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Poisson limits for empirical point processes

Point processes

Define the scaled empirical point process on an independent and
identically distributed sequence {Yi : i ≤ n} as the random point measure
with masses at a−1

n Yi:

N
(n)
A =

n∑
i=1

I{Yi∈A}.

Existing Methods for dealing with pp:

• Poisson limit approach (Resnick, ...),

• a strong approximation approach (Einmahl, Deheuvels ...)
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Each of this method has some advantages and disadvantages. For example,
Resnick’s method is not suitable to study weak convergence of the local
empirical process

Ln,x(t) =
n∑

i=1

I{Yi∈[x−tan,x+tan]}, t ∈ [0, 1], (1)

as it is strong approximation method. On the other hand, this strong
Poisson approximation is difficult to implement (or at least cannot be
extended directly) if one wants to study the joint behavior of

(Ln,x1(·), . . . , Ln,xm(·)),

i.e. when estimating the density of Y1 simultaneously at (x1, . . . , xm).
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Multiparameter martingales

The aim is to illustrate how to apply the multiparameter martingale
theory of Ivanoff and Merzbach (2000) to study weak Poisson limits
for empirical point processes on Rd (or even more general topological
spaces). This approach requires only the simple computation of so-called *-
compensators to identify Poisson limits for scaled empirical point processes.
The compensator method exploited here is particularly attractive since

• it is independent of the dimension of the underlying random vectors, and
so easily generalizes results from the univariate to the multivariate case.

• In addition, the martingale approach allows one to handle the joint
behavior at multiple points with ease through a judicious definition of
the associated history (filtration).
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∗-compensator

The empirical point process has *-compensator Λ(n) where

Λ(n)
A =

n∑
i=1

∫
A

I{u∈AYi
}(F (Eu))−1dF (u).

Example: If T = R+ then A = At = [0, t] for some t ≥ 0, Eu = [u,∞). By

noting that F (Eu) = P (Yi ≥ u) =: F̄ (u) we have the standard result.

Example: Let Yi = (Yi1, Yi2), i = 1, . . . , n. If T = R2
+ then: A =

At = [0, t1] × [0, t2] for some t = (t1, t2), Eu = {t′ : t′i ≥ ui, i = 1, 2},
u = (u1, u2). By noting that F (Eu) = P (Yi1 ≥ u1, Yi2 ≥ u2) =: F̄ (u) we
have

Λ(n)
t := Λ(n)

At
=

∫
At

n∑
i=1

I{Yi1 ≥ u1, Yi2 ≥ u2}
dF (u)
F̄ (u)

.
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Local empirical processes

Let 0 < q1 < q2 < · · · < qk < 1 and xj = F−1(qj), j = 1, . . . , k.
Assume that

lim
x↘0

PF ((xj, xj + xt])
PF ((xj, xj + x])

= tα
(

lim
x↘0

PF ((xj + xt, xj])
PF ((xj − x, xj])

= |t|α
)

,

for all t > 0 and t < 0, respectively. Since the regular variation behavior is
the same at either side of xj, the scaling constant an = an,j may be chosen
as F (an + xj) − F (xj) = n−1 for arbitrary j = 1, . . . , k. Thus, the point
processes are defined as N (n)(j) =

∑n
i=1 δa−1

n [Yi−xj]
, j = 1, . . . , k. Note

further, that N
(n)
A (j) with A = [−t, t] agrees with Ln,xj

(t).

Corollary: The vector (Ln,x1(·), . . . , Ln,xk
(·)) of the local empirical processes

converges weakly to the vector of independent Poisson processes with the
same intensities 2α|t|α−1.
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Local Density Estimation

Consider a sample {Y1, Y2, . . . , Yn} with common marginal differentiable
distribution F on [0, 1], and assume that its density f is positive on the range
[0, 1]. Let Fn denote the empirical distribution and define [t]+n = Y(k+1)

and [t]−n = Y(k) by Y(k) ≤ t < Y(k+1). We put [t]+n = 0 if [t]+n < Y(1) and
[t]−n = 0 if [t]+n > Y(n). A naive nearest-neighbor estimator of the density:

f̂(n, t) =
1
n

/(
([t]+n − t) + (t− [t]−n )

)
. (2)

We may conclude that

f̂(n, t)/f(t) =
1

f(t)
(
n([t]+n − t) + n(t− [t]−n )

) D→ 1
f(t)(E1 + E2)

(3)

where E1 and E2 are independent exponential variables of mean 1/f(t).
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In particular, we have identified the limiting distribution of f̂(n, t)/f(t)
as Inverse Gamma, Γ(−1)(2, 1). The mode, mean and variance of an Inverse
Gamma density of parameters (α, β) are β/(α + 1), β/(α− 1) (for α > 1)
and β2/((α − 1)(α − 2)) (for α > 2), respectively. Thus we see that this
naive estimator of f(t) has mode f(t)/3, mean f(t) and infinite variance.

This development can be easily extended to estimators based on the
k lower nearest neighbors and k upper nearest neighbors. As above,
asymptotically the spacings between consecutive neighbors are independent
exponential variables with mean 1/f(t). The asymptotic joint density is
the product of 2k exponentials, and the sufficient statistic is just the total
distance from the lower kth-nearest neighbor of t, [t]−k

n , to the upper
kth-nearest neighbor, [t]+k

n .
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Corollary: The asymptotically uniformly minimum variance unbiased
estimator based on k nearest neighbors (k > 1) is

f̂k(n, t) =
(2k − 1)/n

[t]+k
n − [t]−k

n

,

and f̂k(n, t)/f(t) has an asymptotic Γ(−1)(2k, 1) density. Moreover, the
limiting distribution of〈

f̂k(n, t1)
f(t)

,
f̂k(n, t2)

f(t)
, . . . ,

f̂k(n, tm)
f(t)

〉

is given by a vector of m independent Γ(−1)(2k, 1) Gamma variables.
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Consequently we can obtain the limiting distribution of expressions such
as approximate integrals,

Ê(g(Y )) =
m∑

i=1

g(ti)(f̂k(n, ti)),

even for arbitrary dimension with appropriate norming.

Remark: We see that f̂k(n, t)/f(t) still has an Inverse Gamma distribution,
but with finite variance for k > 1. It has asymptotic variance 1+1/(2k−2),
and so remains inherently random regardless of the fixed number of nearest
neighbors used in the estimate. The above discussion shows that even in
highly regular cases, the best k-nearest-neighbor density estimate will not
converge in probability to the desired limit, and remains random.
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Multivariate extremes

Let {(Yn1, Yn2)}n≥1 be an i.i.d. sequence of bivariate random vectors.
To focus on the bivariate dependence structure rather than the marginal
distributions, we assume that (Y11, Y12) has a copula C and standard
uniform marginals. We want to characterize

P (Y11 > 1− xt1, Y12 > 1− xt2)

as x ↘ 0. If Y11 and Y12 are dependent but the maxima are asymptotically
independent then the extreme value methods fail; see Fougeres (2004) for
a general discussion of this problem. For most known families of copulas
which have the asymptotic independence property of maxima, we have

P (Y11 > 1− xt1, Y12 > 1− xt2) ∼ cx2. (4)
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By the results of this paper the appropriate scaling to obtain a point process
limit for the joint extremes is an = n−1/2, and not the an = n−1 that would
be used to normalize the marginal variables individually. Note, moreover,
that the methods of this paper are “dimension free”, and so we can address
multivariate copulas of any dimension.

Further we can address the joint extreme value behavior of copulas with
the asymptotic independence property but where (4) is not satisfied. As
an example, consider the case when C is the bivariate normal copula with
correlation ρ ∈ (0, 1] – i.e. C(x, y) is given by a joint normal distribution
function at (Φ−1(x),Φ−1(y)) with standard marginals and correlation ρ.
We have

P (Y11 > 1− xt1, Y12 > 1− xt2) ∼ x2/(1+ρ)g(t1, t2).
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Define an to be such that

P (Y11 > 1− an, Y12 > 1− an) = n−1,

so that an = n−(1+ρ)/2`(n), where `(n) is slowly varying at infinity.

Corollary: Assume that {Yn = (Yn1, Yn2)}n≥1 are independent, have a
common normal copula of parameter ρ and uniform marginals. Then for
u = (1, 1) and ,

N (n) =
n∑

i=1

δa−1
n [Yi−u]

converges to a Poisson process on R2
− with a mean measure W (·, ·).
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Some further remarks

Let Yi be iid random vectors and define U -statistics

Un =
n∑

i 6=j

h(Yi, Yj).

Dabrowski, Dehling, Mikosch and Sharipov studied behaviour of Un by
assuming that h is regularly varying with infinite variance. The point
process limit is Poisson. Open question: is it possible to generalize it to
dependent sequences.
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