated (Av), infected and vaccinated (Iv) or recovered (Rw).

Table 1
Variables and parameters.

Variable Definition

Au(t, a) Unvaccinated susceptible adult women of age a at time t
Av(t, a) Vaccinated susceptible adult women of age a at time t
Iu(t, a) Infected unvaccinated adult women of age a at time t
Iv(t, a) Infected vaccinated adult women of age a at time t
Rw(t, a) Recovered adult women of age a at time t
M(t, a) Susceptible adult men of age a at time t
N(t, a) Infected adult men of age a at time t
Rm(t, a) Recovered adult men of age a at time t
πw Rate of appearance of new adult females
πm Rate of appearance of new adult males
p Proportion of female children successfully vaccinated
p Proportion of adult females successfully vaccinated
βwm Probability of transmission to a man by an infected woman
βmw Probability of transmission to a woman by an infected man
ψ Vaccine efficacy
μ(a) Natural death rate as a function of age a
du(a) Unvaccinated female disease death rate as a function of age a
dv(a) Vaccinated female disease death rate as a function of age a
dm(a) Male disease death rate as a function of age a
ru(a) Unvaccinated female recovery rate from disease as a function of age a
rv(a) Vaccinated female recovery rate from disease as a function of age a
rm(a) Male recovery rate from disease as a function of age a
γ Maximal possible rate of adult vaccination
c Attentuation constant
η
 Modification parameter

∂tAv + ∂aAv = −(μ(a) + βm(t, a)(1 − ψ))Av

+
(

1

13
a− 1

)
χ[13,26]f (p)Au

(3)

∂tIv + ∂aIv = βm(t, a)(1 − ψ)Av − (μ(a) + dv(a) + rv(a))Iv (4)

∂tRw + ∂aRw = ru(a)Iu + rv(a)Iv − μ(a)Rw (5)

∂ M + ∂ M = −(μ(a) + β (t, a))M (6)
t a w

∂tN + ∂aN = βw(t, a)M − (μ(a) + dm(a) + rm(a))N (7)

∂tRm + ∂aRm = rm(a)N − μ(a)Rm (8)
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Fig. 2. The number of reported partners for men and women as a function of age in the last 12 months

with the boundary conditions

Au(t, 13) = (1 − p)πw Iu(t, 13) = 0 Av(t, 13) = pπw

Iv(t, 13) = 0 Rw(t, 13) = 0 M(t, 13) = πm

N(t, 13) = 0 Rm(t, 13) = 0

(9)

and the initial conditions

Au(0, a) = A0
u(a) Iu(0, a) = I0

u(a) Av(0, a) = A0
v(a)

Iv(0, a) = I0
v (a) Rw(0, a) = R0

w(a) M(0, a) = M0(a)

N(0, a) = N0(a) Rm(0, a) = R0
m(a)

(10)

Here,

βm(t, a) = βmw

∫ ∞

13
Km(a, b)N(t, b)db (11)

βw(t, a) = βwm

∫ ∞

13
Kw(a, b)(Iu(t, b) + ηIv(t, b))db (12)

are called the forces of infection. Km(a, b) is the rate at which an infective man of age b comes into a contact with
a susceptible woman of age a, Kw(a, b) is the rate at which an infective woman of age b comes into contact with a
susceptible man of age a and η is a modification parameter that represents the reduction in transmissiblity due to vaccine,
where 0 < η ≤ 1. For men of a fixed age b, the infection rate of females at any time is βmwKm(a, b)N(t, b) where
βmw is the transmission rate from infected males to susceptible females if contact occurs, Km(a, b) is the probability
at which an infective man of age b comes into a contact with a susceptible woman of age a. Then we integrate over all
men ages above 13. Note that the integral is zero when b exceeds a man’s maximum age.

For simplicity, we will assume that both Km(a, b) and Kw(a, b) are separable; that is,

Km(a, b) = cw(a)cN (b)

Km(a, b) = cm(a)cI (b)

We thus have
βm(t, a) = βmwcw(a)λ(t) (13)

βw(t, a) = βwmcm(a)ω(t) (14)
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here

λ(t) =
∫ ∞

13
cN (b)N(t, b)db (15)

ω(t) =
∫ ∞

13
cI (b)(Iu(t, b) + ηIv(t, b))db (16)

nd ci(a) > 0, for i = w, I,m,N.

As in [20],

f (p) = cp

(1 − p+ γ)
(17)

here c is the attenuation constant and γ is the maximum possible rate of adult vaccination; see [20] for more discussion.
Note that here we have incorporated the immunogenicity into p and p.)

The vaccine is given in two stages: the childhood vaccine for age a < 13 and the adult vaccine for age 13 < a ≤ 26.
he childhood vaccine is free and the chance of getting the vaccine does not depend on age, while the adult vaccine
osts CAN$400. Consequently, we assume that the likelihood of paying for the vaccine increases with age, since adult
omen will earn more money the older they get, as well as gain more awareness of the need for the vaccine as they
ain more sexual experience.

We use χ, the characteristic function, to determine vaccine eligibility, where

(
1

13
a− 1

)
χ[13,26] =

⎧⎨
⎩

1

13
a− 1 a ∈ [13, 26]

0 otherwise

. Steady-state solution

In this section, we analyze the large time behaviour of solutions for the system (1)–(10) in order to determine the
ong-term effects of age distribution. Let t → ∞ in the system (1)–(10). Then we have the following steady-state
ystem of ordinary differential equations (ODEs):

dAu

da
= −(μ(a) + βmwcw(a)λ∞)Au − (

1

13
a− 1)χ[13,26]f (p)Au (18)

dIu

da
= βmwcw(a)λ∞Au − (μ(a) + du(a) + ru(a))Iu (19)

dAv

da
= −(μ(a) + βmwcw(a)λ∞(1 − ψ))Av + (

1

13
a− 1)χ[13,26]f (p)Au (20)

dIv

da
= βmwcw(a)λ∞(1 − ψ)Av − (μ(a) + dv(a) + rv(a))Iv (21)

dRw

da
= ru(a)Iu + rv(a)Iv − μ(a)Rw (22)

dM

da
= −(μ(a) + βwmcm(a)ω∞)M (23)

dN = β c (a)ω M − (μ(a) + d (a) + r (a))N (24)

da

wm m ∞ m m

dRm

da
= rm(a)N − μRm (25)
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with boundary conditions

Au(13) = (1 − p)πw Iu(13) = 0 Av(13) = pπw

Iv(13) = 0 Rw(13) = 0 M(13) = πm

N(13) = 0 Rm(a) = 0.

(26)

Here,

λ∞ =
∫ ∞

13
cN (b)N(b)db (27)

ω∞ =
∫ ∞

13
cI (b)(Iu(b) + ηIv(b))db (28)

Define

Pi(a) = exp

(
−
∫ a

13
(μ(s) + di(s) + ri(s))ds

)
(29)

for i = u, v,m to be the probabilities of remaining in the infected classes Iu, Iv and N respectively until age a. Also,
define

Qi(a) = exp

(∫ a

13
(ri(s) + di(s))ds

)
(30)

such that Q−1
i (a), for i = u, v,m, are the probabilities of remaining in the infected classes Iu, Iv and N respectively

until age a, if no natural death occurs.
Note that if any of the classes is empty, then the probability of remaining in this class is zero.
The implicit solution for this system is the following

Au(a) = (1 − p)πw exp

(
−
∫ a

13

[
μ(s) + βmwcw(s)λ∞ +

(
1

13
s− 1

)
χ[13,26]f (p)

]
ds

)
(31)

Av(a) = exp

(
−
∫ a

13
[μ(s) + βmw(1 − ψ)cw(s)λ∞] ds

)

×
(
pπw + (1 − p)πwχ[13,26]f (p)

∫ a

13

[(
1

13
s− 1

)

× exp

(
−
∫ s

13

(
ψβmwcw(k)λ∞ +

(
1

13
k − 1

)
χ[13,26]f (p)

)
dk

)
ds

]) (32)

Iu(a) = (1 − p)πwβmwλ∞Pu(a)

×
∫ a

13

[
cw(s)Qu(s) exp

(
−
∫ s

13

(
βmwcw(k)λ∞ +

(
1

13
k − 1

)
χ[13,26]f (p)

)
dk

)]
ds

(33)

Iv(a) = βmw(1 − ψ)λ∞Pv(a)

×
∫ a

13

[
cw(s)Qv(s) exp

(
−βmw(1 − ψ)λ∞

∫ s

13
cw(k)dk

)
× (pπw + (1 − p)πwχ[13,26]f (p)

×
∫ s
((

1
k − 1

)
exp

(
−
∫ k

(ψβmwcw(h)λ∞ +
(

1
h− 1

)
χ[13,26]f (p))dh

))
dk

)]
ds

(34)
13 13 13 13

M(a) = πm exp

(
−
∫ a

13
(μ(s) + βwmcm(s)ω∞) ds

)
(35)
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N(a) = βwmπmω∞Pm(a)
∫ a

13

[
cm(s)Qm(s) exp

(
−ω∞βwm

∫ s

13
cm(k)dk

)]
ds (36)

The implicit solutions for Rw and Rm are not written here because they are irrelevant to our work.
From Eqs. (27) and (28), and the solution above, we have

λ∞ = βwmπmω∞
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13

[
cm(s)Qm(s) exp

(
−βwmω∞

∫ s

13
cm(k)dk

)]
ds

)
db (37)

nd

ω∞ = πwβmwλ∞
∫ ∞

13
cI (a)

[
(1 − p)Pu(a)

∫ a

13
cw(s)Qu(s)

× exp

(
−
∫ s

13

(
βmwcw(k)λ∞ +

(
1

13
k − 1

)
χ[13,26]f (p)

)
dk

)
ds

+η(1 − ψ)Pv(a)
∫ ∞

13
cw(s)Qv(s) exp

(
−βmwλ∞(1 − ψ)

∫ k

13
cw(k)dk

)

×
(
p+ (1 − p)χ[13,26]f (p)

∫ s

13

((
1

13
k − 1

)

× exp

(
−
∫ k

13

(
ψβmwcw(h)λ∞ +

(
1

13
h− 1

)
χ[13,26]f (p)

)
dh

))
dk

)
ds

]
da

(38)

ubstituting (37) into (38), we have

ω∞ = πwπmβwmβmwω∞

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13

[
cm(s)Qm(s) exp

(
−βwmω∞

∫ s

13
cm(k)dk

)]
ds

)
db

×
∫ ∞

13
cI (a)

[
(1 − p)Pu(a)

∫ a

13
cw(s)Qu(s)

× exp

(
−
∫ s

13

(
βmwcw(k)λ∞ +

(
1

13
k − 1

)
χ[13,26]f (p)

)
dk

)
ds

+η(1 − ψ)Pv(a)
∫ ∞

13
cw(s)Qv(s) exp

(
−βmwλ∞(1 − ψ)

∫ k

13
cw(k)dk

)

( ∫ s
(( )

(39)
× p+ (1 − p)χ[13,26]f (p)
13

1

13
k − 1

× exp

(
−
∫ k

13

(
ψβmwcw(h)λ∞ +

(
1

13
h− 1

)
χ[13,26]f (p)

)
dh

))
dk

)
ds

]
da
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This equation will be used for the analysis of the following three vaccination cases.

3.1. All females are vaccinated before age 13

In this case, we have p = 1, which implies Au = 0. Also, we have p = 0, which implies f (p) = 0; see (17).
Therefore, (39) becomes

ω∞ = πwπmβwmβmwη(1 − ψ)ω∞

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s)H(s)]ds

)
db

×
∫ ∞

13

(
cI (a)Pv(a)

∫ a

13
[cw(s)Qv(s)G(s)]ds

)
da

(40)

where

H(s) = exp

(
−βwmω∞

∫ s

13
cm(k)dk

)
(41)

and

G(s) = exp

(
−βmwλ∞(1 − ψ)

∫ s

13
cw(k)dk

)

= exp (−βwmβmwπmω∞

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13

[
cm(s)Qm(s) exp

(
−βwmω∞

∫ s

13
cm(k)dk

)]
ds

)
db

×(1 − ψ)
∫ s

13
cw(k)dk

)

where we have used (37).
Rearranging (40), we have
ω∞ (1 − πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s)H(s)]ds

)
db

×
∫ ∞

13

(
cI (a)Pv(a)

∫ a

13
[cw(s)Qv(s)G(s)] ds

)
da

)
= 0

(42)
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This implies either the disease goes to extinction (ω∞ = 0) or the disease will persist (ω∞ > 0), which implies
(s), H(s) < 1 and

Rv0 ≡ πwπmβwmβmwη(1 − ψ)
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
cm(s)Qm(s)ds

)
db

×
∫ ∞

13

(
cI (a)Pv(a)

∫ a

13
cw(s)Qv(s)ds

)
da > 1 (43)

onversely, if G(s), H(s) < 1, then ω∞, λ∞ > 0, which implies Rv0 > 1.
Note that if ω∞ = 0 then (37) implies λ∞ = 0. Also, making (27) and (28) equal zero implies Iv(a) = N(a) = 0

or all a, because cN (a), cI (a) > 0 for all a. We have thus proved the following theorem.

heorem 3.1. If Rv0 < 1, then we have only the disease-free equilibrium

(Au(a), Iu(a), Av(a), Rw, Iv(a),M(a), N(a), Rm)

=
(

0, 0, πw exp

(
−
∫ a

13
μ(s)ds

)
, 0, 0, πm exp

(
−
∫ a

13
μ(s)ds

)
, 0, 0

)

f Rv0 > 1, then there exists a unique positive endemic equilibrium.

Remark. Note that there is at most one endemic equilibrium. In other words, if an endemic equilibrium exists, then
t is unique. To prove this claim, assume that ω∞ /= 0 exists. Note thatH(s) andG(s) are also functions of ω∞. Define

K(ω∞) = πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s)H(s, ω∞)]ds

)
db

×
∫ ∞

13

(
cI (a)Pv(a)

∫ a

13
[cw(s)Qv(s)G(s, ω∞)] ds

)
da

ote that the function K is a strictly decreasing function of ω∞ and K(0) = Rv0, so we have

1) If Rv0 > 1, then we have exactly one ω∞ > 0 (the endemic equilibrium) satisfying K(ω∞) = 1 (Eq. (42)).
2) If Rv0 ≤ 1, then K(ω∞) = 1 has only the solution ω∞ = 0 (the disease-free equilibrium).

This implies that a unique endemic equilibrium exists iff Rv0 > 1.

Remark. Note that if cN , cm, cI , cw, μ and du are constant functions, then we have

Rv0 ≡ πwπmβwmβmwη(1 − ψ)cwcNcmcI
1

2 2
μ (μ+ dv)

hich is equivalent to what we have in [20], when du = 0 and with βN = βmwcwcN and βM = βwmcmcI . For the
efinition of βN and βM see [20].
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3.2. All females are vaccinated after age 13

In this section, we deal with the non-practical case that is perfect adult vaccine (ψ = 1). This is an extreme case
that will aid us in the next section. In this case, we have p = 0 and p = 1. Therefore, (39) implies

ω∞ = πwπmβwmβmwω∞

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s)H(s)] ds

)
db

×
∫ ∞

13

{
cI (a)Pu(a)

∫ a

13
[cw(s)Qu(s)

× exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
k − 1

)
dk

)
G̃(s)

]
ds

}
da

Here

G̃(s) = exp

(
−βmwλ∞

∫ s

13
cw(k)dk

)

As above, we have

Ru0 ≡ πwπmβwmβmw

∫ ∞

13
cN (b)Pm(b)

∫ b

13
cm(s)Qm(s)dsdb

×
∫ ∞

13
cI (a)Pu(a)

∫ a

13
cw(s)Qu(s) exp

[
−f (p)χ[13,26]

∫ s

13

(
1

13
k − 1

)
dk

]
dsda

The following theorem is analogous to Theorem 3.1.

Theorem 3.2. If Ru0 < 1, then we have only the disease-free equilibrium

(Au(a), Iu(a), Av(a), Rw(a), Iv(a),M(a), N(a), Rm(a))

=
(
πw exp

{
−
∫ a

13

[
μ(s) −

(
1

13
s− 1

)
χ[13,26]f (p)

]
ds

}
, 0, 0, 0, πm exp

{
−
∫ a

13
μ(s)ds

}
, 0

)
.

If Ru0 > 1, then there exists a unique positive endemic equilibrium.
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.3. General vaccination

We now examine vaccination in both children and adults. From Eq. (39) and under the condition ω∞ > 0, we have

1 < πwπmβwmβmw

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s)]ds

)
db

×
∫ ∞

13
cI (a)

[
(1 − p)Pu(a)

∫ a

13
cw(s)Qu(s) exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
k − 1

)
dk

)
ds

+η(1 − ψ)Pv(a)
∫ ∞

13
cw(s)Qv(s)

(
p+ (1 − p)f (p)χ[13,26]

×
∫ s

13

((
1

13
k − 1

)
exp

(
−f (p)χ[13,26]

∫ k

13
(

1

13
h− 1)dh

))
dk

)
ds

]
da

= πwπmβwmβmw

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s)]ds

)
db

×
∫ ∞

13
cI (a)

[
(1 − p)Pu(a)

∫ a

13
cw(s)Qu(s) exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
k − 1

)
dk

)
ds

+η(1 − ψ)Pv(a)
∫ ∞

13
cw(s)Qv(s) (p+ (1 − p)

×
(

1 − exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
h− 1

)
dh

))
ds

]
da

= πwπmβwmβmw

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s)]ds

)
db

×
∫ ∞

13
cI (a)

[
(1 − p)Pu(a)

∫ a

13
cw(s)Qu(s) exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
k − 1

)
dk

)
ds

+η(1 − ψ)Pv(a)
∫ ∞

13
cw(s)Qv(s) (1 − (1 − p)

× exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
h− 1

)
dh

))
ds

]
da

≤ (1 − p)Ru0 + Rv0

ow define

R0 ≡ (1 − p)Ru0 + Rv0

ote that for p = 1, we have R0 = Rv0. Also, for p = 0 (which implies Pv(a) = 0) and p = 1, we have R0 = Ru0,
hich are the two cases considered above. Note also that
R0 ≤ Rv0 + Ru0 (44)

herefore, we have the following corollary.
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Corollary 3.3. If Rv0 + Ru0 < 1, then R0 < 1, and we have only the disease-free equilibrium

Au(a) = (1 − p)πw exp

(
−
∫ a

13

(
μ(s) +

(
1

13
s− 1

)
χ[13,26]f (p)

)
ds

)

Av(a) = exp

(
−
∫ a

13
μ(s)ds)

×
(
pπw + (1 − p)πw

(
1 − exp

(
−
∫ a

13

(
1

13
k − 1

)
χ[13,26]f (p)dk

))]
ds

)

M(a) = πm exp

(
−
∫ a

13
μ(s)ds

)

and Iu(a) = Iv(a) = Rw(a) = N(a) = Rm(a) = 0.

Note that we have used integration by substitution to simplify Av(a).
In general, we have the following.

Theorem 3.4. If R0 < 1, then we have only the disease-free equilibrium and if R0 > 1, then there exists a unique
positive endemic equilibrium.

As a result, we have a formula for the reproduction number [15] in three vaccination cases. The reproduction number
depends mainly on birth rates, death rates, probability of transmission, vaccine efficacy and the proportions of people
vaccinated. Moreover, we have shown the importance of the basic reproduction number in determining the existence
of the endemic equilibrium.

4. Stability of equilibria

In this section, we study the stability of the steady states for the system (1)–(10) as given by the results in Section 3.
In order to linearize the system around the equilibrium, we make a small perturbation around equilibrium (see [14]).
This implies

Au(t, a) = Au(a) + exp(zt)ξu(a) (45)

Iu(t, a) = Iu(a) + exp(zt)ζu(a) (46)

Av(t, a) = Av(a) + exp(zt)ξv(a) (47)

Rw(t, a) = Rw(a) + exp(zt)ξw(a) (48)

Iv(t, a) = Iv(a) + exp(zt)ζv(a) (49)

M(t, a) = M(a) + exp(zt)ξM(a) (50)

N(t, a) = N(a) + exp(zt)ζN (a) (51)

Rm(t, a) = R(a) + exp(zt)ξr(a) (52)

From this and (9), we conclude

ξu(13) = 0 ζu(13) = 0 ξv(13) = 0

ζv(13) = 0 ξw(13) = 0

ξM(13) = 0 ζN (13) = 0 ξr(13) = 0.
Note that, under these assumptions, we have

λ(t) = λ∞ + θN exp(zt)

ω(t) = ω∞ + θI exp(zt)
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here

λ∞ =
∫ ∞

13
cN (b)N(b)db

ω∞ =
∫ ∞

13
cI (b)(Iu(b) + ηIv(b))db

nd

θN ≡
∫ ∞

13
cN (b)ζN (b)db

θI ≡
∫ ∞

13
cI (b)(ζu(b) + ηζv(b))db

(53)

or the disease-free equilibrium, we have Iu = Iv = N = 0, which implies ω∞ = λ∞ = 0.
The equilibrium is locally stable if (Au, Iu, Av, Iv, Rw,M,N,Rm) → (Au, Iu, Av, Iv, Rw,M,N,Rm) as t → ∞

nd unstable otherwise.

.1. Stability of the disease-free equilibrium for childhood-only vaccination

In this case, we have a simplified system. Since p = 1 and Au = 0 in (1)–(10), the system becomes

∂tAv + ∂aAv = −(μ(a) + βm(t, a)(1 − ψ))Av (54)

∂tIv + ∂aIv = βm(t, a)(1 − ψ)Av − (μ(a) + dv(a) + rv(a))Iv
∂tRw + ∂aRw = rv(a)Iv − μ(a)Rw
∂tM + ∂aM = −(μ(a) + βw(t, a))M

∂tN + ∂aN = βw(t, a)M − (μ(a) + dm(a) + rm(a))N

∂tRm + ∂aRm = rm(a)N − μ(a)Rm

(55)

ith the boundary conditions

Av(t, 13) = πw Iv(t, 13) = 0 Rw(t, 13) = 0

M(t, 13) = πm N(t, 13) = 0 Rm(t, 13) = 0

nd the initial conditions

Av(0, a) = A0
v(a) Iv(0, a) = I0

v (a) Rw(0, a) = R0
w(a)

M(0, a) = M0(a) N(0, a) = N0(a) Rm(0, a) = R0
m(a)

(56)

ote that we consider Iu = 0, since Au = 0 and the convergence is exponential.
Substituting (47) into (54), we have

(zξv + ξ′v) exp(zt) + A
′
v(a) = −(μ(a) + βmwcm(a)θN exp(zt)(1 − ψ))

×(Av(a) + exp(zt)ξv(a))

ξv(13) = 0

Simplifying, we have

zξv + ξ′v = −βmwcm(a)θN (1 − ψ)Av − μ(a)ξv
ξv(13) = 0

(57)

ote that we ignored the term that contains the product θNξv, because we consider only a small perturbation around
he equilibrium and this term is extremely small.
The solution of (57) is

ξv(a) = −βmwθN (1 − ψ)πw exp

(
−
∫ a

13
[z+ μ(s)]ds

)∫ a

13
[cm(k) exp(zk)]dk (58)
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In the same way,

zζv + ζ′v = βmwcm(a)θN (1 − ψ)Av − (μ(a) + dv(a) + rv(a))ζv
ζv(13) = 0

with the solution

ζv(a) = βmwθN (1 − ψ)πwPv(a) exp(−z(a− 13))

×
∫ a

13
[cm(s)Qv(s) exp(z(s− 13))]ds

Furthermore,

zξM + ξ′M = −βwmcw(a)θIM − μ(a)ξM
ξM(13) = 0

with the solution

ξM(a) = −βwmθIπm exp

(
−
∫ a

13
[z+ μ(s)]ds

)∫ a

13
[cw(k) exp(zk)]dk (59)

and

zζN + ζ′N = −βwmcw(a)θIM − (μ(a) + dm(a) + rm(a))ζN
ξM(0) = 0

with the solution

ζN (a) = βwmθIπmPm(a) exp(−z(a− 13))

×
∫ a

13
[cw(s)Qm(s) exp(z(s− 13))]ds

Note that we did not evaluate ξw and ξr because they are irrelevant to our work.
We have

θN = βwmθIπm

∫ ∞

13

[
cN (a)Pm(a) exp(−z(a− 13))

×
∫ a

13
(cm(s)Qm(s) exp(z(s− 13)))ds)

]
da

(60)

θI = βmwθNη(1 − ψ)πw

∫ ∞

13

[
cI (a)Pv(a) exp(−z(s− 13))

×
∫ a

13
(cw(s)Qv(s) exp(z(s− 13))ds

]
da

(61)

Substituting (60) in (61), we have

θI = πwπmβwmβmwη(1 − ψ)θI

×
∫ ∞ [

cN (a)Pm(a) exp(−za)
∫ a

(cm(s)Qm(s) exp(zs))ds

]
da
13 13

×
∫ ∞

13

[
cI (a)Pv(a) exp(−za)

∫ a

13
(cw(s)Qv(s) exp(zs))ds

]
da

(62)



T

w

F

•
•
•
•

T
l
u

P
z

(

M. Al-arydah, R. Smith? / Mathematics and Computers in Simulation 82 (2011) 629–652 643

hen, under the assumption θI /= 0, we have

1 = πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

[
cN (a)Pm(a) exp(−za)

∫ a

13
(cm(s)Qm(s) exp(zs))ds

]
da

×
∫ ∞

13

[
cI (a)Pv(a) exp(−za)

∫ a

13
(cw(s)Qv(s) exp(zs))ds

]
da

(63)

We now introduce the function

F : R→ [0,∞) (64)

F (z) ≡ πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

[
cN (a)Pm(a) exp(−za)

∫ a

13
(cm(s)Qm(s) exp(zs))ds

]
da

×
∫ ∞

13

[
cI (a)Pv(a) exp(−za)

∫ a

13
(cw(s)Qv(s) exp(zs)ds

]
da.

= πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

[
cN (a)Pm(a)

∫ a

13
(cm(s)Qm(s) exp(−z(a− s)))ds

]
da

×
∫ ∞

13

[
cI (a)Pv(a)

∫ a

13
(cw(s)Qv(s) exp(−z(a− s))ds

]
da

hich, under the substitution r = a− s, can be written as

F (z) = πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

[
cN (a)Pm(a)

∫ a−13

0
(cm(a− r)Qm(a− r) exp(−zr))dr

]
da

×
∫ ∞

13

[
cI (a)Pv(a))

∫ a−13

0
(cw(a− r)Qv(a− r) exp(−zr))dr

]
da

or z real, F satisfies the following properties:

F is continuous in z
F (0) = Rv0
limz→∞F (z) = 0
limz→−∞F (z) = ∞.

As a result, we have the following theorem.

heorem 4.1. 1. If Rv0 < 1, then there exists z = z0 < 0 such that (63) holds and the disease-free equilibrium is
ocally stable. 2. If Rv0 > 1, then there exists z = z0 > 0 such that (63) holds and the disease-free equilibrium is
nstable.
roof. The existence of z in both cases follows from the properties of F and the Intermediate Value Theorem. When
= z0 > 0, (Av, Iv,M,N) → ∞ as t → ∞ (see (45)–(51)) and hence the equilibrium is unstable. When z = z0 < 0,
Av, Iv,M,N) → (Av, Iv,M,N) and thus the equilibrium is locally stable. �



644 M. Al-arydah, R. Smith? / Mathematics and Computers in Simulation 82 (2011) 629–652

The same holds if z is complex. If we write z = ρ + iθ for some numbers ρ > 0 and 0 ≤ θ < 2π, then

1 = πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

[
cN (a)Pm(a)

∫ a−13

0
(cm(a− r)Qm(a− r) cos(ρθ) exp(−ρr))dr

]
da

×
∫ ∞

13

[
cI (a)Pv(a))

∫ a−13

0
(cw(a− r)Qv(a− r) cos(ρθ) exp(−ρr))dr

]
da

−
∫ ∞

13

[
cN (a)Pm(a)

∫ a−13

0
(cm(a− r)Qm(a− r) sin(ρθ) exp(−ρr))dr

]
da

×
∫ ∞

13

[
cI (a)Pv(a)

∫ a−13

0
(cw(a− r)Qv(a− r) sin(ρθ) exp(−ρr))dr

]
da.

(65)

which follows from (62) by considering z = ρ + iθ, then taking the real part of both sides and dividing by θI .
Now, (65) implies

1 < πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

[
cN (a)Pm(a)

∫ a−13

0
(cm(a− r)Qm(a− r) exp(−ρr))dr

]
da

×
∫ ∞

13

[
cI (a)Pv(a))

∫ a−13

0
(cw(a− r)Qv(a− r) exp(−ρr))dr

]
da

≡ F (ρ)

(66)

where F still satisfies the same properties above.
As a result, if Rv0 > 1 we still have ρ > 0 such that (65) holds and if Rv0 < 1 there exists ρ < 0 such that (65)

holds.

4.2. Stability of the disease equilibrium for childhood-only vaccination

We can repeat the same process for the endemic equilibrium, in which Iv,N > 0. We have

zξv + ξ′v = −βmwcw(a)θN (1 − ψ)Av − (μ(a) + βmwcw(a)λ∞(1 − ψ))ξv
ξv(13) = 0

with the solution

ξv(a) = −βmwθN (1 − ψ)πw exp

(
−
∫ a

13
[z+ μ(s) + βmwcw(s)λ∞(1 − ψ)] ds

)

×
∫ a

13
[cw(k) exp(zk)]dk

(67)

Here, we have used (32) (with p = 1). Next,
zζv + ζ′v = βmwcw(a)θN (1 − ψ)Av + βmwcw(a)λ∞(1 − ψ)ξv
−(μ(a) + dv(a) + rv(a))ζv

ζv(13) = 0
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ith the solution

ζv(a) = βmwθN (1 − ψ)πwPv(a) exp(−z(a− 13))

×
∫ a

13

[
exp

(∫ s

13
(dv(k) + rv(k) − βmwcw(k)λ∞(1 − ψ))dk

)

×
(

−λ∞(1 − ψ)βmw

∫ s

13
cw(k) exp(zk)dk + cw(s) exp(zs)

)]
ds

urthermore,

zξM + ξ′M = −βwmcm(a)θIM − (μ(a) + βwmcm(a)ω∞)ξM
ξM(13) = 0

ith the solution

ξM(a) = −βwmθIπm exp

(
−
∫ a

13
[z+ μ(s) + βwmcm(s)ω∞] ds

)∫ a

13
[cm(s) exp(zs)]ds (68)

inally,

zζN + ζ′N = βwmcm(a)θIM + βwmcm(a)ω∞ξM − (μ(a) + dm(a) + rm(a))ζN
ζN (0) = 0

ith the solution

ζN (a) = −βwmθIπm exp(−za)Pm(a)

×
∫ a

13

[
cw(s) exp

(∫ s

13
(dm(k) + rm(k) − βwmcm(k)ω∞)dk

)

×
(

−ω∞βwm
∫ s

13
(cm(k) exp(zk))dk + cm(s) exp(zs)

)]
ds

e now have

θN = −βwmθIπm
∫ ∞

13
(cN (a) exp(−za)Pm(a)

×
∫ a

13

[
cw(s) exp

(∫ s

13
(dm(k) + rm(k) − βwmcm(k)ω∞)dk

)

×
(

−ω∞βwm
∫ s

13
(cm(k) exp(zk))dk + cm(s) exp(zs)

)]
ds

)
da

(69)

θI = η(1 − ψ)βmwθNπw

∫ ∞

13
(cI (a) exp(−za)Pv(a)∫ a

[ (∫ s
)

×
13

cw(s) exp
13

(dv(k) + rv(k) − (1 − ψ)βmwcw(k)λ∞)dk

×
(

−λ∞(1 − ψ)βmw

∫ s

13
(cw(k) exp(zk))dk + cw(s) exp(zs)

)]
ds

)
da

(70)
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Substituting (69) into (70), then taking into account λ∞, ω∞, θI > 0, we have

1 < πwπmβwmβmwη(1 − ψ)
∫ ∞

13
(cN (a) exp(−za)Pm(a)

×
∫ a

13

[
cm(s) exp

(∫ s

13
(dm(k) + rm(k))dk)

×
(

−ω∞βwm
∫ s

13
cm(k) exp(zk)dk + cm(s) exp(zs)

)]
ds

)
da

×
∫ ∞

13

(
cI (a) exp(−za)Pv(a)

∫ a

13

[
cw(s) exp

(∫ s

13
(dv(k) + rv(k))dk

)

×
(

−λ∞(1 − ψ)βmw

∫ s

13
cw(k) exp(zk)dk + cw(s) exp(zs)

)]
ds

)
da

< πwπmβwmβmwη(1 − ψ)
∫ ∞

13
(cN (a) exp(−za)Pm(a)

×
∫ a

13

[
cw(s) exp

(∫ s

13
(dm(k) + rm(k))dk) exp(zs)

]
ds

)
da

×
∫ ∞

13

(
cI (a) exp(−za)Pv(a)

∫ a

13

[
cw(s) exp(zs) exp

(∫ s

13
(dv(k) + rv(k)

)
dk)

]
ds

)
da

< πwπmβwmβmwη(1 − ψ)

×
∫ ∞

13

[
cN (a)Pm(a)

∫ a

13
(cm(s)Qm(s) exp(−z(a− s)))ds

]
da

×
∫ ∞

13

[
cI (a)Pv(a)

∫ a

13
(cw(s)Qv(s) exp(−z(a− s))ds

]
da.

≡ F (z)

(71)

Theorem 4.2. ForRv0 > 1, there exists z = z0 < 0 such that (71) holds and the endemic equilibrium is locally stable.

We have proved the following.
Remark. The same results can be proved for the case of adult-only vaccination.

4.3. Stability of disease-free and endemic equilibria for general vaccination

We now examine stability of equilibria when both children and adults are vaccinated. The method of Sections 4.1
and 4.2 can be repeated here to get the following main result.

Theorem 4.3.
1. The disease-free equilibrium is locally stable when R0 < 1 and unstable when R0 > 1.
2. The endemic equilibrium exists only when R0 > 1. Moreover, they are locally stable.
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Table 2
Sample values.

Variable Sample value used Reference

πw 17, 000 year−1 Assumed
πm 17, 000 year−1 Assumed
p 0.77 [20]
p 0.392 [20]
βwm 0.7 year−1 [9]
βmw 0.8 year−1 [9]
ψ 0.87 Assumed
μ(a) 0.0003 exp(0.0735a) [5]
ru(a) 1/1.5 year−1 [12]
rv(a) 1 year−1 [7]
rm(a) 1/1.25 year−1 [12]
γ 0.1 year−1 [20]
c 0.15 [20]
η 0.9 Assumed

N

t
e
b
t

5

n
m
t
t

ote that the proof is exactly as in the previous two subsections, but with

F̃ (z) = πwπmβwmβmw

×
∫ ∞

13

(
cN (b)Pm(b)

∫ b

13
[cm(s)Qm(s) exp(−z(a− s))]ds

)
db

×
∫ ∞

13
cI (a)

[
(1 − p)Pu(a)

∫ a

13
cw(s)Qu(s) exp(−z(a− s))

× exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
k − 1

)
dk

)
ds

+η(1 − ψ)Pv(a)
∫ ∞

13
cw(s)Qv(s) exp(−z(a− s)) (1 − (1 − p)

× exp

(
−f (p)χ[13,26]

∫ s

13

(
1

13
h− 1

)
dh

))
ds

]
da

As a result, we have proved that disease-free equilibrium is locally stable when the reproduction number is less
han one and unstable otherwise. Also, we have proven that the endemic equilibrium is locally stable whenever it
xists. Thus, the disease goes extinct only when the reproduction number is less than one and there are no backward
ifurcations. HenceR0 is a threshold parameter (see [19] for more discussion). This proves the importance of reducing
he value of some parameters (such as βmw and βwm) in order to control the disease.

. Numerical simulations

In this section, we will use the system (1)–(10) and initial data for Toronto, Canada, 1996, to approximate the
umber of HPV cases in Toronto after 20 years. Parameters are listed in Table 1. The initial number of women and
en are given in Table 2. The average number of sex partners is given in Table 3. It is important to recognize that

he methodology used to collect the data presented in Table 3 excludes youth who are at greatest risk of sexually
ransmitted disease. These include aboriginal youth and youth on the streets [21].

Now, take
cN = Sp/Nw cm(a) = 1/Nm
cI = Sp/Nm cw(a) = 1/Nw
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Table 3
Population by age (≥ 15) and sex, Toronto, 1996 [22].

Age group Female Male

15–19 65,000 68,700
20–24 83,800 79,100
25–29 109,600 102,200
30–34 117,600 117,000
35–39 106,400 103,100
40–44 93,900 86,000
45–49 86,100 78,100
50–54 66,000 59,600
55–59 59,100 51,700
60–64 56,400 50,800
65–74 105,200 85,200
75+ 81,900 74,500
Total 1,031,000 929,000
Fig. 3. Initial number of infected women and men as a function of age.

Then we take

I0
u(a) = 0.24 × pSp(a)Nw(a)

A0
u(a) = p(Nw(a) − I0

u(a) − I0
v (a))

I0
v (a) = 0.24 × (1 − p)Sp(a)Nw(a)

A0
v(a) = (1 − p)(Nw(a) − I0

u(a) − I0
v (a))

N0(a) = 0.15 × Sp(a)Nm(a)

M(a) = Nm(a) −N0(a)

Note that

A0
u(a) + I0

u(a) + A0
v(a) + I0

v (a) = Nw(a)

N0(a) +M0(a) = Nm(a)

The graphs of I0
u + I0

v and N0 are shown in Fig. 3. The death rate μ(a) is taken to be the Gompertz function [5] shown
in Fig. 4.

The disease death rate is illustrated in Fig. 5, while the average number of sex partners is given in Table 4.

The finite element method is used here to find the solution. Since the accuracy of this method depends on how small

the mesh is, we used different small meshes, but the outcome was unchanged (results not shown).
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Fig. 4. The natural death rate as a function of age can be represented by the Gompertz function.

Fig. 5. The disease death rate as a function of age.

Table 4
Average number of sex partners in the last 12 months, Canada, 1996 [21].

Age group 16.5–19 20–24 25–29 30–34 35–39 40–44 45–49

N

R

w

6

R
s
c

umber of partners 0.68 1.33 1.27 1.17 1.1 1.06 0.99

In Fig. 6, we have the number of infected women and men after 100 years when nobody is vaccinated. Note that
0 > 1 in this case and the disease persists. In Fig. 7, we have the number of infected women and men during 20 years
hen 77% of children and 40% of adult women are vaccinated. R0 < 1 in this case and the disease goes to extinction.

. Discussion

We introduced an age-dependent model for HPV to represents the different rate of transmission for different ages.

ates of sexual activity vary by age class and gender, while the vaccine is only available for women aged 13–26. We

olved the steady-state system in the limit and found an explicit value for the basic reproduction number for perfect
hildhood vaccination, perfect adult vaccination and childhood–adult vaccination. The value of the reproduction number
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Fig. 6. The number of infected women and men as age-dependent functions after 100 years when no one is vaccinated.
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Fig. 7. The number of infected vaccinated women, infected unvaccinated women and infected men as time and age-dependent functions during 20
years when 77% of children and 40% of adults are vaccinated. Note that the infecteds are decreasing with time.

determines the stability of the disease-free equilibrium. For R0 less than one, the disease-free equilibrium is the only
equilibrium. For R0 greater than one, the disease-free and endemic equilibria coexist.

We examined two limiting cases: (i) vaccinating all children but no adults and (ii) vaccinating all adults but no
children, in order to derive the basic reproduction numbers and stability for these cases; we then showed that general
vaccination was a composite of these limiting cases. We used the reproduction number to determine the stability of the
equilibria and we found that, for R0 less than one, we have a locally stable, disease-free equilibrium and for R0 greater
than one, we have a non-stable disease-free equilibrium and a locally stable endemic equilibrium. This demonstrates
the threshold nature of the reproduction number and hence its utility in disease control [19].
The basic reproduction number depends mainly on birth rates, death rates, transmission probabilities, vaccine efficacy
and the proportions of people vaccinated. To ensure eradication of the targeted types, we need not only vaccinate with
high efficacy, but we need to increase the number of women vaccinated, both as children and as adults. Note that, unlike



m
f

a
r

t
i
i
H
a
w

i
a
d
w
o
w
m

r
f
f
H

A

D
q

R

[

[
[

M. Al-arydah, R. Smith? / Mathematics and Computers in Simulation 82 (2011) 629–652 651

any simple vaccination models, a backward bifurcation (multiple equilibria coexisting when R0 < 1) does not exist
or our model. This agrees with Elbasha et al. [10].

We have used data from other studies to estimate the solution numerically using the Finite Element Method. We
pproximated the solution after 20 years for the 1996 Toronto population. Furthermore, we calculated the value of the
eproduction number and the approximated solution after 100 years to check our stability results.

Our model has several limitations, which should be noted. We only consider vaccination for types 16 and 18, since
hese are the types targeted by Cervarix, the most recent approved HPV vaccine. Future work will adapt the model to
nclude other HPV types, such as the non-cancerous types targeted by Gardasil. In addition, we assume that infected
ndividuals are asymptomatic and that sexual activity is consequently unaffected (which may not be the case for other
PV types, due to the external appearance of genital warts). The model focused on heterosexual transmission and

ssumed that individuals had fewer sexual contacts as they aged, and that recovery was permanent, in both men and
omen. Furthermore, we did not explicitly model cervical cancer.
To the best of our knowledge, this is the first age-dependent PDE model of HPV. It is an extension of the ODE model

n [20] in which results were limited to specific age ranges and their age-linked partners. Here, we investigated the
ge-dependent impact of vaccination on HPV types 16 and 18, which will consequently reduce the number of deaths
ue to cervical cancer. We considered a childhood vaccination program supported by adult vaccination program for
omen only. The analysis and the numerical simulations show that this strategy is effective in reducing the number
f infected and the number of deaths due to disease. Note that we consider the case that the number of vaccinated
omen infected initially is relatively large. This is because the vaccine is imperfect and because many adult women
ay already be infected. Our results demonstrate that the vaccine is effective even in this extreme case.
Thus, although the effects of age dependency are complex, we have shown that vaccinating a single age cohort can

esult in eventual control of the disease in all age groups and genders. Although this model was developed specifically
or HPV types 16 and 18, the results could extend to other types and even other viruses. The important priorities for
uture research and public-health policy include understanding the effect of vaccination, and how the prevalence of
PV depends on both age and sexual behaviour.
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