Problem 1. Find the singular values of the matrix \(A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \).

Solution. We compute \(AA^T \). (This is the smaller of the two symmetric matrices associated with \(A \).) We get \(AA^T = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 2 \end{bmatrix} \). We next find the eigenvalues of this matrix. The characteristic polynomial is \(\lambda^3 - 6\lambda^2 + 6\lambda = \lambda(\lambda^2 - 6\lambda + 6) \). This gives three eigenvalues: \(\lambda = 3 + \sqrt{3}, \lambda = 3 - \sqrt{3} \) and \(\lambda = 0 \). Note that all are positive, and that there are two nonzero eigenvalues, corresponding to the fact that \(A \) has rank 2.

For the singular values of \(A \), we now take the square roots of the eigenvalues of \(AA^T \), so \(\sigma_1 = \sqrt{3 + \sqrt{3}} \) and \(\sigma_2 = \sqrt{3 - \sqrt{3}} \). (We don’t have to mention the singular values which are zero.)

Problem 2. Find the singular values of the matrix \(B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \).

Solution. We use the same approach: \(AA^T = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \). This has characteristic polynomial \(\lambda^2 - 10\lambda + 9 \), so \(\lambda = 9 \) and \(\lambda = 1 \) are the eigenvalues. Hence the singular values are 3 and 1.

Problem 3. Find the singular values of \(A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \) and find the SVD decomposition of \(A \).

Solution. We compute \(AA^T \) and find \(AA^T = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 6 & 2 \\ 2 & 2 & 2 \end{bmatrix} \). The characteristic polynomial is

\[
-\lambda^3 + 10\lambda^2 - 16\lambda = -\lambda(\lambda^2 - 10\lambda + 16) \\
= -\lambda(\lambda - 8)(\lambda - 2)
\]
So the eigenvalues of AA^T are $\lambda = 8, \lambda = 2, \lambda = 0$. Thus the singular values are $\sigma_1 = 2\sqrt{2}, \sigma_2 = \sqrt{2}$ (and $\sigma_3 = 0$).

To give the decomposition, we consider the diagonal matrix of singular values $\Sigma = \begin{bmatrix} 2\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Next, we find an orthonormal set of eigenvectors for AA^T. For $\lambda = 8$, we find an eigenvector $p_1 = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right)$. For $\lambda = 2$ we find $p_2 = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right)$, and finally for $\lambda = 0$ we get $p_3 = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right)$.

This gives the matrix $P = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$.

Finally, we have to find an orthogonal set of eigenvectors for $A^TA = \begin{bmatrix} 2 & 2\sqrt{2} & 0 \\ 2\sqrt{2} & 6 & 2 \\ 0 & 2 & 2 \end{bmatrix}$.

This can be done in two ways. We show both ways, starting with orthogonal diagonalization. We already know that the eigenvalues will be $\lambda = 8, \lambda = 2, \lambda = 0$. This gives eigenvectors $q_1 = \left(\frac{1}{\sqrt{6}}, \frac{3}{\sqrt{12}}, \frac{1}{\sqrt{12}} \right), q_2 = \left(\frac{1}{\sqrt{3}}, 0, -\frac{2}{\sqrt{6}} \right)$ and $q_3 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{2}, \frac{1}{2} \right)$. Put these together to get

$$Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{3}{\sqrt{12}} & 0 & -\frac{1}{2} \\ \frac{1}{\sqrt{12}} & -\frac{2}{\sqrt{6}} & \frac{1}{2} \end{bmatrix}$$

For a quicker method, we calculate the columns of Q using those of P using the formula

$$p_i = \frac{1}{\sigma_i} A^T p_i.$$

Thus we calculate

$$p_1 = \frac{1}{\sigma_1} A^T p_1 = \frac{1}{\sqrt{8}} \begin{bmatrix} 0 & \sqrt{2} & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} = q_1$$

and similarly for the other two columns.

Either way we can now verify that we have $A = P\Sigma Q^T$.

Problem 4. Find the SDV of the matrix \(A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \).

Solution. We first compute
\[
AA^T = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad A^T A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.
\]

We see immediately that the eigenvalues of \(AA^T \) are \(\lambda_1 = \lambda_2 = 2 \) (and hence that the eigenvalues of \(A^T A \) are 2 and 0, both with multiplicity 2), and thus the matrix \(A \) has singular value \(\sigma_1 = \sigma_2 = \sqrt{2} \).

Next, an orthonormal basis of eigenvectors of \(AA^T \) is \(p_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad p_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \). (You can choose any orthonormal basis for \(\mathbb{R}^2 \) here, but this one makes computation easiest.) Thus we set
\[
P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

Lastly we have to find \(Q \). We use the formula
\[
q_1 = \frac{1}{\sigma_1} A^T p_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad q_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.
\]

We also need \(q_3 \) and \(q_4 \) but we can’t compute those using the same formula, since we just ran out of \(p_i \)'s. However, we know that the \(q_1, q_2, q_3, q_4 \) should be an orthonormal basis for \(\mathbb{R}^4 \), so we need to choose \(q_3 \) and \(q_4 \) in such a way that this indeed works out. We choose
\[
q_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \quad q_4 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix}.
\]
giving

\[Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}. \]

It is now easy to check that \(A = P \Sigma Q^T \), where \(\Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \).

Note: we could also have diagonalized \(A^T A \) to obtain \(Q \), but we need to be careful, because if we choose the eigenvectors in the wrong way, we don’t get \(A = P \Sigma Q^T \); however, this can always be fixed by multiplying the eigenvectors by \(-1\) as needed.