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Abstract: We present here a theory of Majorana excitons, photo-excited conduction electron-valence
band hole pairs, interacting with Majorana Fermions in a Kitaev chain of semiconductor quantum
dots embedded in a nanowire. Using analytical tools and exact diagonalization methods, we identify
the presence of Majorana zero modes in the nanowire absorption spectra.
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1. Introduction

There is currently interest in realizing synthetic topological quantum matter with
topologically protected quasiparticles at its edges [1–3], with potential application in
topological quantum computation [4–9]. Haldane fractional spin quasiparticles in a spin-
one chain and Majorana Fermions in topological superconductors are good examples [9–11].
To realize Majorana Fermions, Kitaev proposed [11,12] a chain of quantum dots on a p-wave
superconductor that carries such non-local zero energy Majorana Fermions localized on
its two ends, the Majorana zero modes (MZMs). Since then there have been numerous
proposals to realize the Kitaev chain [13–19]. In all cases, experimental confirmation of the
presence of the MZMs has proven to be a non-trivial and challenging task [20–28].

Recent progress in semiconductor quantum dots in nanowires [29–36] opens the
possibility of realizing Kitaev chains and optical detection of their Majorana zero modes. In
this work, we consider such an array of InAsP quantum dots embedded in an InP nanowire
as the material system [29–36] for realization of MZM and study its signature in light–matter
interaction. As the schematic in Figure 1a shows, we combine a semiconductor nanowire
with a p-wave superconductor [37–42]. The p-wave pairing in this system is introduced by
the proximity effect among electrons that are spin-polarized by an external magnetic field,
making sure that Cooper pairs can only form between electrons in the conduction band (CB)
of adjacent dots. We will show that one can tune the system parameters into a topological
regime, where two MZMs appear at the two ends of the chain. With semiconductor
quantum dots, light can generate a hole in the valence band (VB) and an electron in
the conduction band. The electron adds to an existing gas of Majorana Fermions while
the hole then interacts with all the quasiparticles of the Kitaev chain, including MZMs,
to form composite objects similar to excitons and trions in the Fermi Edge Singularity
problem [43–46]. This leads to a structure in the absorption spectrum of the chain as a
function of photon energy. Here we present a theory for the signatures of the MZMs in the
optical spectra of the semiconductor nanowire.
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Figure 1. (a) Schematic of the system and the light absorption experiment. (b) Schematic of the
Hamiltonian terms between two adjacent dots according to Equation (1), where conduction (valence)
levels are labeled by ci(hi) operators. The conduction level is the reference of energy, hence the
downward arrow indicates negative µ. For TEM image and an atomistic description of the quantum
dot nanowire system, see Refs. [30,34,36].

After describing the model in Section 2, in Section 3 we introduce the exact diago-
nalization (ED) method and introduce Majorana and bond Fermion representation of the
Kitaev Hamiltonian. Next, in Section 4 we describe exciton–Majorana Fermion complexes
and predict the absorption spectrum. We focus discussion on the optical signature of the
MZM in the absorption spectrum. Finally, in Section 5 we conclude by summarising our
results and discuss potential experiments detecting Majorana Fermions in a semiconductor
Kitaev chain.

2. Kitaev Chain in a Semiconductor Nanowire

Figure 1a shows a schematic representation of the Kitaev chain we are considering.
It consists of a hexagonal InP nanowire with an array of embedded InAsP quantum
dots in the proximity of a p-wave superconductor [37–42], in the presence of an applied
external magnetic field. Such arrays have been extensively investigated [29–36], including
their excitonic complexes [29,36]. The current advanced fabrication techniques allow
for controlling various aspects of this design. The challenging part, which requires more
experimental efforts, is the induction of p-wave superconductivity in the chain. As Figure 1b
shows, in our model we include the lowest conduction spin level of each dot and the highest
spin valence band level, which are effectively both spin-polarized due to the external
magnetic field. Consequently, in the presence of superconductivity, only the electrons from
the adjacent conduction levels can pair up, as there is only one conduction level available
in each dot. The magnetic field should be large enough to cause a Zeeman splitting larger
than hopping and pairing, but smaller than level separation in each dot. A magnetic field
in any direction can provide the desired Zeeman splitting, but by choosing it along the wire
we avoid unnecessary complications related to Landau quantization and level repulsion in
neighboring dots. As the incident photon in Figure 1 represents, the spectroscopy of the
Kitaev chain is assumed to be carried out with photons incident along the wire growth. This
is dictated by embedding nanowire in an InP shell, which confines photons and increases
light–matter coupling.

The Kitaev Hamiltonian, He, in Equation (1a) describes the hopping and pairing of
electrons in conduction band levels. The chemical potential is tuned to bring the chain
to near half filling in the absence of superconductivity. Therefore, in the equilibrium the
valence levels are full and the system is described by the Kitaev Hamiltonian. However,
when a photon with energy close to the band gap of InAsP illuminates the dots, it generates
a hole in VB and an electron in CB. Adding an electron to the superconducting ground
state excites its quasiparticles. The hole then forms a bound state with the quasiparticles of
the electronic system that is in a collective superconducting state. These possible bound
states generate peaks in the absorption spectrum of the system, among which there is the
signature of MZM, as we shall show below.
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The hole is described by a simple tight binding Hamiltonian, Hh, in Equation (1b). We
also consider electron–hole interaction, Hint, in Equation (1c), which is the strongest when
both conduction electron and valence band hole are on the same quantum dot. Hence, we
write the full Hamiltonian as

H = He + Hh + Hint,

He = t
N−1

∑
i=1

c†
i+1ci + h.c. + ∆

N−1

∑
i=1

c†
i+1c†

i + h.c.− µ
N

∑
i=1

c†
i ci, (1a)

Hh = −τ
N−1

∑
i=1

h†
i+1hi + h.c. + η

N

∑
i=1

h†
i hi, (1b)

Hint = −V
N

∑
i=1

ne
i nh

i , (1c)

where c†
i (h

†
i ) is the normal Fermionic creation operator of an electron(hole) in dot i, t(τ) is

hopping between adjacent conduction (valence) levels, ∆ is the pairing energy between
adjacent conduction levels, µ is the chemical potential measured from the conduction energy
level, and η is the CB to VB energy gap in each dot. In the interaction term Equation (1c), V
is the Coulomb attraction energy between electrons and holes, where we also introduced
ne

i = c†
i ci(nh

i = h†
i hi), the electron (hole) number operator in dot i. Figure 1b schematically

shows different terms of Equation (1) between two adjacent dots.
Throughout the paper, we are going to express energies in the units of |t|, which can

be tuned in the range of µeV to meV [30,47]. The electron–hole attraction, V, can be tuned
independently and is much larger than |t| in typical designs [30,36], while hole hopping
energy, τ, is expected to be much smaller than |t| as VB effective mass is much larger than
CB effective mass [48]. The onsite gap, η, is of the order of the bandgap of InAs and is in
the eV range [48]. The pairing ∆ is also expected to be in the µeV–meV range [37–42], and
since t is more controllable, one would need to tune t accordingly to bring the system into
topological regime.

Next, before describing the absorption experiment, we start with a brief discussion of
Kitaev Hamiltonian.

3. Majorana and Bond Fermions in Kitaev Hamiltonian

The Kitaev Hamiltonian, He, in Equation (1a), originally introduced in Ref. [11],
supports two MZMs localized on the two ends of the chain, when the Hamiltonian is in
topological regime. For a finite chain, the topological region is centered on parameters
∆ = t and µ = 0 [11], which is our focus throughout this work. Here, after describing the
exact diagonalization (ED) method for normal Fermions, following Kitaev [11], we show
how using Majorana Fermions reveals the usefulness of a new set of Fermions we refer to
as bond Fermions. Next, after matching energy spectra obtained by ED in both normal and
bond Fermion bases, we shall use the bond Fermion basis for the rest of the paper.

3.1. Exact Diagonalization in Normal Fermion Basis

We start off by introducing the exact diagonalization method (ED) for finding the
energy spectrum of the Kitaev Hamiltonian. In ED, we span the Hilbert space of the
system by configuration basis [49]. For our electronic system being made of N spinless
orbitals, there are (N

0 ) + (N
1 ) + . . . + ( N

N−1) + (N
N) = 2N possible configurations, which we

construct as

|α1 . . . αN〉 =
N

∏
i=1

(c†
i )

αi |0〉, (2)

where |0〉 is the vacuum of electrons, αi = 1 or 0, which corresponds to having (1) or not
having (0) an electron in orbital i.
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For a given number of electrons, M, we generate electron configurations, pM. However,
as Kitaev Hamiltonian, being a Hamiltonian for a superconductor, does not conserve the
particle number, its eigenstates are coherent linear combinations of electronic configurations
with different electron numbers as

|ψν〉 = ∑
M,pM

Cν
M,pM

|M, pM〉, (3)

where we are populating N sites with M = 0, 1, . . . , N electrons. To solve for coefficients
Cν

M,pM
, we apply the Hamiltonian on this state, and by using the orthogonality of the

configurations we obtain the eigenvalue equation

∑
pM ,M

〈
qM′ , M′

∣∣He|pM, M〉Cν
M,pM

= EνCν
M′ ,qM′

. (4)

However, since the Kitaev Hamiltonian, He, in Equation (1a) only changes particle
number in pairs, the matrix element 〈qM′ , M′|He|pM, M〉 is non-zero only if M and M′

have the same parity, i.e., if they are both even or odd. This parity symmetry allows
us to break the Hilbert space into two decoupled subspaces of even and odd configura-
tions. In Appendix A we explicitly show the configurations and the Hamiltonian matrix
〈qM′ , M′|He|pM, M〉 in each of these subspaces, for the case of N = 3.

3.2. Bond Fermions

We now express the Kitaev Hamiltonian in Equation (1a) in terms of Majorana and
bond Fermions. First, as schematically shown in Figure 2, we write each electron operator,
c and c+, in terms of two Majorana Fermion operators, γ1 and γ2, as

cj =
1
2
(γj,1 + iγj,2), c†

j =
1
2
(γj,1 − iγj,2), (5)

where the γ’s are Majorana Fermion operators. Majorana Fermions satisfy a slightly
different anti-commutation relation than ordinary Fermions, {γi,α, γj,β} = 2δijδαβ.

a1 a2 aN-2 aN-1

c1 c2 cN-1 cN

γ1,2 γ1,1 γ2,2 γ2,1 γ
N-1,2

γ
N-1,1

γN,2 γN,1

aN

Figure 2. Schematic of Kitaev chain in the Majorana and bond representation, with non-zero bond
Fermions in purple, and the nonlocal zero mode, aN , living on the two ends of the chain.

Using Equation (5) and Majorana anti-commutation relations, the Hamiltonian, He,
can be written in terms of Majorana Fermions as

He =
i
2

(
(t + ∆)

N−1

∑
j=1

γj,1γj+1,2 + (t− ∆)
N−1

∑
j=1

γj+1,1γj,2 − µ
N

∑
j=1

(γj,1γj,2 − i)

)
. (6)

The form in Equation (6) shows the pairing between Majoranas of different types
in adjacent sites. While the Hamiltonian is not diagonal in terms of Majoranas, the new
pairing scheme suggests the introduction of a new set of auxiliary Fermions to diagonalize
the Hamiltonian, as generally for two Majorana of different types we have 2c†c− 1 = iγ2γ1.
Hence, following Kitaev [11], as shown in Figure 2, we define a new set of Fermionic
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operators, bond Fermions, which are made of two Majoranas of different types from
adjacent sites as

aj =
1
2
(γj,1 + iγj+1,2) =

1
2
(c†

j + cj + cj+1 − c†
j+1), (7a)

aN =
1
2
(γN,1 + iγ1,2) =

1
2
(c†

N + cN + c1 − c†
1), (7b)

where we also defined aN , to which we refer as the zero mode, out of the two unpaired
Majoranas at the two ends of the chain, as shown in Figure 2. Then, the Hamiltonian in
terms of bond Fermion operators is

He =
1
2

(
(t + ∆)

N−1

∑
j=1

(2a†
j aj − 1) + (t− ∆)

N−1

∑
j=1

(a†
j+1aj−1 + aj+1aj−1 + h.c.)

−µ
N

∑
j=1

(1 + (a†
j aj−1 + ajaj−1 + h.c.))

)
, (8)

where in the second and the third sum one should identify a0 ≡ aN . Note that in the
topological regime, when t = ∆ and µ = 0, the bond Fermions diagonalize the Hamiltonian
in Equation (8) and reduce it to

He = t
N−1

∑
j=1

(2a†
j aj − 1), (9)

which implies a set of N − 1 quasiparticles with energy 2t, and one non-local quasiparticle,
aN , with zero energy, hence the name zero mode. In this case, since bond Fermions are the
quasiparticles of Kitaev Hamiltonian, their configurations are the eigenstates of the system.

In this spirit, we also use bond Fermion configurations for exact diagonalization of
Kitaev Hamiltonian. In the same fashion as in Equation (2), we define bond Fermion
configurations as

|α1 . . . αN〉 =
N

∏
i=1

(a†
i )

αi |0a〉, (10)

where |0a〉 is the vacuum of bond Fermions, and we used the overline to distinguish these
configurations from the normal Fermion configurations. Next, an equation similar to the
equation in Equation (3) can be written for the eigenstates of the Hamiltonian in terms of
bond Fermion configurations, where now |M, pM〉would represent the pM configuration of
having M bond Fermions. Similar to the case of normal Fermions, since He in Equation (8)
also conserves the parity of bond Fermion numbers, we can split the Hilbert space into even
and odd subspaces. In Appendix A, we explicitly show the bond Fermion configurations
and the Hamiltonian matrix of Equation (8) in each of these subspaces, for the case of
N = 3.

3.3. Energy Spectrum

To demonstrate the usefulness of bond Fermion basis, we now describe the energy
spectrum of a chain of N = 3 quantum dots, obtained on both the normal and bond
Fermion basis. Figure 3 shows the energy spectrum for the case of ∆ = t < 0. Throughout
this work, we consider t < 0, as it is the case for conduction bands hopping integrals.
As we mentioned above, in this case, the configurations of bond Fermions are also the
eigenstates of the system. Being in a topological regime, with these parameters the system
has a doubly degenerate ground state, one in the odd subspace, |GS〉 =

∣∣111
〉
, with all

bond Fermions, and the other in the even subspace,
∣∣GS

〉
=
∣∣110

〉
, which is missing the

zero energy bond Fermion, aN ≡ a3. Next, we have the singly excited states, missing
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one non-zero bond Fermion, with excitation energy 2|t|, from which we have two in each
subspace: |a1〉 =

∣∣011
〉

and |a2〉 =
∣∣101

〉
in the even subspace and |a1〉 =

∣∣010
〉

and
|a2〉 =

∣∣100
〉

in the odd subspace. Finally, in each subspace, there is one doubly excited
state, missing two non-zero bond Fermion with excitation energy 4|t|, |a1a2〉 =

∣∣000
〉

in the
even subspace and |a1a2〉 =

∣∣001
〉

in the odd subspace. Table 1 summarizes the description
of the spectrum in terms of bond Fermions.

1 2 3 4 5 6 7 8

Index

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
/|t
|

Normal basis

odd

even

1 2 3 4 5 6 7 8

Index

Bond basis

odd

even

N=3 , ∆ = t < 0, µ = 0

Figure 3. Energy spectra of Kitaev chain in normal (left) and bond (right) basis, where ∆ = t < 0
and µ = 0. Energy is normalized to |t|.

Table 1. Describing the spectra plotted in Figure 3. Configurations of bond Fermions are the
eigenstates of Kitaev Hamiltonian when ∆ = t and µ = 0.

Index 1 2 3 4 5 6 7 8

Configuration
∣∣111

〉 ∣∣110
〉 ∣∣010

〉 ∣∣011
〉 ∣∣100

〉 ∣∣101
〉 ∣∣001

〉 ∣∣000
〉

Label |GS〉
∣∣GS

〉 |a1〉 |a1〉 |a2〉 |a2〉 |a1a2〉 |a1a2〉

Parity odd even odd even odd even odd even

Excitation
Energy 0 0 2|t| 2|t| 2|t| 2|t| 4|t| 4|t|

4. Kitaev Chain and a Light Induced Valence Hole

Absorption of a photon injects an electron–hole pair into the system. Therefore, the
relevant optically excited states live in the subspace of all configurations with one hole.
Here, after studying the energy spectrum of the full Hamiltonian in Equation (1) with one
hole in the configuration space of bond Fermions, we discuss the absorption spectrum of
the chain and the optical signature of the MZM.

4.1. Exact Diagonalization of Electron–Hole System

Having demonstrated the benefit of the bond Fermion basis, we now study the Hamil-
tonian with one hole in the configuration basis of bond Fermions and one hole. Using
|M, pM; m〉 to refer to M bond Fermions being in their pM configuration, and the hole being
at site m, we can find the spectrum by solving an equation similar to Equation (4), but
considering the full Hamiltonian, H, in Equation (1) rather than He, and in the configuration
basis of bond Fermions and one hole.

For instance, for N = 3 dots, following the convention we introduced in Section 3.3
and Table 1, we can list these configurations as Table 2.
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Table 2. Configurations of bond Fermions with one hole for N = 3 dots.

Even Odd∣∣GS; 1
〉 |a1; 1〉 |a2; 1〉 |a1a2; 1〉 |GS; 1〉 |a1; 1〉 |a2; 1〉 |a1a2; 1〉∣∣GS; 2
〉 |a1; 2〉 |a2; 2〉 |a1a2; 2〉 |GS; 2〉 |a1; 2〉 |a2; 2〉 |a1a2; 2〉∣∣GS; 3
〉 |a1; 3〉 |a2; 3〉 |a1a2; 3〉 |GS; 3〉 |a1; 3〉 |a2; 3〉 |a1a2; 3〉

In this subspace, the hole Hamiltonian, Hh, in Equation (1b) amounts to a constant, η,
and mixes states with the same electronic configurations and different locations of the hole
by hopping matrix element τ. Therefore, with the ordering in Table 2, the full Hamiltonian
with one hole for the example of N = 3 dots has the following structure:

H =

H1 −τ 0
−τ H2 −τ
0 −τ H3

+ η, (11)

where each block is a 4× 4 matrix, τ is the identity matrix times τ, and the diagonal blocks
are given by the matrix elements of He + Hint in Equation (1) over the configurations in
Table 2. The interaction term Hint in Equation (1c) for each of the diagonal blocks, Hj, is
−Vne

j , and it mixes up different bond Fermion configurations as we have

ne
j =

1
2
+

1
2
(a†

j−1aj + a†
j−1a†

j + h.c.), 1 < j ≤ N, (12a)

ne
1 =

1
2
+

1
2
(a†

N a1 + a†
N a†

1 + h.c.), j = 1, (12b)

which implies that when the hole is not at the two ends of the chain then the interaction
mixes up two non-zero bond Fermions, and when it is at one of the two ends, the interaction
mixes the zero mode with one of the non-zero ones. For instance, for the operators ne

1 and
ne

2 in the even configuration basis in Table 2 we have

ne
1 =

1
2


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

, ne
2 =

1
2


1 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 1

, (13)

while ne
3, in a similar fashion to ne

1, mixes
∣∣GS

〉
with |a2〉 and |a1〉 with |a1a2〉.

4.2. Energy Spectrum of the Electron–Hole System

Figure 4 shows the energy spectrum of a chain of length N = 3 dots in the even
subspace and for ∆ = t and µ = 0, as the electron–hole interaction V increases, for a
localized hole (τ = 0) on the left panel and for a mobile hole with τ = 0.3|t| on the right
panel. Both cases show branching into two groups, pertaining to bonding and antibonding
pairs of states, mixed by the interaction V.
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G
S

Figure 4. Energy spectra of the full Hamiltonian Equation (1) with one hole in the even subspace,
as a function of electron–hole interaction, V, for N = 3 dots, ∆ = t, and µ = 0. (left) for the case of
localized hole, τ = 0, (right) for a mobile hole with τ = 0.3|t|. The overlap of transparent markers
makes the degenerate levels look darker. The peak energies, E0 and E±, discussed in Section 4.3.1 are
also shown according to Equations (18a,b).

The case of a localized hole allows us to understand the spectrum better. There are
four electronic states associated with the valence hole being at each dot, and since the
two end dots are geometrically the same, the spectrum always shows four pairs of doubly
degenerate states. As we show in Appendix B, and it can also be seen from Equation (13),
for the two end dots, two of these four states are mixtures of

∣∣GS; 1(3)
〉

and
∣∣∣a1(2); 1(3)

〉
that give us visible peaks at E±, as described in Section 4.3.1, and also indicated on the plot.
The two other pairs of degenerate levels are mixtures of

∣∣∣a2(1); 1(3)
〉

and |a1a2; 1(3)〉, which

do not get excited by absorbing a photon, as the polarization operator c†
1(3)h

†
1(3) does not

couple them to the ground state (see Appendix B). For the middle dot, as can be seen from
Equation (13), one pair of states are mixture of |a1; 2〉 and |a2; 2〉, where only the bonded
state gets excited by absorbing a photon (see Appendix B), resulting in the peak E0; this is
also described in Section 4.3.1 and shown on the plot. Finally, the last pair of states, which
also do not get excited by absorbing a photon, are a mixtures of

∣∣GS; 2
〉

and |a1a2; 1(3)〉.
As can be seen in the right panel of Figure 4, for a mobile hole, when τ 6= 0, we still

have one pair of doubly degenerate states as a result of the chain’s spatial symmetry. At
V = 0 for the τ = 0 case, there is an extra triple degeneracy because of the non-dispersive
nature of the localized hole band. However, for a mobile hole, it can be seen on the right
panel of Figure 4 that at V = 0 the degenerate levels split into sets of triples, corresponding
to the three propagating modes of the hole band. More importantly, in this case, since the
three dot subspaces are connected by hole hopping (see Equation (11)), the above described
pairs of states mix up by τ, and the ones that are closer in energy mix more. As a result of
this mixture, more peaks arise in the absorption spectrum, as we discuss in the next section.
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4.3. Absorption Spectrum

As the schematic in Figure 1a shows, in the absorption experiment a photon probes
the chain along the nanowire. InAsP dots have a significantly smaller bandgap than the
InP bulk of the nanowire [48], which guaranties that the photon can only be absorbed by
the dots. For calculating the absorption spectrum of the chain, we assume that the photon
creates an electron–hole pair with uniform probability along the nanowire, and so define
the polarization operator as

P =
1√
N

N

∑
i=1

c†
i h†

i =
1√
N

N

∑
i=1

Pi, (14)

where we also introduced the local electron–hole pair operator Pi = c†
i h†

i . The strength of
the polarization operator is determined by the dipole matrix element d, as well as the light
polarization of the photon. The direction of the magnetic field with respect to the incident
wave determines which helicity of photon is absorbed better. By choosing the form in
Equation (14), we are factoring out the helicity of the incident photon and normalizing the
result to |d|2, as these multiplicative factors do not change the absorption profile.

We are assuming that one can also set up the system to create the electron–hole pair
on a chosen specific dot, i [35,50–52], i.e., acting with the operator Pi on the chain, rather
than P. As we discussed, having access to such a spatially resolved spectrum is important
in detecting the optical signature of the MZM.

The polarization operator P(i) —we use this notation to simultaneously refer to P and
Pi —takes the ground state of the system to an excited state with one hole and different
electron parity. Since the ground state can be degenerate, as it is when ∆ = t and µ = 0, the
absorption spectrum has an even and an odd part pertaining to each ground state

A(i)(E) = |βeven|2 ∑
φodd

|〈φodd|P(i)|GSeven〉|2δ(E− Eφodd + EGS)

+ |βodd|2 ∑
φeven

|〈φeven|P(i)|GSodd〉|2δ(E− Eφeven + EGS)

= |βeven|2 Aeven
(i) (E) + |βodd|2 Aodd

(i) (E), (15)

where
∣∣∣φeven(odd)

〉
are the eigenstates of the one hole subspace and the corresponding elec-

tron parity, and we used the notation A(i) to simultaneously refer to the regular absorption
spectrum A, and Ai the spatially resolved absorption spectrum coming from dot i.

4.3.1. Analytic Result for Localized Hole

If τ = 0, the full Hamiltonian becomes block diagonal (see Equation (11)), i.e., the
subspaces of having the hole in each of the dots decouple. Consequently, we have

A(E) =
1
N

N

∑
i=1

Ai(E). (16)

At the heart of the topological regime when ∆ = t and µ = 0 [11], as depicted
graphically in Figure 5 and expressed in Equation (A6) , an electron created at site i by c†

i
decomposes into a superposition of creation and annihilation operators of the two bond
Fermions on its two sides, a(†)i and a(†)i−1. If the electron is created at one of the two ends, one
of the bond Fermions is the zero mode aN . On the other hand, when the hole is at site i, the
interaction −Vne

i nh
i mixes the two bond Fermions, as shown in Figure 5 and expressed in

Equations (A8) and (A12). As we show in Appendix B, combining these two mechanisms,
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one can find an analytic expression for the spatially resolved absorption spectrum for a
chain of arbitrary length N if the hole is created on site i as

Ai(E) =
1
2

{
δ(E− E0) 1 < i < N
A−δ(E− E−) + A+δ(E− E+) i = 1, N

, (17)

where

E0 = η + 2|t| −V, (18a)

E± = η + |t| − V
2
±
√

t2 +

(
V
2

)2
, (18b)

A± =
1
2

(
1∓ V√

4t2 + V2

)
, (18c)

and then the full absorption spectrum is given by the simple sum in Equation (16).

i–2 ii–1 i+2i+1

Figure 5. An electron created by c†
i is a superposition of creation and annihilation operators of two

bond Fermions, a(†)i and a(†)i−1, according to Equation (A6). The interaction −Vne
i nh

i mixes up the two
bond Fermions according to Equation (A8). Note that when i is one of the two ends, then one of the
bond Fermions is the zero mode aN (see Appendix B for more details).

The bottom row of Figure 6 shows the results in Equations (17) and (18) for the case
of N = 3. The peak E0 is only present in the middle, while the peaks E± are present at
the two ends of the chain. As we show in Appendix B, the two peaks, E±, have a mixture
of zero mode in them, while E0 is purely made of non-zero bond Fermions. At V = 0,
E− is purely made of zero mode while E+ is purely made of non-zero bond Fermions.
As we increase V, E+ acquires more zero mode contribution, while E− mixes more with
non-zero bond Fermions. At the same time, by increasing V, the peak at E+ diminishes,
as can be seen from Equation (18c). If not too weak, the E+ peak is a better resolved
optical signature for the MZM than E−, as it is separated from the rest of the spectrum
by V, and we expect to have V � |t|. This presents an advantage over the scanning
tunnelling microscopy approach for detecting MZM [21]. Moreover, if one can perform
spatially resolved absorption spectroscopy on the chain, the presence of the zero mode can
be determined by the presence of a visible peak at high energy near E+ when probing the
end dots, and its absence when probing other dots.
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Figure 6. (left) The averaged absorption spectrum, A(E), and (middle and right) spatially resolved
absorption, Ai(E), for ∆ = t, µ = 0, and for N = 3 dots: (top) for a mobile hole with τ = 0.1|t|,
(bottom) for a localized hole, τ = 0, according to the analytic results in Equations (17) and (18). The
spectra are plotted against (E− η)/|t| while changing V/|t| on the y-axis. The bright curves show
the location of the peaks as V changes, and the color scale shows their heights. Gaussian profile
was used for the peaks with the width σ = 0.025|t|. The maximum value of each peak shows the
magnitude of the corresponding matrix element.

4.3.2. Absorption for Mobile Hole

When the hole is mobile, there are N itinerant hole states with different energies.
Therefore, one would expect N different transitions to each electronic state. More impor-
tantly, as can be seen in Equation (11), the hopping hole mixes up different subspaces of
having the hole in different dots. As a result, more transitions are allowed, leading to the
emergence of more peaks in the absorption spectrum.

In Figure 6, we compare the absorption spectrum of a mobile hole with τ = 0.1|t| (top
row), and the analytic result of Equation (17) for localized hole (bottom row), for the case
of N = 3. It is evident how more peaks are visible for the case of the mobile hole, while
the major peaks are still close to the location of E0 and E±. Moreover, note how in the full
spectrum A (top left) there is only one visible peak at high energy near E+, and how the
same peak is large in A1 (top middle) and faint in A2 (top right), pertaining to the localized
nature of the MZM that E+ carries. In plotting Figure 6, we used A(i) =

1
2 (Aeven

(i) + Aodd
(i) ),

as for a mobile hole the even and odd parts of the absorption spectrum are not the same.
But since there is no preference between the two ground states, one would expect to observe
an average of the two.

The same logic is valid for a chain of any length, as the analytic result in Equation (17) is
for general N. The analytic results are particularly insightful as the computation complexity
increases exponentially in the exact diagonalization method. In our system, after taking
into account the parity symmetry of the Kitaev Hamiltonian, the size of the Hilbert space
with one valence hole grows as N2N−1. Figure 7 shows the absorption spectrum of a chain
of length N = 9. Here, we set V = 10|t| while changing τ. When τ → 0, we approach the
idealized case of a localized hole, where the subspaces of having the hole on each dot are
decoupled. Growing τ mixes up the modes of different dots. Consequently, the zero mode
starts leaking out of the two ends of the chain. On the first panel of Figure 7, we can see
that at high energy there is still only one visible peak near E+, until about τ = 0.3|t|, where
a faint peak appears to the right of it. This makes E+ a very robust signature for a relatively
large range of hole hopping. Having access to spatially resolved spectrum, we can further
confirm that the peak is indeed coming from the two ends. It can be seen from the third
panel of Figure 7 that there is no visible high energy peak on the site next to the end dot
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(A2) until around τ = 0.1|t|. In contrast, we can observe in A2 that E−, which also contains
a large share of zero mode and is a stronger peak, starts leaking out of the end dot very
quickly for small τ’s.

Figure 7. Absorption spectrum for a chain of length N = 9, and for ∆ = t, µ = 0, V = 10|t|, and
changing τ. (left) The full averaged spectrum A, (middle) the spatially resolved spectrum for the
first dot A1, and (right) the spatially resolved spectrum for the second dot A2. The bright curves
show the location of the peaks as τ changes, and the colorscale shows their heights. Gaussian profile
was used for the peaks with the width σ = 0.025|t|. The maximum value of each peak shows the
magnitude of the corresponding matrix element.

5. Conclusions

We present here a theory of Majorana excitons, photo-excited conduction electron-
valence band hole pairs, interacting with Majorana Fermions in a Kitaev chain of semicon-
ductor quantum dots embedded in a nanowire. We demonstrate how the excited states
of the superconducting system can be represented by different configurations of bond
Fermions, and using exact diagonalization techniques we compute the energy spectra of
the system. We confirm the existence of nonlocal bond Fermion, a superposition of Majo-
rana Fermions at the two ends of the chain, with zero energy. We introduce a valence band
hole and describe its interaction with Majorana fermions. We predict interband absorption
spectra and discuss the signature of Majorana zero modes in the absorption spectra. We
demonstrate how a spatially resolved absorption spectrum can be used to confirm the
localized character of the MZMs.

We hope this preliminary work motivates future theoretical and experimental work
on hybrid nanowire semiconductor quantum dots/superconductor systems for the demon-
stration of Majorana Fermions.
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Appendix A. Exact Diagonalization for Chain of Length Three

Following Equation (2), for a chain of length N = 3, the configurations of normal
Fermions in the even and odd subspaces are

Even: {|000〉 , |110〉 , |101〉 , |011〉}, (A1a)

Odd: {|100〉 , |010〉 , |001〉 , |111〉}. (A1b)

Computing the matrix elements of all terms in the Kitaev Hamiltonian, He, in Equation (1a)
between every pair of configurations in Equations (A1a,b), we can explicitly write the
matrix 〈qM′ , M′|He|pM, M〉 in Equation (4), in each of the subspaces as

Heven
c =


0 −∆ 0 −∆
−∆ −2µ t 0

0 t −2µ t
−∆ 0 t −2µ

, (A2a)

Hodd
c =


−µ t 0 −∆

t −µ t 0
0 t −µ −∆
−∆ 0 −∆ −3µ

, (A2b)

for which we used the same ordering as in Equation (A1).
Then, for ED in the bond Fermion basis, following Equation (10), the configurations are

Even: {
∣∣000

〉
,
∣∣110

〉
,
∣∣101

〉
,
∣∣011

〉
}, (A3a)

Odd: {
∣∣100

〉
,
∣∣010

〉
,
∣∣001

〉
,
∣∣111

〉
}, (A3b)

and one can use Equation (8) to find the corresponding Kitaev Hamiltonian matrices in
each of the subspaces as

Heven
a =

1
2


−2(t + ∆) −µ t− ∆ + µ µ− t + ∆

−µ 2(t + ∆) t− ∆− µ µ− t + ∆

t− ∆ + µ t− ∆− µ 0 −µ

µ− t + ∆ µ− t + ∆ −µ 0

−
3
2

µ, (A4a)

Hodd
a =

1
2


0 −µ t− ∆− µ ∆− t− µ

−µ 0 t− ∆− µ ∆− t− µ

t− ∆− µ t− ∆− µ −2(t + ∆) −µ

∆− t− µ ∆− t− µ −µ 2(t + ∆)

−
3
2

µ, (A4b)

for which we used the same ordering as in Equation (A3). Notice how the two Hamiltonian
matrices in Equation (A4) become diagonal when ∆ = t and µ = 0.
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Appendix B. Analytic Calculation of Absorption Spectrum for Localized Hole

Following the notation in Table 1, for a chain of arbitrary length N, and for ∆ = t < 0
and µ = 0, we express the two degenerate ground states of the system as

|GS〉 =
N

∏
j=1

a†
j |0a〉, (A5a)

∣∣GS
〉
=

N−1

∏
j=1

a†
j |0a〉. (A5b)

Here, we derive the result in Equations (17) and (18) using |GS〉 in Equation (A5a), and the
procedure is the same for

∣∣GS
〉
.

To start, first note that from Equation (7) we have

cj =
1
2
(a†

j + aj + aj−1 − a†
j−1), 1 < j ≤ N (A6a)

c1 =
1
2
(a†

1 + a1 + aN − a†
N), j = 1. (A6b)

which means for 1 < j < N we have

Pj|GS〉 = c†
j h†

j |GS〉 = 1
2
(aj − aj−1)|GS; j〉 = 1

2
(
∣∣aj; j

〉
−
∣∣aj−1; j

〉
), (A7)

where we used the same notation as in Table 2 for the excited states. On the other hand,
from Equation (12a) we have

ne
j

(∣∣aj−1
〉∣∣aj
〉 ) =

1
2

(
1 −1
−1 1

)(∣∣aj−1
〉∣∣aj
〉 ). (A8)

Recalling that both
∣∣aj
〉

and
∣∣aj−1

〉
are eigenstates of He with excitation energy 2|t|, then in

the basis {
∣∣aj; j

〉
,
∣∣aj−1; j

〉
}, the full Hamiltonian H = He + η −Vne

j is

H = 2|t|+ η − V
2

(
1 −1
−1 1

)
, (A9)

with the following two eigenstates∣∣∣a−j ; j
〉
=

1√
2

(∣∣aj; j
〉
−
∣∣aj−1; j

〉)
, E0 = η + 2|t| −V (A10a)∣∣∣a+j ; j

〉
=

1√
2

(∣∣aj; j
〉
+
∣∣aj−1; j

〉)
, E1 = η + 2|t|. (A10b)

Now, using Equation (A7) we have
∣∣∣〈a−j ; j|Pj|GS〉

∣∣∣2 = 1
2 and

∣∣∣〈a+j ; j|Pj|GS〉
∣∣∣2 = 0, which

gives us the result in Equation (17) for the case of 1 < j < N.
Next, we show the second case for j = 1, and the procedure is the same for j = N. In

this case, using Equation (A6b) we have

P1|GS〉 = c†
1h†

1|GS〉 = 1
2
(a1 − aN)|GS; 1〉 = 1

2
(|a1; 1〉 − |aN ; 1〉), (A11)

where |aN〉 is identical to the other ground state
∣∣GS

〉
up to a global phase, hence its

excitation energy is zero. Then, from Equation (12b) we have

ne
1

(|aN〉
|a1〉

)
=

1
2

(
1 −1
−1 1

)(|aN〉
|a1〉

)
. (A12)
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Therefore, considering that |a1〉 and |aN〉 are eigenstates of He with excitation energy 2|t| and
zero, respectively, the full Hamiltonian H = He + η −Vne

1 on the basis {|aN ; 1〉, |a1; 1〉} is

H = η − V
2
+

(
0 V

2
V
2 2|t|

)
, (A13)

and its two eigenstates are given by

∣∣a−1 ; 1
〉
= cos(θ)|a1; 1〉 − sin(θ)|aN ; 1〉, E− = η + |t| − V

2
−
√

t2 +

(
V
2

)2
, (A14a)

∣∣a+1 ; 1
〉
= sin(θ)|a1; 1〉+ cos(θ)|aN ; 1〉, E+ = η + |t| − V

2
+

√
t2 +

(
V
2

)2
, (A14b)

with

cos(θ) =

√
1
2
+

t2
√

4t2 + V2
, sin(θ) =

√
1
2
− t2
√

4t2 + V2
. (A15)

Now, using Equation (A11) we have
∣∣〈a−1 ; 1

∣∣P1|GS〉
∣∣2 = 1

2 (cos(θ) + sin(θ))2 = 1
2 A− and∣∣〈a+1 ; 1

∣∣P1|GS〉
∣∣2 = 1

2 (cos(θ)− sin(θ))2 = 1
2 A+, where we used Equation (A15) to express

these matrix elements in terms of A± in Equation (18c). From this follows the result in
Equation (17) for the case of j = 1, N.
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