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The elementary theory of Lie' groups has something in common with precalculus:
One wants to get past it in order to get on with the beautiful and powerful theory
that follows, as well as the applications. With precalculus the theory that follows
is built around calculus and its fundamental theorem, extending into calculus of
several variables and having profound applications through the subject of differ-
ential equations. With Lie groups the theory that follows is due to Elie Cartan
(1869-1951) and Hermann Weyl (1885-1955) and concerns compact Lie groups
and their representations, as well as real and complex semisimple Lie algebras and
Lie groups; the Cartan-Weyl theory introduces one to the exceptional Lie algebras
and their remarkable manifestations throughout mathematics, it extends via the
work of Harish-Chandra (1923-1983) and others into representation theory and
harmonic analysis, and it has applications in many branches of mathematics.

Another thing in common for precalculus and elementary Lie theory is that
the beautiful and powerful mathematics that follows—calculus in the first case
and Cartan—Weyl theory in the second case—brings together several branches of
mathematics, serving as a reminder that mathematics is a unifying force rather
than a springboard to greater and greater specialization. In fact, because of its
great beauty, its wide applicability, and its unifying effect, Cartan—Weyl theory is
on my own personal list of What Every Young Mathematician Should Know.

If Cartan—Weyl theory is to be accessible to every young mathematician, one has
to include it earlier in the curriculum than is done at present in the United States,
where it might occur as an elective for second-year graduate students. In turn, some
provision has to be made to teach elementary Lie theory earlier and more rapidly
than now, with fewer prerequisites. A number of people who share my sentiments
have given considerable thought to how this miracle might be accomplished, and
the two books under review are the authors’ contributions to this effort. Both books
purport to be for “undergraduates,”

There is another difficulty with teaching elementary Lie theory at its current
normal pace. For a point of reference, consider the effect of lingering too long over
precalculus. We know what happens. Large numbers of students end up with a
feeling of having seen a jumble of unrelated topics that are going nowhere. Many
who once visualized that they would be taking calculus shortly afterward instead
make precalculus into their final mathematics course. And potentially they carry
a bad attitude toward mathematics with them throughout their lives.

I have the sense that, in a similar way but on a smaller scale, lingering too long
over the elementary theory of Lie groups can dampen the spirit and prevent people
from ever getting to the beautiful and powerful Cartan-Weyl theory that comes

and we return to them in a moment.

IPronounced “Lee.”



afterward.

ELEMENTARY LIE THEORY. Let us understand, then, what elementary
Lie theory is. The subject has evolved considerably since the days of Sophus Lie
(1842-1899), but its basic shape stabilized for the most part upon the publication in
1946 of the pioneering book [4] of Claude Chevalley (1909-1984). A short 1930 book
[3] by Cartan, equally pioneering, had paved the way. If we are willing to ignore a
number of details, the subject has two ingredients and three correspondences. The
two ingredients are Lie groups and Lie algebras.

A Lie group is first of all a group, and in addition it has the structure of a smooth
manifold; these two structures are related in that multiplication and inversion are
required to be smooth mappings. To understand this definition fully, one needs
to know something about abstract groups, point-set topology (at least for metric
spaces), topological groups, and smooth manifolds and maps (including the use
of the Inverse and Implicit Function Theorems). There are some easily accessible
examples, such as Euclidean space under addition and the real general linear group
of a particular size, i.e., the space of nonsingular real square matrices with matrix
multiplication as group operation. But these are not so illuminating, and the
construction of illuminating examples requires hard work. To a student it may
seem that meaningful examples are being withheld for what feels like too long a
time.

The Lie algebras of interest are finite-dimensional real vector spaces with a
multiplication law that satisfies certain properties. A simple but important example
is the vector space of all square matrices of a particular size with multiplication
law given by [A,B] = AB — BA. Moreover, any vector subspace that is closed
under the product operation is again a Lie algebra; for instance the subspace
of skew-symmetric square matrices of a particular size has this closure property.
To understand this definition fully requires only a little linear algebra, including
acquaintance with linear transformations. Examples abound.

For each of the three correspondences, there is a direct part and an inverse
part. The first direct correspondence is that to each Lie group corresponds a Lie
algebra, specifically by passage to “left-invariant vector fields.” To understand
this notion fully requires understanding tangent spaces, computing with vector
fields, and working with bracket products of vector fields. Examples of the first
correspondence are limited by how many examples one knows of Lie groups. One
can at least see that the Lie algebra of the general linear group of a particular
size can be identified with the vector space of all square matrices of that size with
bracket product [A, B] = AB — BA.

The second direct correspondence is that to each subgroup of a certain kind
corresponds a Lie subalgebra. The subgroups in question are themselves Lie groups,
and one is again hindered in giving examples by not knowing many specific Lie
groups. However, one can construct one-parameter subgroups with less than full-
strength pain, and these provide examples; what is needed for their construction
is the standard existence-uniqueness theorem for systems of ordinary differential
equations. Once this work has been done, a little more effort will allow one to
prove that a closed subgroup of a Lie group is a Lie group; this is a theorem of
John von Neumann (1903-1957) for subgroups of general linear groups and is due
to Cartan [3] for arbitrary Lie groups. At this stage one has an extensive supply of
examples—rotation groups, for example, and many others.



The third direct correspondence is that to each smooth homomorphism of Lie
groups, there corresponds a homomorphism of Lie algebras. To understand this
definition fully requires only a knowledge of abstract homomorphisms, the notion
of smoothness of a map, and the notion of the differential of a map at a point; these
are likely to be learned at the same time as abstract groups, smooth manifolds,
and tangent spaces. Examples are not too hard to come by if the theorem of
von Neumann and Cartan is known; one can readily construct many examples of
interesting homomorphisms between Lie groups of matrices.

The inverse part for each correspondence tells the extent to which the direct
part is one-to-one and is onto something easy to describe. The identity component
of a Lie group is always an open set, as well as a subgroup, and the Lie algebra
cannot distinguish between the whole group and the identity component. Thus
connectivity of the group or subgroup always has to be assumed in discussing the
inverse correspondences.

For the first correspondence two connected Lie groups with isomorphic Lie alge-
bras are not necessarily isomorphic, but they must have covering groups that are
isomorphic. To understand this statement fully, one has to know something about
covering groups or covering spaces. The statement that the correspondence is onto
something easy to describe asserts that every (finite-dimensional real) Lie algebra
is isomorphic to the Lie algebra of some Lie group; since 1930 this result has been
known as Lie’s Third Theorem, and its proof is beyond the scope of elementary Lie
theory.

The second correspondence is the key one, and this is the big new result in
Chevalley’s book. The theorem of von Neumann and Cartan shows that connected
closed subgroups of a given Lie group correspond to subalgebras of the Lie al-
gebra, and they do so in one-to-one fashion. But the well-known example of a
two-dimensional torus shows that one should consider a wider class of connected
subgroups than the closed ones. The torus can be regarded as the set of pairs
(e, e%2) with #; and #y real. The group operation is multiplication in each
coordinate, which can be viewed as addition modulo 27 of the exponent in each
coordinate. The Lie algebra as a vector space can be identified with the tangent
space at the identity element of the group. The tangent space at the identity for
the torus can be identified in turn with the set of all pairs (61, 602), and the bracket
operation is identically 0. The closed one-dimensional subgroups of the torus are
given by the sets where #; = 0 and where 65 = rf;, r being any rational number.
These correspond to the lines {(0,6)} and {(0,760)}, i.e., the lines with rational
slope. To get a good correspondence, one wants to realize lines of arbitrary slope in
the tangent space as in the image, and this means that one needs to consider the set
with 65 = 761, r being irrational, as an allowable subgroup. This subgroup is dense
and not closed. So the “right” definition of allowable subgroup has to include certain
nonclosed subgroups as well as the closed ones. Chevalley found the right definition.
The connected subgroups that he worked with were called “analytic subgroups”;
their definition will not concern us. With the definition in hand, Chevalley proved
that the correspondence of analytic subgroups to subalgebras of the Lie algebra
is one-to-one and onto. This is a difficult theorem. It has a local part involving
partial differential equations that comes down to a theorem of Frobenius, and it
has a global part involving tricky point-set topology.

The third correspondence associates homomorphisms of Lie algebras to homo-
morphisms of Lie groups, and it does so in a one-to-one fashion if the domain



group is connected. The “onto” statement is more subtle: a homomorphism of Lie
algebras lifts to a homomorphism of Lie groups provided the domain is connected
and simply connected. A clever idea in [4] largely reduces this theorem to the result
that attaches an analytic subgroup to a Lie subalgebra. Namely, let G and H be
the given groups. The Lie algebra of G x H is the direct sum of the Lie algebras
of G and H, and one forms in it the graph of the given homomorphism; this is
a Lie subalgebra. Let G be the corresponding analytic subgroup of G x H. The
projection of G to the first coordinate of G x H is shown to be a covering map
and has to be an isomorphism since G is simply connected. Thus G maps into 6’;
the composition of this map with the projection of G to the second coordinate of
G x H is the desired homomorphism of groups.

The preceding description of the content of elementary Lie theory makes clear
that the subject involves extensive prerequisites from a variety of areas. On the
one hand, students who learn elementary Lie theory in this traditional way get to
see relationships among diverse areas of mathematics. On the other hand, it takes
them a long time, and they may get discouraged in the process. In that case they
may never get to the beautiful mathematics that follows.

CARTAN-WEYL THEORY. The purpose of trying to move elementary
Lie theory to an earlier place in the curriculum is to make room for Cartan—Weyl
theory, which is on that list of What Every Young Mathematician Should Know.

To understand a little about Cartan—Weyl theory, it is helpful to have some
background. We continue to insist that our Lie algebras are finite-dimensional, but
we shall now allow them to have real or complex scalars. In either case an ideal in
a Lie algebra is a Lie subalgebra such that [X,Y] is in the ideal if X is in the ideal
and Y is in the whole Lie algebra. A simple Lie algebra is a nonzero Lie algebra
whose only ideals are 0 and the whole Lie algebra, except that, by convention, a
one-dimensional Lie algebra is not considered to be simple. In the study of Lie
algebras one’s attention soon focuses on the simple ones and their direct sums,
which are called semisimple.

In his 1894 thesis, Cartan, correcting and improving earlier work of Wilhelm
Killing (1847-1923), classified the simple Lie algebras when the scalars are complex.
Among them, there are some infinite classes: the complex square matrices of trace
0 of each size > 2, the complex skew-symmetric square matrices of each size > 3
except 4, and the complex square matrices X of size 2n satisfying X% J +JX = 0,
where J is the 2n-by-2n matrix given in block form by

0 1
7= (400)
and where n > 2. These were all known to Lie. The subject of Lie groups would
be comparatively easy but for the existence of five exceptional simple Lie algebras,
of respective dimensions 14, 52, 78, 133, and 248. These five Lie algebras keep
popping up in unexpected places in mathematics and have intrigued people ever
since Cartan first constructed them.

A representation of a Lie algebra is a homomorphism ¢ into the Lie algebra
of all linear transformations on a complex vector space V', the bracket rule being
[A,B] = AB — BA. The representation is irreducible if it is not zero and there
is no nontrivial subspace of V left invariant by all the transformations ¢(X) for



X in the Lie algebra. There is a natural definition of isomorphism. In a 1913
paper Cartan classified, up to isomorphism, the irreducible representations of any
complex semisimple Lie algebra. The relevant theorem is known as the Theorem
of the Highest Weight. As might be expected, the tools were completely algebraic.

In view of the correspondence between Lie groups and Lie algebras, it is natural
to define a representation of a Lie group to be a smooth homomorphism of the
group into the Lie group of all invertible linear transformations on a complex vector
space. Oddly, however, representations of (infinite) Lie groups were not considered
by anyone until the 1920s. Issai Schur (1875-1941) began the study of representa-
tions of the rotation and unitary groups, and in short order, Weyl classified, up to
isomorphism, the irreducible representations of all compact connected Lie groups.
His methods were direct and analytic, and the relevant theorem is a version of the
Theorem of the Highest Weight. Weyl went on to establish a character formula and
a dimension formula for his representations.

Cartan discovered the relationship between the two versions of the Theorem
of the Highest Weight. Here it is, in part: Any compact connected Lie group is
the commuting product of the commutator subgroup and the identity component
of the center. The commutator subgroup is compact and connected, and its Lie
algebra is semisimple (with real scalars). The identity component of the center
has only a minor effect on matters, and so one might as well assume that the given
compact connected Lie group coincides with its commutator subgroup and therefore
is semisimple in the sense of having a semisimple Lie algebra. The complexification
of this semisimple Lie algebra will be one to which the Cartan theorem applies,
and then the two versions of the theorem come to roughly the same thing if one
takes into account the Lie correspondence between homomorphisms of groups and
homomorphisms of their Lie algebras. Conversely, for any complex semisimple Lie
algebra V of complex dimension n, there is a real subspace U of real dimension
n such that V. = U + ¢U and U is the Lie algebra of some compact connected
semisimple Lie group. Thus Weyl’s theorem applies, and again the two versions of
the theorem come roughly to the same thing. To get a precise match, one invokes a
further theorem of Weyl—that if U is a compact connected semisimple Lie group,
then any connected Lie group having an isomorphic Lie algebra is itself compact;
otherwise said, the universal covering group of a compact connected semisimple
group is compact. For a simply connected compact connected Lie group, the
irreducible representations correspond exactly, via the Lie correspondence, to the
irreducible representations of the complexified Lie algebra.

This is the essence of Cartan—Weyl theory. It has applications in real and com-
plex analysis, algebraic number theory, algebraic geometry, topology, differential
geometry, differential equations, and mathematical physics.

BOOKS INTRODUCING LIE THEORY VIA LINEAR GROUPS.
A way to get into elementary Lie theory more quickly with fewer prerequisites is
to concentrate on linear groups, by which is meant groups of nonsingular real or
complex square matrices. Or at least one can introduce linear groups first and
continue with more general Lie groups later.

Most authors who follow this approach work with closed linear groups, which we
know are going to be Lie groups because of von Neumann’s theorem. If G is such
a group, the Lie algebra of G can be defined immediately and concretely as the set
g of all matrices ¢/(0), where ¢ — ¢(t) is a smooth curve of matrices with ¢(¢) in G



for all ¢ and with ¢(0) equal to the identity. It is fairly easy to see that g is a Lie
algebra, and in special cases such as when G is a rotation group, one can readily
compute g. For any square matrix X, if eX denotes the usual power series for the
exponential function, eX = fozo X"/n!, then t +— !X is a smooth curve whose
value at ¢t = 0 is the identity matrix and whose derivative at t = 0 is equal to X.
From the fact that G is closed, it takes only a page to see that if X is in g, then
e!X is in G for all real t. Consequently g may also be defined as

{X | ™ isin G for all real t}.

In turn, it is then not very hard, using only sophomore mathematics and the
definition of smooth manifold, to prove von Neumann’s theorem that G is indeed a
Lie group. Godement [7] and Howe [9] give proofs along these lines, and a shorter
proof, worked out with D. A. Vogan, appears in Chapter I of [11]. An improved
version of the latter proof appears in the Introduction of the second edition of [12].
At any rate, once one has this theorem, many examples of Lie groups are at hand,
and it is easy to establish the direct parts of the Lie correspondence to the extent
that they apply to closed linear groups.

At least twenty-five books on elementary Lie theory have been written since
Chevalley’s in 1946, and many of them treat some or all of Cartan—Weyl theory;
in addition, there are a number of other books that skip elementary Lie theory
and begin with Cartan—Weyl theory. Some of the twenty-five—including ones by
Freudenthal and de Vries [7], M. L. Curtis [5], Godement [8], Sattinger and Weaver
[13], and Ise and Takeuchi [10]—treat closed linear groups before (if ever) defining
general Lie groups. The books by Baker and Rossmann under review are in this
category.

The competitors all have disadvantages from the point of view of the present
review: Freudenthal-de Vries [7] is too hard, and its notation is difficult to absorb.
Curtis [5] is too easy, written more as a book to exercise one’s undergraduate
skills than to teach elementary Lie theory. Godement [8] is nice and is thorough,
but one has to go through two lengthy chapters of prerequisites before coming
to von Neumann’s theorem; in addition, American undergraduates may be less
than pleased that it is in French. Sattinger—Weaver [13] is written with physicists
in mind, and its standards of precision probably will not please mathematicians.
Part I of Ise-Takeuchi [10] contains material about elementary Lie theory, some
parts of Cartan—Weyl theory, and some material beyond those topics, but it is only
about a hundred pages total and is not sufficiently self contained.

The advertising for the books under review suggests that the books are at a level
suitable for advanced undergraduates, but “undergraduates” is to be understood in
the British or Canadian sense. For students in the United States, the level is more
at the first-year graduate level.

BAKER’S BOOK. Baker is a topologist, and the preface indicates that his
book is an outgrowth of a course he taught while on leave one semester. He says
that the beginning of the book is influenced by Curtis [5], and it appears that some
later material is influenced by the wonderful book [1] by the late topologist J. F.
Adams. These influences are noticeable but not large.

Baker’s preface mentions three chains of chapters running through the text. The
main one from the point of view of this review consists of Chapters 1, 2, 3, and 7 and



is the elementary course in Lie theory. Closed linear groups (called “matrix groups”
in the text) are defined in Chapter 1, the exponential of a matrix is in Chapter 2,
and the direct parts of the three Lie correspondences are in Chapter 3. Largely,
however, the first three chapters are reviewing prerequisite material and providing
exercises for the reader in working with matrices. The proof of the von Neumann
theorem following Howe [9] appears in Chapter 7 shortly after the definitions of
manifolds and Lie groups. The direct parts of the three Lie correspondences for Lie
groups and their closed subgroups are in Chapter 7 as well. The chapter contains
one particularly nice example, namely, the quotient of the group of real matrices of
the form

OO =
O = 8
L SR\

by the discrete subgroup in which x = y = 0 and z is any integer, and he proves
that this Lie group is not isomorphic to a group of matrices.

Elementary Lie theory has a trap for topologists who like to define submani-
folds to be closed, and Baker fell into the trap. In his definition of continuous
homomorphism between closed linear groups, he insists that such a homomorphism
have closed image, and therefore the inclusion into the torus of one of the lines of
irrational slope is not for him a continuous homomorphism. He will end up with
trouble when he confronts analytic subgroups. Adams did not fall into this trap.

The best of the three chains of chapters is the middle one, consisting of Chapters
4,5, 6,8, and 9. For the most part these chapters do computations with specific
examples, establishing canonical forms and other structure theorems for certain
classes of groups. They also introduce certain important homogeneous spaces, such
as Grassmannians. Chapter 6, which is about Lorentz groups, is marred by the fact
that its canonical-form theorem about Lorentz groups is false. If the theorem were
valid, a Lorentz group could contain no matrix other than the identity whose only
eigenvalue is 1. However, Lor(2,1) contains the element

11 -1
-1 1/2 1/2|,
-1 —1/2 3/2

which has 1 as its only eigenvalue.

The other chain of chapters is 10, 11, 12 and concerns a part of Cartan—Weyl
theory. The writing in these chapters appears to be a sketchy summary of part of
Adams [1], and I think that a person would be better off by reading this material
in [1].

I do not like Baker’s book. A serious problem is that there is no mention at all
of the inverse Lie correspondences. A lecturer could not readily fix this problem
by adding supplementary material because continuous homomorphisms have been
defined too narrowly.

There are other nonstandard definitions as well, such as for “inner product,” and
one cannot expect to remember some of the nonstandard multiple-letter symbols for
groups. A blunder occurs on page 182 when Baker wants to define separability of a
topological space as referring to a countable base but instead says, “A topological
space X is separable if it has a countable open covering.”



The prerequisite material at the beginning is uneven, unclear, and occasionally
sloppy. For example, after defining “compact” in a Euclidean space as closed
and bounded, he transfers this statement to matrix space in Proposition 1.19 but
precedes it with the comment, “Our next result is standard for metric spaces.”
What he apparently means is that the equivalence of closed and bounded with
the properties in Proposition 1.19 extends to all metric spaces; one is not to infer
anything about general compactness, which is defined a few lines later. He refers to
a particular situation on page 19 as a group action but does not define group action
until page 37. He defines “curve” but not “path” and uses both. His definition
of “hyperplane reflection” on page 23 is internally inconsistent unless he means
something unusual by “represents.” And so on.

The book has enough errors, misleading statements, and typographical errors
that it would be really hard to read the book for independent study. Even a
lecturer using the book would not have an easy time. It is an important job for
mathematicians to make Lie theory more widely accessible, and Baker is to be
applauded for trying. But this book does not represent progress toward that goal.

ROSSMANN’S BOOK. Rossmann’s book is a gem. The book, as he says
in the preface, results from a “trail of lecture notes” left from teaching elementary
Lie theory a number of times. These notes were combined and edited, and they
eventually became the book. For the students he was teaching, he was quite
interested in reducing the list of prerequisites considerably, and working with linear
groups enabled him to get by with only linear algebra, advanced calculus, and the
rudiments of group theory. He adds, “a desire to shorten the list of prerequisites
is not the only reason for the point of view taken; the restriction to linear groups
seems desirable to me, even if the prerequisites are available; for it puts into focus
from the beginning the essential aspects of the theory, free of technicalities.”

Rossmann’s treatment of elementary Lie theory for linear groups occupies the
first two chapters and takes ninety pages. In those chapters he establishes, within
the context of linear groups, all the Lie correspondences and their inverses except
for Lie’s Third Theorem. Only after those ninety pages does he introduce the
general definition of Lie group. His development has some elements that are new
to me, and I regard those elements as a breakthrough in making elementary Lie
theory more widely accessible.

Chapter 1 is about thirty pages long. It works at length with the exponential for
matrices, giving examples, and then computes the derivative for all ¢ of exp X (¢)
for an arbitrary curve X (t) of matrices. Armed with this, Rossmann derives the
Campbell-Baker-Hausdorff formula, following the argument in [6]; this formula
expresses a matrix Z in terms of iterated brackets of X and Y when X, Y, and Z
are small and eZ = eXeY .

In Chapter 2 Rossmann works with absolutely arbitrary linear groups G, with no
restriction on the topology. He defines the Lie algebra g of GG, as was done earlier in
this review, to be the set of derivatives at ¢ = 0 of smooth curves of matrices that
take values in G for all ¢ and that are the identity at ¢t = 0. As always, g is indeed
a Lie algebra. On page 46 comes the remarkable result that eX is in G whenever
X is in g, without any topological assumption on G.

The proof of this result is correct, but this is one of two places in the book where
there are undefined terms and confusing misprints. Because of the importance
of this result to Rossmann’s approach, I shall list the corrections: In the second



paragraph of the proof, ap(7) is a smooth curve with a;(0) = 1 and a},(0) =
Xk, and a recurring notation of the form “h:s--- — M” indicates what would
usually be written as “h : s — M.” In the line after the display, insert “and” before
“dgoX = X.” In the next line, insert “to” after “complementary.” In the next-to-
last line on the page, change “defined on” to “defined and.” On line 4 of page 47,
change “is a neighborhood” to “in a neighborhood.”

Next Rossmann introduces an intrinsic topology on G, often finer than the rela-
tive topology. The identity component will be open, and there may be uncountably
many components. A neighborhood basis of a in G is defined to consist of the sets
{aeX | X € gand | X|| < €} as € varies. Using this definition, he introduces a
notion of coordinates and does everything with them except call them a manifold.

The “analytic subgroups” in the sense of Chevalley will be the subgroups that
are connected in their intrinsic topology. The reader has a few specific examples
at this stage because Rossmann has shown that the image of the exponential map
generates the whole group for some particular linear groups. The von Neumann
theorem would show that any closed subgroup that is connected in its ordinary
topology is connected in its intrinsic topology. That theorem could well be proved
now, in order to provide further examples, and I would have preferred that; but it
does not appear until twenty-five pages later.

The final step of this construction is to prove the direct and inverse part of
the second Lie correspondence, and the argument is beautiful. The way that the
assumption of closure under brackets enters for g is through the Campbell-Baker-
Hausdorff formula, and the main analytic tool is the Baire Category Theorem; the
latter is proved in the text after the proof of the second correspondence. The proof
as a whole of the correspondence is correct, but this is the other of the two places
in the book where misprints cloud what is happening.

Most of the misprints involve missing auxiliary symbols. On page 68 in the
display before (1), change the left side to “(expU)*.” 1In (2), change expU to
expU. Insert a tilde over “U” on the right side of the display after (2) and in the
definition on the next line, also on the € that occurs twice on that line. Insert a
tilde once on the left side on (3), twice on the line of text afterward, and once on
the left side of (4). At this point the Campbell-Baker-Hausdorff formula on the
ambient group can be invoked to conclude (5) but with “X” on the right side in
place of “X.” Insert tildes twice on “X” in the next-to-last line of page 68 and
once on the left side of the bottom display, as well as on the left side of the first
two displays on page 69. In the last line of the proof, change “U” to “«g.r

In treating the third Lie correspondence, Rossmann follows Chevalley [4] in
avoiding the introduction of the fundamental group and the construction of covering
spaces, but Rossmann’s argument for the rest is tidier. A covering G — G, in the
context of Lie groups, is for Rossmann a smooth homomorphism of G onto G with
discrete kernel. To pass to a homomorphism between analytic groups G and H when
a homomorphism is given between their Lie algebras, Rossmann begins with the
clever idea from [4] that was mentioned earlier in this review: he forms a subgroup
G of G x H and obtains, by restricting the projection maps on G x H to é, smooth
homomorphisms G — G and G — H. The first of these projection maps exhibits
G as a covering of G, and the second is the required smooth homomorphism of
groups. The group G is a linear group, being a subgroup of the linear group G x H.

In response to an inquiry, Rossmann explained how he discovered all this. He
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was reading deep inside the Bourbaki treatment of Lie groups and came upon a
result? that seemed to provide him with new structure that he had not seen before.
He wondered what the structure would be like if specialized to linear groups and
was led to the foregoing approach.

Chapter 3 is about the classical complex semisimple Lie groups and does the
Cartan part of some of Cartan—Weyl theory for them; the reader gets to see a full-
fledged definition of fundamental group at this point, together with computations
of fundamental groups.

Chapter 4 is about manifolds, homogeneous spaces, and general Lie groups. The
general exponential map is constructed from integral curves in a standard way, and
Rossmann shows how the general Campbell-Baker-Hausdorff formula and similar
results can be proved by easy adaptations of his arguments for linear groups.

The last hundred pages do the Weyl part of the Cartan—Weyl theory for unitary
groups, developing all the necessary additional tools. Toward the end, the book
proves the Borel-Weil Theorem for unitary groups, providing a concrete realization
of each of the irreducible representations.

Rossmann’s book is a pioneering treatment of elementary Lie theory, in the same
sense as the books of Cartan and Chevalley. It takes a big step toward making
elementary Lie theory widely accessible to mathematicians.
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