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Abstract

Define the scaled empirical point process on an independent and iden-
tically distributed sequence {Yi : i ≤ n} on IRd as the random point
measure with masses at a−1

n Yi. For suitable an we obtain the weak limit
of these point processes through a novel use of a dimension-free method
based on the convergence of compensators of multiparameter martingales.
The method extends previous results in several directions. We obtain lim-
its at points where the density of Yi may be zero, but has regular varia-
tion. The joint limit of the empirical process evaluated at distinct points is
given by independent Poisson processes. Applications are provided both
to nearest-neighbour density estimation in high dimensions, and to the
asymptotic behaviour of multivariate extremes such as those arising from
bivariate normal copulas.

Keywords: multiparameter martingales; point processes; density estimation;
multivariate extremes; local empirical processes

1 Introduction

Point processes and their limits arise naturally in many areas of statistics, and
have a number of applications ranging from survival analysis to spatial statis-
tics. Point processes also arise in probability theory as limits for extreme value
processes, in studying limits of sums of stable non-Gaussian variables and in
queuing models. Of course the Poisson process is a fundamental concept in
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martingale theory. Weak convergence of the empirical point process underlies
many applications, and this paper employs the relatively recent area of mul-
tiparameter martingales to establish a novel and unified approach to proving
such limits for scaled empirical point processes. Although various elegant and
powerful methods have been developed for particular classes of problems, the
generalized martingale approach provides an extremely simple, dimension-free
method of addressing a variety of old and new distributional questions.

Given a random sample of random vectors {Yi : i ≤ n} in IRd and a suitable
class of sets {A}, the empirical point process is defined by

N
(n)
A =

n∑
i=1

II{Yi∈A}.

As noted above, the weak convergence of N
(n)
A has been extensively studied

using a variety of methods. In particular, in the univariate case, a strong ap-
proximation approach can be used to establish weak convergence of the local
empirical process (see Einmahl, 1997, and the references therein):

Ln,x(t) =
n∑

i=1

II{Yi∈[x−tan,x+tan]}, t ∈ [0, 1]. (1)

If the sequence of constants, an, is appropriately chosen then the limit process is
homogeneous Poisson. However, this strong Poisson approximation is difficult
to implement (or at least cannot be extended directly) if one wants to study the
joint behaviour of

(Ln,x1(·), . . . , Ln,xm(·)),
i.e. when estimating the density of Y1 simultaneously at (x1, . . . , xm) (see Sec-
tion 4.1). Even in the Gaussian case, where simultaneous approximation by
independent Wiener processes is known, Deheuvels et al. (2000) points out that
a major technical difficulty arises in proving independence of Ln,xj (·) at separate
xj .

The aim of this paper is to illustrate how to apply the multiparameter mar-
tingale theory of Ivanoff and Merzbach (2000) to study weak Poisson limits for
empirical point processes on IRd. This approach requires only the simple compu-
tation of so-called *-compensators to identify Poisson limits for scaled empirical
point processes. The compensator method exploited here is particularly attrac-
tive in that it is independent of the dimension of the underlying random vectors,
and so easily generalizes results from the univariate to the multivariate case. In
addition, the martingale approach allows one to handle the joint behaviour at
multiple points with ease through a judicious definition of the associated history
(filtration). In particular, we shall show that the asymptotic behaviour of the
local empirical process at distinct points x1, . . . , xm can be described by inde-
pendent Poisson processes, an intuitive but otherwise technically challenging
result.

The method has additional benefits. First, only (multivariate) regular vari-
ation of the density f of Y1 is required, and the limits are explicitly written
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in terms of f . Indeed, we can discover the appropriate scaling constants even
when f is regularly varying but f(0) = 0, i.e. a case with inhomogeneous
Poisson limits excluded in Borisov (2000), or characterize the distributional be-
haviour of joint extremes for different bivariate copulas. This recovers Einmahl
(1997, Corollaries 2.4 and 2.5) where the limit Poisson process has a product
mean measure, but also extends to more complex cases (Corollary 4.4). In
particular, this method identifies extreme value limits for copulas with asymp-
totically dependent multivariate extremes more simply than methods employing
multivariate regular variation (c.f. Resnick, 1987).

The paper is structured as follows. The next section will review key elements
of the theory of multi-parameter martingales and in particular, the use of *-
compensators in proving weak convergence of a sequence of point processes.
Explicit formulas are given for the *-compensators of empirical point processes.
Section 3 defines the scaled empirical point process generated by a sample and
establishes Poisson process limits for such processes at arbitrary quantiles. This
proceeds in steps from the classical non-negative and univariate case (yielding
limits similar to those for extreme value processes), to the multivariate and
multidimensional cases. In each case the proof simplifies to the straightforward
calculation of *-compensators, and highlights the universality of the martingale
approach. Section 4 on applications illustrates the utility of our results by
establishing for the first time weak limits for nearest-neighbour estimates of
joint densities (again at several points simultaneously), and by providing new
extreme value limits for multivariate copulas.

2 Notation and background: Point processes and
martingale methods

We provide a brief introduction to point processes and martingale methods in-
dexed by general Euclidean spaces using the set-indexed framework introduced
in Ivanoff and Merzbach (2000). We need definitions mimicking those for mar-
tingales indexed by IR+.

Set T = IRd
+, and A = {At = [0, t] : t ∈ T} ∪ {∅}, where [0, t] = [0, t1] ×

· · · × [0, td] for t = (t1, ..., td). If T = IR and ti < 0, then [0, ti] is interpreted as
[ti, 0]. Set-inclusion on A induces a partial order, �, on T : s � t if and only if
As ⊆ At. This is not the usual partial order on IRd: e.g. {0} is the (unique)
minimal element, and all quadrants are equipped with their own partial order.
In particular, if T = IR, points with different signs are incomparable. This
special structure permits us to define a 2d-sided martingale theory.

The semi-algebra C is the class of all subsets of T of the form

C = A \B, A ∈ A, B ∈ A(u),

where A(u) denotes the class of sets which are finite unions of sets from A. Let
(Ω,F , P ) be any complete probability space.
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Example 2.1 If T = IR+, then A(u) = A, since a finite union of intervals
[0, ti], ti > 0, leads to another interval of this form. Consequently, C is the set
of intervals (s, t], 0 ≤ s < t. If T = IR2

+, then A(u) 6= A. The class C includes
(but is much richer than) the class of all rectangles of the form (s1, t1]× (s2, t2],
0 ≤ s1 < t1, 0 ≤ s2 < t2.

A filtration indexed by A(u) is a class {FA : A ∈ A(u)} of complete sub-σ-fields
of F (for details we refer to Ivanoff and Merzbach (2000)). For consistency, we
define FT = F . We may associate σ-algebras with sets in C: for C ∈ C \ A,
let G∗C = ∨B∈A(u),B∩C=∅FB , and for A ∈ A, A 6= ∅, define G∗A = F∅. A
(A -indexed) stochastic process X = {XA : A ∈ A} is a collection of random
variables indexed by A, and is adapted if XA is FA-measurable for every A ∈ A.
By convention, X{0} = 0.

Example 2.2 If T = IR+, take C = (s, t] ∈ C. Then the only sets which belong
to A(u) = A and do not intersect with C are the intervals [0, v], v ≤ s. Then
G∗C = ∨[0,v],v≤sF[0,v] = F[0,s], which is the history up to time s.

If T = IR2
+, take C = (s1, t1]× (s2, t2], s1 < t1, s2 < t2. Now, all of the sets

[0, u1] × [0, u2] ∈ A(u), where u1 ≤ s1 and u2 ≥ 0, or u1 ≥ 0 and u2 ≤ s2, do
not intersect with C. Consequently,

G∗C = F[0,s1]×[0,∞) ∨ F[0,∞)×[0,s2].

In other words, G∗C is the extended or wide history at (s1, s2), and contains all
information which is not strictly in the future of (s1, s2). Note that this is much
larger than the strict history F[0,s1]×[0,s2]; see Remark 2.5.

A process X : A → IR is increasing if for every ω ∈ Ω, the function X·(ω)
can be extended to a finitely additive function on C satisfying X{0}(ω) = 0 and
XC(ω) ≥ 0, ∀C ∈ C, and such that if (An) is a decreasing sequence of sets
in A(u) such that ∩nAn ∈ A(u), then limn XAn

(ω) = X∩nAn
(ω). A process

N = {NA, A ∈ A} is a point process if it is an increasing process taking its
values in IN, and almost surely for any t ∈ T , N{t} = 0 or 1.

Example 2.3 Once again, if T = IR+ then the process X is increasing if for
each [s, t) ∈ C, s < t, we have XC = Xt − Xs ≥ 0. If T = IR2

+, then for C =
(s1, t1]× (s2, t2], s1 < t1, s2 < t2 we have XC = Xt1,t2 −Xs1,t2 −Xt1,s2 +Xs1,s2 .

Note that if N is a point process on T = IR, then Nt := N[0,t] (for t positive or
negative) and not N(−∞,t]. A similar remark is true for point processes defined
on IRd.

Now, let Y be a random variable with values in T and let NC = 1{Y ∈C}.
Then clearly N is a single jump point process (a point process with only one
jump).

Let Λ be a σ-finite measure on T . As usual, N is a Poisson process on T with
mean measure Λ if N is a point process where NC ∼ Poisson, ΛC , ∀C ∈ C,
and whenever C1, ..., Cn ∈ C are disjoint, NC1 , ..., NCn are independent. If Λ is
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absolutely continuous with respect to Lebesgue measure, its density λ is called
the intensity of the Poisson process.

An integrable process M = {MA, A ∈ A} is called a pseudo-strong martin-
gale if for any C ∈ C, E[MC |G∗C ] = 0. The process X is a *-compensator of the
increasing process X if it is increasing and the difference X − X is a pseudo-
strong martingale. The asymptotic behaviour of a sequence of point processes
may be determined by *-compensators as shown in the following lemma which
generalizes Theorem 8.2.2 and Corollary 8.2.3 of Ivanoff and Merzbach (2000)
to multivariate point processes on T = IRd or IRd

+.
To state this result, we consider k point processes N(1), ..., N(k) all adapted

to a common A(u)-indexed filtration {FA} and so that with probability one,
none of the processes have a jump point in common. The k-variate point process
→
N is defined by

→
NA= 〈NA(1), ..., NA(k)〉 and has (k-variate) *-compensator

→
Λ= (Λ(1), ..., Λ(k)) if Λ(i) is a *-compensator for N(i) with respect to the
common filtration {FA}.

In what follows,“−→P ” denotes convergence in probability and “−→D” de-
notes convergence in both finite dimensional distribution and in distribution
in the Skorokhod topology if T = IRd

+ (identifying N
(n)
t (respectively, Nt) with

N
(n)
At

(respectively, NAt)). We remark that the Skorokhod topology may be ex-
tended to all of the quadrants in IRd on the space of “outer-continuous functions
with inner limits”, and the convergence in the lemma below holds in this case as
well. In the sequel, convergence in the Skorokhod topology will be interpreted
in this way.

Lemma 2.4 Let (
→
N

(n)

) be a sequence of k-variate point processes on T adapted

to a filtration {FA} and (
→
Λ

(n)

) a sequence of corresponding *-compensators.
Suppose that for each A ∈ A and i = 1, ..., k the sequences (N (n)

A (i)) and
(Λ(n)

A (i)) are uniformly integrable and that Λ(n)
A (i) −→P ΛA(i) where Λ(i) is a

deterministic measure on T absolutely continuous with respect to Lebesgue mea-

sure. Then
→
N

(n)

−→D
→
N , where

→
N= 〈N(1), ..., N(k)〉 and N(1), ..., N(k) are

independent Poisson processes with mean measures Λ(1), ..., Λ(k), respectively.

Remark 2.5 The above lemma shows the importance of the ∗-martingale con-
cept (i.e. defining the martingale property with respect to the extended past
G∗C). Generally speaking, a deterministic ∗-compensator characterizes a Poisson
process. On the other hand, if we consider T = IR2

+, we can still define the mar-
tingale property with respect to the strict past (see Example 2.2), but in this
case it is possible to construct several adapted point processes which have the
same compensator (see Ivanoff and Merzbach (2000) for the examples). In other
words, working with the compensators with respect to the strict past would not
permit us to conclude convergence to Poisson processes in Lemma 2.4.

Proof: The proof of this theorem is a straightforward generalization of Theorem
8.2.2 in Ivanoff and Merzbach (2000) along with an application of Watanabe’s
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characterization of the k-variate Poisson process on IR+; see Brémaud (1981,
Theorem T6).

�

We conclude this section by defining empirical point processes on T and
computing their *-compensators. Let Y be a T -valued random variable with
continuous distribution function F . The single jump point process J = {JA =
II{Y ∈A} : A ∈ A} has *-compensator

JA =
∫

A

II{Y ∈Eu}(F (Eu))−1dF (u)

with respect to its minimal filtration, where Et = {t′ ∈ T : t � t′} (cf. Ivanoff
and Merzbach (2000), equation (8.6)). Now, suppose that Y1, ..., Yn are i.i.d.
with distribution F (t) = IP(Yi ≤ t) and let F = ∨n

i=1F
(i) where F (i) is the

minimal filtration generated by the single jump process associated with Yi. Let
AY be the random set [0, Y ]. Then the empirical point process N (n) defined by

N
(n)
A =

n∑
i=1

II{Yi∈A} (2)

has *-compensator Λ(n) where

Λ(n)
A =

n∑
i=1

∫
A

II{Yi∈Eu}(F (Eu))−1dF (u) . (3)

Example 2.6 If T = IR+ then (3) reads as follows: A = At = [0, t] for t ≥ 0, �
is just ≤, the standard ordering, Eu = [u,∞). By noting that F (Eu) = IP(Yi ≥
u) =: F (u) we have the standard result:

Λ(n)
t := Λ(n)

At
=

∫
At

n∑
i=1

II{Yi ∈ Eu}
dF (u)
F (Eu)

=
∫ t

0

n∑
i=1

II{Yi ≥ u}dF (u)
F (u)

. (4)

Example 2.7 If T = IR then At = [0, t] or At = [t, 0] depending on the sign of
t. We have s � t if 0 ≤ s ≤ t, or t ≤ s ≤ 0, where ≤ is the standard order on IR.
Points with different signs are incomparable. The sets Eu will be either [u,∞)
or (−∞, u] depending the sign of u. If u > 0, then as above F (Eu) = F (u);
otherwise, if u < 0, then F (Eu) = F (u). Now the *-compensator is given by
(4) if t ≥ 0, and if t < 0,

Λ(n)
t := Λ(n)

At
=

∫
At

n∑
i=1

II{Yi ∈ Eu}
dF (u)
F (Eu)

=
∫ 0

t

n∑
i=1

II{Yi ≤ u}dF (u)
F (u)

. (5)

Example 2.8 Consider d = 2. Let Yi = (Yi1, Yi2), i = 1, . . . , n. If T = IR2
+

then (3) reads as follows: A = At = [0, t1] × [0, t2] for t = (t1, t2), Eu = {t′ :
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t′i ≥ ui, i = 1, 2}, for u = (u1, u2). By noting that F (Eu) = IP(Yi1 ≥ u1, Yi2 ≥
u2) =: F (u) we have

Λ(n)
t := Λ(n)

At
=

∫
At

n∑
i=1

II{Yi1 ≥ u1, Yi2 ≥ u2}
dF (u)
F (u)

.

To extend this example to T = IR2 we proceed as in Example 2.7, treating each
quadrant separately.

3 Poisson limits at quantiles

A Poisson limit theorem for a scaled empirical point process is given in Theorem
8.3.3 of Ivanoff and Merzbach (2000). In particular, for a sequence {Yi} of IRd-
valued variables with distribution F , it defines the asymptotic behaviour of
N (n) near the origin, provided that F has derivatives at 0 in all quadrants. The
results of this section will be seen to extend and generalize this theorem in many
directions.

3.1 Univariate case

We can use the preceding section to determine the limiting behaviour of empir-
ical point processes at quantiles. Consider a sequence {Yn} of i.i.d. real-valued
positive random variables with distribution F . Assume now that F (0) = 0 and
that F is regularly varying at 0 with index α > 0, i.e. for all t ≥ 0,

lim
x↘0

F (xt)
F (x)

= tα , (6)

see e.g. Resnick (1987). This implies that for x in a neighbourhood of 0,
F (x) = `(x)xα. Here and in the sequel ` is a slowly varying function at 0 or at
∞ as required, and it can be different at each appearance.

Let an be such that F (an) = n−1. This ensures that an ∼ n−1/α`(n)
for some function ` slowly varying at ∞. Henceforth, we write cn ∼ dn if
limn→∞ cn/dn = 1.

Since an → 0 we have

nF (ant) =
F (ant)
F (an)

→ tα . (7)

Define

N (n) =
n∑

i=1

δa−1
n Yi

.

We have by (3)

Λ(n)
t =

∫ t

0

n∑
i=1

II{a−1
n Yi ≥ u}dF (anu)

F (anu)
. (8)
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We first reprove the well-known result (see e.g. Resnick (1987, Proposi-
tion 3.21) concerning Poisson limits for empirical point processes. An elegant
argument can be applied (see e.g. Borisov, 2000, and the references therein)
where the law of N (n) is approximated (in the total variation sense and for
each n separately) by Poi(νn), the Poisson random measure with νn(A) =
nE(1{n1/αXi∈A}), where the Xi’s are uniform on an appropriately chosen ball.
If n is sufficiently large, strong approximation methods yield the coupling of
the empirical point processes to a single Poisson random measure, and weak
convergence follows. The alternative approach to the proof presented here il-
lustrates the martingale technique. It will be seen subsequently that the proof
easily generalizes to the multivariate context and to establishing simultaneous
limits at interior quantiles of F .

Corollary 3.1 Assume that F (0) = 0 and (6) holds. Then the sequence (N (n))
converges in distribution to N in the Skorokhod topology on D[0,∞) where N
is a Poisson process with mean measure Λt = tα (intensity λ(t) = αtα−1).

Proof. Since N (n) is square integrable with bounded second moments (uniformly
in n), the conditions of Lemma 2.4 will be satisfied if it is shown that the
sequence (Λ(n)

t ) given by (8) converges in L2 to tα.

IE[Λ(n)
t ] = IE

[∫ t

0

n∑
i=1

II{a−1
n Yi ≥ u}dF (anu)

F (anu)

]

=
n∑

i=1

∫ t

0

IP(a−1
n Yi ≥ u)

dF (anu)
F (anu)

=
n∑

i=1

∫ t

0

dF (anu) = nF (ant) → tα

by applying (7). Using the independence of the Yi’s,

IE[(Λ(n)
t )2] =

∫ t

0

∫ t

0

n∑
i=1

IE [II {Yi ≥ anu, Yi ≥ anv}] dF (anu)dF (anv)
F (anu)F (anv)

+2
∫ t

0

∫ t

0

n∑
i<j

IE [II {Yi ≥ anu, Yj ≥ anv}] dF (anu)dF (anv)
F (anu)F (anv)

=
∫ t

0

∫ t

0

n∑
i=1

IP (Yi ≥ an(u ∨ v))
dF (anu)dF (anv)
F (anu)F (anv)

+n(n− 1)
∫ t

0

∫ t

0

dF (anu)dF (anv)

= n

∫ t

0

∫ t

0

IP (Y1 ≥ an(u ∨ v))
dF (anu)dF (anv)
F (anu)F (anv)

+n(n− 1)(F (ant))2 .

Now, the first term converges to 0, because

n

∫ t

0

∫ t

0

IP (Y1 ≥ an(u ∨ v))
dF (anu)dF (anv)
F (anu)F (anv)
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≤ n

∫ t

0

∫ t

0

dF (anu)dF (anv)
F (anu)

≤ n
[
F (ant)

]−1
[F (ant)]2 ,

and F (ant) → 1 and nF 2(ant) → 0 as n →∞. Consequently, (Λ(n)
t ) converges

to tα in L2 and therefore in probability.
�

We may extend Corollary 3.1 to the entire line. Denote by PF the probability
measure associated with a distribution F . We say that F is regularly varying
on the right (left) at u with index α > 0 (β > 0) if for all t > 0, respectively,

lim
x↘0

PF ((u, u + xt])
PF ((u, u + x])

= tα
(

lim
x↘0

PF ((u− xt, u])
PF ((u− x, u])

= tβ
)

, (9)

Clearly, if F has support (0,∞) then for u = 0 the above condition reduces to
(6).

If F satisfies (9), we shall choose an and bn so that

F (an + u)− F (u) = n−1 , F (u)− F (−bn + u) = n−1 . (10)

Fix q ∈ (0, 1) and set xq = F−1(q) and assume that F satisfies (9) at u = xq.
Let

N (n)(q) =
n∑

i=1

δa−1
n [Yi−xq ]I[Yi ≥ xq] +

n∑
i=1

δb−1
n [Yi−xq ]I[Yi < xq]. (11)

Corollary 3.2 Assume (9). Then N (n)(q) −→D N , where N is a Poisson
process on IR with intensity

λt =
{

αtα−1 if t > 0
β|t|β−1 if t < 0 .

Proof. The argument in the preceding proof can now be repeated for t > 0 and
t < 0 to prove that Λ(n)

t converges in L2 to tα if t > 0 and to |t|β if t < 0.
Let G be the distribution of Yi − xq. Thus, G(s) = F (s + xq). To see that the
norming sequences an and bn are chosen appropriately, in view of (3) applied
to the distribution G of Yi − xq (cf. also (4)), we have for t > 0,

Λ(n)
t =

∫ t

0

n∑
i=1

II{a−1
n (Yi − xq) ≥ u}dG(anu)

Ḡ(anu)
.

Thus, using the same calculation as in the proof of Corollary 3.1,

IE
[
Λ(n)

t

]
= n

∫ t

0

dG(anu) = n[F (ant + xq)− F (xq)]

=
F (ant + xq)− F (xq)
F (an + xq)− F (xq)

→ tα
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by the first part of (9). Moreover, bearing in mind Example 2.7, we have for
t < 0,

IE
[
Λ(n)

t

]
= n

∫ 0

t

dG(bnu) = −n[F (bnt + xq)− F (xq)]

=
F (bnt + xq)− F (xq)
F (−bn + xq)− F (xq)

→ |t|β

by the second part of (9). The result follows from Lemma 2.4.
�

The power of the martingale method can be seen when one wants to obtain
the asymptotic joint distribution of several N (n)(q). The key is an appropriate
definition of the filtration.

Theorem 3.3 Let 0 ≤ q1 < q2 < . . . < qk ≤ 1 and assume that (9) holds for
each xqi , i = 1, ..., k, with αi and βi, respectively. Then

〈N (n)(q1), N (n)(q2), . . . , N (n)(qk)〉 −→D 〈N(1), . . . , N(k)〉 ,

where 〈N(1), . . . , N(k)〉 is a k-variate Poisson process on IR with independent
components and marginal intensities λ(i), i = 1, . . . , k, given by

λt(i) =
{

αtαi−1 if t > 0
β|t|βi−1 if t < 0 .

Proof: For clarity, we will consider only the case k = 2 and verify the conditions
of Lemma 2.4. The general result follows in a straightforward manner.

We begin by observing that it suffices to show joint convergence of

〈N (n)(q1), N (n)(q2)〉

for all t ∈ [−K, K] for any arbitrary finite constant K. Assume that F is
regularly varying on the right and left of xqi

with index αi and βi, respectively,
i = 1, 2. As before, define a

(i)
n and b

(i)
n , i = 1, 2 according to (10). Choose M

large enough that for n ≥ M , [xq1 −Kb
(1)
n , xq1 + Ka

(1)
n ] and [xq2 −Kb

(2)
n , xq2 +

Ka
(2)
n ] do not intersect. This will ensure that those points Yj which are jump

points of N (n)(q1) are not jump points of N (n)(q2) and vice versa.
Consider for i = 1, 2, 1 ≤ j ≤ n the single jump point process

J (n,j)(qi) = δ
(a

(i)
n )−1[Yj−xqi

]
I[Yj ≥ xqi ] + δ

(b
(i)
n )−1[Yj−xqi

]
I[Yj < xqi ].

It is adapted to F = {FAt : −K ≤ t ≤ K}, where

FAt
=

{
σ{II{Yj∈[xqi

,xqi
+ta

(i)
n ]}, i = 1, 2; j = 1, ..., n} if t ≥ 0

σ{II{Yj∈[xqi
+tb

(i)
n ,xqi

]}, i = 1, 2; j = 1, ..., n} if t ≤ 0.
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We will compute a *-compensator J
(n,j)

(qi) of the single jump process J (n,j)(qi).
We consider only 0 < t < K as the argument for t < 0 is similar. Let

Ut = [xq1 −Kb(1)
n , xq1 + ta(1)

n ] ∪ [xq2 −Kb(2)
n , xq2 + ta(2)

n ].

Then for C = (t, t′] ∈ C, it follows that II{Yj∈Ut} ∈ G
∗
C and so heuristically, the

compensator J
(n,j)

(qi) satisfies

J
(n,j)

dt (qi) =
II{Yj∈Uc

t }dF (xqi
+ a

(i)
n t)

1− F (Ut)
,

provided that [xq1 −Kb
(1)
n , xq1 + Ka

(1)
n ] and [xq2 −Kb

(2)
n , xq2 + Ka

(2)
n ] are dis-

joint intervals. Using (3) it is straightforward to verify that for n ≥ M the
*-compensator Λ(n)(i) of N (n)(qi) is

Λ(n)
t (i) =

n∑
j=1

∫ t

0

II{Yj∈Uc
s}dF (xqi + a

(i)
n s)

1− F (Us)
. (12)

Exactly as in the comments leading to Corollary 3.2 we have IE[Λ(n)
t (i)] ∼ tαi

for the appropriate constant αi, since F is slowly varying on the right at xqi
.

The argument that IE[(Λ(n)
t (i))2] → (tαi)2 is also similar to that used in

the proof of Corollary 3.1. Also, N (n)(qi) is square integrable with bounded
second moments (uniformly in n). Thus the conditions of Lemma 2.4 have been
satisfied and the result follows.

�

3.2 Multivariate case

Let {Yn}n≥1 be a sequence of i.i.d. IRd-valued random variables with continuous
distribution F . Following the pattern of the preceding section, we may obtain
a point process limit if the regular variation index at u for F depends on the
choice of orthant. To be precise, let Ok be the kth orthant and ek its associated
unit vector, k = 1, . . . , 2d. Let uj ∈ IRd, j = 1, . . . ,m. Then F is regularly
varying at uj from orthant Ok, with index αk,j and rate Wk,j if for t ∈ Ok

lim
x↘0

PF ((uj , xt + uj ])
PF ((uj , xek + uj ])

= Wk,j(t) . (13)

From the above definition it follows that the function Wk,j is homogeneous of
order αk,j , i.e. Wk,j(st) = sαk,j Wk,j(t), αk,j > 0, see e.g. Resnick (1987).

Let an,k,j be such that PF ((uj , an,k,jek + uj ]) = n−1. We define in analogy
to (11)

N (n)(j) := N (n)(uj) =
2d∑

k=1

n∑
i=1

δa−1
n,k,j

[Yi−uj ]
I[Yi ∈ O′

k,j ] , (14)

where O′
k,j = Ok + uj .

11



Theorem 3.4 Assume that the orthant-wise regular variation conditions (13)
are satisfied at uj , j = 1, ...,m, xj ∈ IRd. For each j, let N (n)(j) denote the
IRd-indexed point process of (14). Then

〈N (n)(1), N (n)(2), . . . , N (n)(m)〉 −→D 〈N(1), N(2), . . . , N(m)〉

where 〈N(1), N(2), . . . , N(m)〉 is a vector of independent Poisson processes,
where the jth component process is parameterized by IRd and its mean measure
is given orthant-wise by Wk,j(·).

Proof. Once again, the proof is carried out by showing that the relevant ∗-
compensators converge in L2 to the appropriate deterministic limit. For ease of
exposition, assume that d = 2. Consider the case m = 1 and assume without
loss of generality that u1 = 0. Then we have k = 4 orthants. Consider, for
k = 1, the orthant IR2

+ and its associated unit vector e1 = (1, 1) =: 1. Write for
simplicity an,1,1 = an. Then, the ∗-compensator is given by (cf. Example 2.8)∫

At

n∑
i=1

II{a−1
n Yi1 ≥ v1, a

−1
n Yi2 ≥ v2}

dF (anv)
F̄ (anv)

.

Taking expected value one obtains

nF (At) =
PF ((0, ant])
PF ((0, an1])

→ W1,1(t).

The L2 convergence is treated in the same way as in Corollary 3.1.
The other 3 orthants are treated similarly. The extension from m = 1 to

arbitrary m follows along the lines of Theorem 3.3.
�

Examples of regularly varying distributions are readily constructed. One
source of examples are distributions based on copulas as described, for example,
in Nelsen (1999) and Section 4.3 below.

4 Applications

4.1 Local empirical processes

In the introduction we pointed out that one of our motivations was to obtain
a weak limit for local empirical processes, as defined in (1). As a particular
application of Theorem 3.3 we obtain the following result.

Let 0 < q1 < q2 < · · · < qk < 1 and xj = F−1(qj), j = 1, . . . , k where F is a
distribution on IR. Assume that

lim
x↘0

PF ((xj , xj + xt])
PF ((xj , xj + x])

= tα and lim
x↘0

PF ((xj − xt, xj ])
PF ((xj − x, xj ])

= tα ,

for all t > 0. Since the regular variation behaviour is the same on either side of
xj , the scaling constant an = an,j may be chosen so that F (an + xj)−F (xj) =

12



n−1 for arbitrary j = 1, . . . , k. Thus (cf. (11)), the point processes are defined
as N (n)(j) =

∑n
i=1 δa−1

n [Yi−xj ]
, j = 1, . . . , k. Note further, that N

(n)
A (j) with

A = [−t, t] (cf. (2)) agrees with Ln,xj (t) (cf. (1)). Consequently, we obtain the
following result.

Corollary 4.1 The vector (Ln,x1(·), . . . , Ln,xk
(·)) of the local empirical pro-

cesses converges weakly to the vector of independent Poisson processes with the
same intensities 2α|t|α−1.

4.2 Local Density Estimation

Consider a sample {Y1, Y2, . . . , Yn} with common marginal differentiable distri-
bution F on [0, 1], and assume that its density f is positive on the range [0, 1].
Let Fn denote the empirical distribution and define [t]+n = Y(k+1) and [t]−n = Y(k)

if Y(k) ≤ t < Y(k+1). We put [t]−n = 0 if t < Y(1) and [t]+n = 1 if t > Y(n). A
naive nearest-neighbour estimator of the density at t is given by

f̂(n, t) =
1

n([t]+n − [t]−n )
. (15)

Additional information on nearest-neighbour density estimates can be found in
Härdle (1990) or Silverman (1992), including comments on performance, and
modifications.

For t ∈ (0, 1) the fact that F is differentiable and that f is positive (i.e. F
is of regular variation index α = 1 at t) allows us to write

f̂(n, t)/f(t) =
1

f(t)
(
n([t]+n − t) + n(t− [t]−n )

) D→ 1
f(t)(E1 + E2)

(16)

where E1 and E2 are independent exponential variables of mean 1/f(t). This
convergence follows from Corollary 3.2 and the continuous mapping theorem,
and follows the pattern set for extreme value processes as given in Resnick
(1987). As each limiting Poisson process has a constant rate function equal to
f(t), the distance from t to the first point to the left or right has an exponential
distribution with mean 1/f(t). Since such an exponential variable can be written
as the product of 1/f(t) and an exponential of mean 1, and the sum of two
independent mean 1 exponentials is a Γ(2, 1) variable, we have identified the
limiting distribution of f̂(n, t)/f(t) as Inverse Gamma, Γ(−1)(2, 1). The mode,
mean and variance of an Inverse Gamma density of parameters (α, β) are β/(α+
1), β/(α−1) (for α > 1) and β2/((α−1)(α−2)) (for α > 2), respectively. Thus
we see that this naive estimator of f(t) has mode f(t)/3, mean f(t) and infinite
variance.

This development can be easily extended to estimators based on the k lower
nearest neighbours and k upper nearest neighbours. As above, asymptotically
the spacings between consecutive neighbours are independent exponential vari-
ables with mean 1/f(t). The asymptotic joint density is the product of 2k
exponentials, and the sufficient statistic is just the total distance from the lower
kth-nearest neighbour of t, [t]−k

n , to the upper kth-nearest neighbour, [t]+k
n .
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Corollary 4.2 The asymptotically uniformly minimum variance unbiased esti-
mator based on k nearest neighbours (k > 1) is

f̂k(n, t) =
(2k − 1)/n

[t]+k
n − [t]−k

n

,

and f̂k(n, t)/f(t) has an asymptotic Γ(−1)(2k, 1) density. Moreover, the limiting
distribution of 〈

f̂k(n, t1)
f(t1)

,
f̂k(n, t2)

f(t2)
, . . . ,

f̂k(n, tm)
f(tm)

〉
is given by a vector of m independent Γ(−1)(2k, 1) Inverse Gamma variables.

Consequently we can obtain the limiting distribution of expressions such as
approximate integrals,

Ê(g(Y )) =
m∑

i=1

g(ti)(f̂k(n, ti)),

even for arbitrary dimension (Theorem 3.4) with appropriate norming.

Remark 4.3 On the other hand, we see that f̂k(n, t)/f(t) still has an Inverse
Gamma distribution, but with finite variance for k ≥ 1. It has asymptotic
variance 1 + 1/(2k − 2), and so remains inherently random regardless of the
fixed number of nearest neighbours used in the estimate. Nearest-neighbour
methods have become popular in data mining, classification and computing
applications, and rapid algorithms exist for finding the k nearest neighbours
to a point t even in high dimensions. The above discussion shows that even
in highly regular cases, the best k-nearest-neighbour density estimate will not
converge in probability to the desired limit, and remains random.

4.3 Multivariate extremes

Let {(Yn1, Yn2)}n≥1 be an i.i.d. sequence of bivariate random vectors. To focus
on the bivariate dependence structure rather than the marginal distributions,
we assume that (Y11, Y12) has a copula C and standard uniform marginals (cf
Nelsen (1999)). We want to characterize

IP(Y11 > 1− xt1, Y12 > 1− xt2)

as x ↘ 0. If Y11 and Y12 are independent, then the above probability factors
and we can apply standard extreme value methods (e.g. Resnick, 1987) to
the marginals. However, if Y11 and Y12 are dependent but the maxima are
asymptotically independent then the extreme value methods fail; see Fougeres
(2004) for a general discussion of this problem. For most known families of
copulas which have the asymptotic independence property of maxima, we have
(cf. Hefferman, 2000)

IP(Y11 > 1− xt1, Y12 > 1− xt2) ∼ cx2. (17)
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Note that the above definition means that the distribution function of (Y11, Y12)
is regularly varying at (1, 1) from the orthant Ok, where Ok is associated with
the unit vector (−1,−1), see (13). By Theorem 3.4, the appropriate scaling to
obtain a point process limit for the joint extremes is an = n−1/2, and not the
an = n−1 that would be used to normalize the marginal variables individually.
Note, moreover, that the methods of this paper are “dimension free”, and so we
can address multivariate copulas of any dimension.

Further we can address the joint extreme value behaviour of copulas with
the asymptotic independence property but where (17) is not satisfied. As an
example, consider the case when C is the bivariate normal copula with correla-
tion ρ ∈ (0, 1] – i.e. C(x, y) is given by a joint normal distribution function at
(Φ−1(x), Φ−1(y)) with standard marginals and correlation ρ. We have

IP(Y11 > 1− xt1, Y12 > 1− xt2) ∼ x2/(1+ρ)g(t1, t2)

for a function g as x ↘ 0, and so

lim
x↘0

IP(Y11 > 1− xt1, Y12 > 1− xt2)
IP(Y11 > 1− x, Y12 > 1− x)

=
g(t1, t2)
g(1, 1)

,

for t1, t2 ≥ 0. For u = (1, 1) and t1, t2 ≤ 0, formula (13) is satisfied with

W (t1, t2) =
g(−t1,−t2)

g(1, 1)
.

Applying the results of Section 3.2, with u = (1, 1), m = 1, the third orthant
IR2
−, its associated unit vector e3 = (−1,−1), we define an = an,3,1 to be such

that
P (Y11 > 1− an, Y12 > 1− an) = n−1,

so that an = n−(1+ρ)/2`(n), where `(n) is slowly varying at infinity.

Corollary 4.4 Assume that {Yn = (Yn1, Yn2)}n≥1 are i.i.d. with a common
normal copula of parameter ρ and uniform marginals. Then for u = (1, 1), the
process

N (n) =
n∑

i=1

δa−1
n [Yi−u]

converges to a Poisson process on IR2
− with mean measure W (·, ·).
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