
applied  
sciences

Article

Quantum Bits with Macroscopic Topologically
Protected States in Semiconductor Devices
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Abstract: Current computers are made of semiconductors. Semiconductor technology enables
realization of microscopic quantum bits based on electron spins of individual electrons localized by
gates in field effect transistors. This results in very fragile quantum processors prone to decoherence.
Here, we discuss an alternative approach to constructing qubits using macroscopic and topologically
protected states realized in semiconductor devices. First, we discuss a synthetic spin-1 chain realized
in an array of quantum dots in a semiconductor nanowire or in a field effect transitor. A synthetic
spin-1 chain is characterized by two effective edge quasiparticles with spin 1/2 protected from
decoherence by topology and Haldane gap. The spin-1/2 quasiparticles of Haldane phase form
the basis of a macroscopic singlet-triplet qubit. We compare the spin one chain with a Kitaev chain.
Its edge states are Majorana zero modes, possessing non-Abelian fractional statistics. They can be
used to encode the quantum information using the braiding processes, i.e., encircling one particle
by another, which do not depend on the details of the particle trajectory and thus are protected
from decoherence.
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1. Introduction

There are numerous proposals on how to realize qubits and quantum computers in a solid-state
setup. For example, a spin-1/2 is a model two-state system, hence one option involves using the
spin of a single electron within a quantum dot as a qubit [1–4]. The quantum information can be
also encoded in states of several spins, belonging to decoherence-free subspaces [5–8]. An example
is the singlet-triplet qubit, where the two-level system consists of Sz = 0 singlet and triplet
combinations of two spins [7,8]. Other proposals making use of microscopic states involve, for example,
the nitrogen-vacancy centers in diamond [9,10], ionized donors [11] and nuclear spins [12] in silicon.

A different approach is to start with macroscopic quantum states. Some of the most robust and
scalable qubits so far have been constructed using superconductors [13,14]. Another approach is
to encode quantum information using the quasiparticles with non-Abelian fractional statistics [15].
The fractional (anyonic) statistics means that the particles are neither bosons nor fermions [16,17], while
the non-Abelian nature is related to the fact that the exchange of two particle positions leads to mixing
of several degenerate ground states [18]. Such situation can only occur in two dimensions [16] and is
connected with the physics of topological phases of matter [19–21]. These phases cannot be described
within the Landau paradigm of phase transitions, where a phase of matter is defined using a local
order parameter measuring the degree to which a certain symmetry is broken [22,23]. In topological
phases, there is no broken symmetry, and the phases are characterized by global topological invariants.
Another distinctive feature of topological phases is the presence of edge states, which are robust to
disorder. The quasiparticles with non-Abelian statistics are predicted to exist as excitations of fractional
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quantum Hall states [24,25], as well as edge states of one-dimensional topological superconductors [26].
It was proposed that the latter can be created, for example, by putting a semiconducting nanowire with
strong spin-orbit coupling close to a superconductor [27,28]. The topological quantum computation,
i.e., the quantum computation using anyons, proposed by Kitaev, is based on braiding operations [15].
Braiding means encircling one quasiparticle with another one. The effect of such operation does
not depend on the exact trajectory of quasiparticles, so it should be insensitive to noise. Using the
braiding operations, one can represent the quantum gates and assemble quantum circuits [29–31].
This proposal has numerous advantages. However, despite some observations consistent with the
presence of fractional statistics [32], there is still no definite experimental evidence of their existence.

In addition to Kitaev’s proposal, there are also ideas for utilizing the topological phases of matter
for quantum computation in a way which does not involve fractional statistics [33–38]. While the
non-Abelian anyons exist only in certain phases, all topological phases have robust edge states [19].
For example, the Haldane phase, occurring in antiferromagnetic spin-1 chains (e.g., in certain
quasi-1D compounds [39–41]), is characterized by edge states behaving like effective spins-1/2 [42–44].
We proposed that an artificial, synthetic, semiconductor system, constructed with quantum dots, can be
used to mimic such a chain [45,46]. Then, the edge spins can be used to create a macroscopic version
of the singlet-triplet qubit, protected from the influence of disorder by the topological nature of the
Haldane phase [45]. Such a qubit would combine the advantages of superconductor and semiconductor
qubits: it is macroscopic, but on the other hand should be easily integrable with other semiconductor
devices. Moreover, in principle, it should be possible to read such a qubit out using optical methods as
well as convert it into a photon.

In this work, we review two examples of qubits based on the edge states of one-dimensional
topological phases. First, we present our design based on a spin-1 chain. We review the origin of
Haldane phase and its basic properties. Then, we show the principles of operation of our qubit and
analyze two kinds of semiconductor systems which can be used to create it. Next, we review the
topological quantum qubits based on the Majorana modes of a Kitaev chain [26]. Finally, we compare
these two kinds of qubits, showing their similarities and differences, as well as strengths and
weaknesses of each approach.

2. Quantum Bits Based on Macroscopic Haldane Chains in Synthetic Semiconductor Systems

2.1. Haldane Phase in Synthetic Spin Chains

We start with the properties of a Haldane phase in spin chains, a paradigm of topological
quantum matter [42–44]. The Haldane phase exists in a one-dimensional spin-1 antiferromagnetic
chain, described by the spin-1 Heisenberg model,

H = J
N

∑
i=1

SiSi+1,

where J > 0 is the exchange constant, Si is the spin-1 operator at site i, and N is the number of
sites. Haldane has shown that such a chain has a gapped ground state in contrast to gapless spin-1/2
chains. [42–44]. In the case of a closed chain, this ground state is a nondegenerate singlet state.
If the chain has open ends, then there are four degenerate ground states: a singlet and three triplets.
The degeneracy is perfect in the thermodynamic limit, while, in a finite system, there is some splitting
between singlet and triplet. Figure 1a shows the energy spectrum of the Heisenberg spin-1 chain,
obtained using the exact diagonalization method [45]. The singlet and triplet alternate as ground
states, but the splitting between them decreases as the chain length increases. The gap between these
states and the quintuplet, however, remains finite, and converges to the black line, the Haldane gap,
obtained by S. R. White using density matrix renormalization group method [47].
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Figure 1. The Haldane phase. (a) the low-energy spectrum of spin-1 chains as a function of chain length
N, obtained using exact diagonalization; (b) average spin density per site in Sz = 1 triplet ground state
of a N = 14 chain. The white arrows symbolize the effective spins-1/2, indicated by spin density close
to 1/2 at the edges. (c) The Affleck-Kenedy-Lieb-Tasaki (AKLT) construction of the ground state.

The four ground states can be understood as superpositions of effective spins-1/2 located at the
edges. Their existence can be seen in the site-resolved spin density in the the Sz = 1 ground state
(Figure 1b), being close to 1/2 at the edges, and decreasing towards the middle of the chain. The finite
spin density in the middle signifies an overlap of edge spins and thus a finite splitting between singlet
and triplet.

The physical origin of the edge spins can be explained within the AKLT (Affleck, Kennedy, Lieb
and Tasaki) model [48], a modified Heisenberg model defined by

HAKLT = J ∑
i
(Si · Si+1 +

1
3
(Si · Si+1)

2 +
2
3
). (1)

Affleck et al. [48] have shown that this Hamiltonian can be written as a sum of a projection operator
for nearest neighbor pairs of spins PS=2

i = 1
2 Si · Si+1 +

1
6 (Si · Si+1)

2 + 1
3 on the spin-2 subspace of this

pair of spins. Thus, if there is a zero-energy ground state, it has no spin-2 contribution on any such pair.
A prescription for creating such a state is given by Affleck et al. [48]. The key element is that a

spin-1 site i can be considered as a triplet subspace of two spins-1/2, iA and iB. To construct a ground
state |ψphys〉, one can consider an auxiliary system, in which each spin-1 is replaced by two spins-1/2,
and then project its state |ψaux〉 to spins-1,

|ψphys〉 = ∏
i

PAKLT,i |ψaux〉 , (2)

where
PAKLT,i = P[+]

AKLT,i + P[−]
AKLT,i + P[0]

AKLT,i ,
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with

P[+]
AKLT,i = |+i〉 〈↑iA↑iB| ,

P[−]
AKLT,i = |−i〉 〈↓iA↓iB| ,

P[0]
AKLT,i =

1√
2
|0i〉 (〈↑iA↓iB|+ 〈↓iA↑iB|) , (3)

where |−i〉, |0i〉, |+i〉 denote the Sz = −1, 0, 1 states of site i, respectively, while ↓iσ,↑iσ (σ = A, B)
denote the Sz = +1/2,−1/2 states of auxiliary spin iσ, respectively.

It can be shown that |ψphys〉 has a spin-2 contribution if and only if |ψaux〉 has such a contribution.
In Affleck et al. [48], it was shown that a desired |ψaux〉 consists of pairs of spins-1/2 on nearby sites
connected by singlet bonds |ψsing

i 〉 = 1√
2
(|↑i,B↓i+1,A〉 − |↓i,B↑i+1,A〉) (see Figure 1b). This leaves two

edge spins-1/2 unpaired, thus they can be in any state. As a consequence, there appear four zero-energy
states, each of which can be understood as a given configuration of the edge spins. Note that, in contrast
to the ordinary Heisenberg model, the degeneracy is perfect even for a finite system.

The Haldane phase belongs to a class of symmetry protected topological phases [49]. That is,
it is robust to disorder, but only if a certain symmetry is obeyed. In the case of Haldane phase, this
has to be at least one of the three symmetries: the π-rotation symmetry with respect to x, y and z
axes, the time-reversal symmetry, and the reflection symmetry with respect to bond center [49,50].
All the systems connected adiabatically to the AKLT model, i.e., in which the Hamiltonian can be
continuously deformed into AKLT Hamiltonian without closing the energy gap above the four ground
states, and without breaking all three symmetries at once, belong to the Haldane phase.

2.2. Macroscopic Singlet-Triplet Qubits

Now, we will review our proposal for the application of the Haldane phase in quantum
computing [45,46], focusing on the general idea. The implementation of the spin chain in a solid-state
system will be discussed later.

We start from considering the Heisenberg Hamiltonian with additional Zeeman terms describing
the influence of external magnetic field: the uniform background field Bbg and a local field B1 acting
only on the first site,

HZeeman = J
N−1

∑
i=1

Si · Si+1 + gµBbgSz
tot + gµB1Sz

1, (4)

where g is the Landé factor, µ is the Bohr magneton, Sz
tot is the z component of the total spin and Sz

1 is
the z component of spin of the first site.

As an example, we choose a chain of length N = 14, in which the singlet and triplet states are
well separated from the rest of the spectrum, but, on the other hand, there is still a noticeable splitting
between these states, which will allow us to differentiate between the qubit states. The application
of external field Bbg separates two Sz = ±1 states from Sz = 0 ones (see Figure 2a). We choose these
two states, the singlet |S0〉 and Sz = 0 triplet |T0〉, as the two qubit states, similarly to what occurs in a
conventional singlet-triplet qubit [7,8]. Note that the magnetic field cannot be too high because one
should avoid the quintuplet states getting too close to the two qubit states. In the following analysis,
we fix µgBbg/J = 0.17, denoted by black line in Figure 2a.

To rotate the qubit state, one can use the local magnetic field B1. The evolution of the energy
spectrum with increasing B1 is shown in Figure 2b. For B1 6= 0, we call the qubit states |a0〉 and |a1〉,
to distinguish them from the states |S0〉 and |T0〉 at B1 = 0. It can be seen that these energy levels
repel each other when the field is introduced. This is analogous to the case of two coupled spins-1/2
with a local magnetic field. We write |ai〉 = Ai

0 |S0〉+ Ai
1 |T0〉. The components A1

0 and A1
1 of |a1〉 are

plotted in Figure 2c, showing the rotation of the qubit state as B1 increases. We have verified that
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the admixture of states other than |S0〉 and |T0〉 is very small, at most 1.2%, showing that the qubit
subspace is well isolated from the rest of the spectrum.

Having shown the principles of operation of our qubit, let us move to its physical implementation.
The existing experimental realization of spin-1 antiferromagnetic chains consist of quasi-1D
compounds, which contain a number of parallel, weakly coupled chains [39–41]. However, we want
to construct our synthetic spin one chain hosting a macroscopic quantum state using semiconductor
technology. In the following subsections, we discuss two such examples.
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Figure 2. The idea of the singlet-triplet qubit based on the effective spin-1 chain. (a) the evolution of the
energy spectrum of n = 14 chain with increasing background magnetic field Bbg, allowing for isolating
the two levels |S0〉 and |T0〉. The vertical black line denotes µgBbg/J = 0.17; (b) the energy spectrum as
a function of the local magnetic field B1 on the leftmost dot. The singlet and triplet states mix, forming
states |ai〉 = Ai

0 |S0〉+ Ai
1 |T0〉, with i = 0, 1; (c) the probability density in the |a1〉 state in the |S0〉, |T0〉

basis, as a function of B1. The spectra are obtained using the exact diagonalization method.

2.3. Haldane Phase in a Chain of Triple Quantum Dots in a Field Effect Transistor

The first system realizing a synthetic spin one chain [46] is shown in Figure 3a. By patterning
the top metallic gate in a typical metal–oxide–semiconductor field-effect transistor (MOSFET)
device, one can create local potential minima in the two-dimensional electron gas (2DEG), each
of them representing a quantum dot (QD) which can be loaded with a controlled number of
electrons [3,7,51–53]. We propose that these dots are arranged in a chain of N triangular molecules [6],
as visible in Figure 3a,b.

We describe such a system with an extended Hubbard model [54,55] with Hamiltonian

HH = ∑
iσ

εiσc†
iσciσ + ∑

i 6=j,σ
tijc†

iσcjσ + U ∑
i

ni↑ni↓ +
1
2 ∑

i 6=j
Vijninj. (5)

Here, ciσ (c†
iσ) is the annihilation (creation) of an electron at dot i (i = 1, . . . , 3N), niσ = c†

iσciσ
and ni = ni↑ + ni↓. The parameter εi is the onsite energy, tij are the hopping integrals, U is the onsite
Hubbard interaction and Vij is inter-site density–density Coulomb interaction. We use nonzero Vij
and tij only for nearest-neighboring dots, with tij = t, Vij = V if they belong to the same molecule
and tij = t′, Vij = V′ if they belong to different molecules (see Figure 3b). The system is filled with
four electrons per molecule. If U, V, V′ � t, the number of electrons per dot is well defined. Since the
“corner” dots have only two neighbors, compared to four neighbors of the dots in the “main chain”,
they will accumulate more charge. For a range of interaction parameters, the corner dots contain two
electrons each, while the main chain has one electron per dot. Note that the dots at the ends of the
chain also have only two neighbors. To prevent the accumulation of additional charge on these dots,
we adopt the following values of εi: εi = V at the ends and εi = 0 otherwise.
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Figure 3. The artificial Haldane chain constructed from triple quantum dot molecules. (a) a schematic
view of the system; (b) the parameters of the Hubbard-like model. The circles denote the quantum
dots (QDs) and the black dots denote the electrons. The lines and arrows symbolize the single-particle
hoppings and interaction terms, respectively; (c) the parameters of the spin-1/2 Heisenberg model.

The low-energy physics of this model can be understood in terms of an effective spin-1/2
chain, which can be obtained via third-order perturbation theory [56]. The model involves only
the singly-occupied sites of the “main chain”. Electrons occupying them are treated as localized
spins-1/2. The effective Hamiltonian is

He f f = E0 + J1

N

∑
m=1

s3m−2 · s3m + J2

N−1

∑
m=1

s3m · s3m+1. (6)

See also Figure 3c. Here, si is the spin-1/2 operator for dot i (with dots numbered from left to
right), and

E0 = NU + 5NV + (N + 1)V′ − 2t2N
V′
− t2N

U −V
− t′2(N − 1)

U −V′
− |t|

3N
V′2

,

J1 =
4t2

U −V
− 4|t|3

V′2
,

J2 =
4t′2

U −V
. (7)

The J2 and positive term in J1 arise via second-order perturbation theory, as it is usually considered
for Hubbard model at half-filling. The negative term in J1 arises from third-order processes involving
the “corner” dots. By tuning the parameters, it is possible to achieve negative J1.

Such an alternating ferromagnetic-antiferromagnetic chain reduces to the spin-1 antiferromagnetic
chain with J = 4J2 for J1 � J2, when strong ferromagnetic coupling turns pairs of spins into triplets
(i.e., spins-1) [57,58]. However, even for finite values of J1/J2, the system exhibits the Haldane phase.
Decreasing J1/J2 increases the gap, yielding a maximal gap equal J2 at J1/J2 = 0, in which case the
system corresponds to the state of the auxiliary system in the AKLT model, with disconnected singlet
dimers and two uncoupled spins at the edges [57].

Based on the first realization of the triple QD molecule [51] and its theoretical charging
diagram [54], we choose the example values of parameters U = 2.0, V = 0.5, V′ = 0.2, t = −0.05
and t′ = −0.02, in the units of the effective Rydberg defined by Ry∗ = m∗e4/(2ε2h̄2), where m∗ is the
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electron effective mass, e is the electron charge and ε is the dielectric constant. For example, for GaAs,
Ry∗ is about 6 meV.

The validity of the model was confirmed by comparing the exact-diagonalization results in the
spin-1/2 model and original Hubbard model, yielding similar results. From perturbation theory, we
obtain J1 = −5.83× 10−3 Ry∗ and J2 = 8.89× 10−4 Ry∗. This leads to the Haldane gap 1.07 µeV, which
corresponds to T = 12.4 mK. By tuning the ratio J1/J2, we can increase it to T = 62 mK. The needed
magnetic field may be estimated from the condition gµBBbg/J = 0.17 (see Section 2.2). Using the bulk
g-factor of GaAs equal 0.41 [59], we obtain Bbg = 0.093 T for the maximized gap. While this shows that
the realization of Haldane phase in a synthetic system is possible, the obtained gap values are rather
small. One idea for increasing the gap is to use self-assembled dots, for which the typical values of
parameters will be U = 20 meV, V′ = 10 meV, t′ = 10 meV [60], for which J2 ∼ 40 meV exceeds room
temperature. Based on theoretical calculations of Zeeman splitting in self-assembled InAs QDs [61],
we estimate that magnetic field 13.6 T would be necessary to achieve the situation from Section 2.2.
Note that the required magnetic field is proportional to J (and hence the Haldane gap), so there is a
trade-off between increasing the gap and lowering the field. Nevertheless, we note that the Haldane
gap can be tuned, e.g., by controlling the interdot distances, to accomplish a maximum value within
the range of achievable magnetic fields.

2.4. Haldane Phase in a Chain of Semiconductor Quantum Dots in a Nanowire

To realize a synthetic spin-1 chain operating at room temperature, we propose a chain of
disk-shaped self-assembled QDs (e.g., InAs) embedded in a semiconductor nanowire (InP), as shown in
Figure 4a. The construction of one or two such dots was already demonstrated experimentally [62–65].
We describe such a system within an effective mass approximation. The energy spectrum of a single
dot is shown in Figure 4b. It resembles a spectrum of a 2D harmonic oscillator, with a nondegenerate
s-like ground state and a two-fold degenerate p shell, where the states p± correspond to angular
momentum Lz = ±1. The dots can be loaded with a controlled number of electrons using gates [66,67].
If a dot contains four electrons, two of them fill the s state and have zero total spin, while the exchange
interaction aligns ferromagnetically two others filling up the p shell in accordance with the Hund’s
rule. Thus, they form an effective spin one (see Figure 4c). The antiferromagnetic interaction occurs
due to the tunneling between the dots in a nanowire.

4e 4e 4e 4e 4e 4e

Angular momentum

E
n
e
rg

y

-2 -1 0 1 2

s

p- p+

d-
d0

d+

(c)

(b)(a)

(d)

Figure 4. Artificial Haldane chain in a chain of quantum dots embedded in a nanowire. (a) the
schematic view of the chain. The green disks are the QDs, the violet cylinder is the nanowire, and “4e”
denotes filling each dot by four electrons; (b) the low-energy single-particle energy spectrum of a
single dot as a function of the angular momentum; (c) the schematic view of the ground state of the
whole chain. The two electrons on p orbitals of each dot polarize ferromagnetically, which is signified
by parallel arrows. The tunneling between the dots leads to antiferromagnetic polarization of the
effective spins-1, which is denoted by antiparallel arrows in neighboring dots; (d) an effective spin
ladder, in which every p orbital is treated as localized spin. The coupling is ferromagnetic on the rungs
(J1) and antiferromagnetic on the legs (J2).
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We can introduce an effective spin ladder by assuming that each p orbital is filled with one
electron, and treating it as localized spin-1/2; see Figure 4d. The Hamiltonian is

Hladder = J1

N

∑
i=1

si+si− + J2

N−1

∑
i=1

(
si+s(i+1)+ + si−s(i+1)−

)
, (8)

where si+, si− are the spin-1/2 operators for an electron on p+ and p− orbital of dot i, respectively.
The ferromagnetic interaction J1 < 0 on the rungs comes from the exchange interaction within each
dot. The antiferromagnetic coupling on the legs, J2 = 4t2/U, can be obtained by describing a single leg
within the Hubbard model and considering it within the second-order perturbation theory. Here, U is
the onsite Coulomb matrix element, and t is the hopping integral describing the tunneling. If J1 � J2,
then this ladder reduces to a spin-1 Heisenberg model with J = 2J2. Again, the Haldane phase
persists also for finite J1/J2 [68]. A simple estimate of the maximum strength of J can be obtained by
considering the two-dot case and approximating each dot by a 2D harmonic oscillator. Then, we obtain
U = 0.6875

√
π
√

ω0 Ry∗, where ω0 is the splitting between the shells. The maximum t can be obtained
noting that the shells will be distinguishable only when the splitting between the hybridized p± orbitals
of two dots is less than shell splitting, i.e., maximum t is t = ω0/2. If we take 4 Ry∗ as the typical energy
spacing, we obtain J ≈ 12 Ry∗ ≈ 70 meV, which is comparable to the room temperature. Again, we can
estimate the required magnetic field from gµBBbg/J = 0.17. The g-factor of the cylindrical InAs/InP
quantum dots strongly depends on the dot height and diameter [69]. Using g = 6, being close to the
largest values obtained by van Bree et al. [69], we estimate the necessary magnetic field in the case of
maximized gap to be about Bbg = 34 T, which is large, thus it may be desirable to consider lower gaps
which would require lower fields. Again, the J parameter can be tuned, for example, by controlling
interdot distances. We note that an orbital structure similar to Figure 4b can be realized in optical
lattices, so they can be considered as a potential alternative realization of the above scheme [70].

2.5. Implementation of the Qubit

Both approaches result in a qubit which is macroscopic, like superconducting qubits,
and semiconductor-based, which means easily integrated with other semiconductor devices and
manipulated/addressed optically. The interaction between such qubits needs to be investigated,
we note however that coupling of electron-based singlet-triplet qubits was demonstrated already [71].

The topological nature of the Haldane phase would protect the qubits from imperfections such
as variation of dot size, shape and separation, which would lead to variation of J in the effective
Heisenberg model [72]. If decoherence due to the coupling with nuclear spins turn out to be a
problem, one can consider changing the material, e.g., use Si/SiGe instead of InAs/InP in the case
of dots-in-nanowire scenario [73,74]. In addition, we note that, if we do not require the qubits to be
macroscopic, one can also think of constructing similar systems on the atomic scale. For example,
chains of dangling bonds in silicon can be formed, and precise control of charge in each bond is
possible [75].

In addition to the application in the quantum computing, our systems can be useful for
fundamental research. In contrast to the current realizations of the Haldane phase, it allows for
studying a single chain instead of an ensemble, to tune the model parameters and to use optical
methods (instead of, e.g., neutron scattering [40,41]) to investigate the Haldane phase.

Finally, let us remark that our design is not the only proposal for using the Haldane phase in
quantum computing. It has been suggested that each effective edge spin can be used as a separate
spin qubit [38]. Another idea is to use the Haldane phase in the measurement-based computation.
Because it is based on substantially different principles than the macroscopic singlet-triplet qubit,
the discussion of this proposal is beyond the scope of this article. We refer the reader to the original
works for more information [36,37]. However, we note that these alternative approaches may also
benefit from our construction of synthetic Haldane chains.
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3. Majorana Qubits

3.1. Kitaev Chain

Now, let us compare our Haldane spin one chain with spin 1/2 quasiparticles at the ends with a
Kitaev chain hosting Majorana modes at its edges. The simplest realization would be to take our chain
of quantum dots in a nanowire, Figure 4, put it on a p-wave superconductor and apply a very large
magnetic field along the nanowire axis [76]. The proximity of a nanowire with a chain of quantum
dots to a superconductor would result in pairing of spin polarized electrons and fluctuating electron
numbers within the dots. The competition of dot–dot tunneling, interdot pairing and variable electron
numbers are captured within a model proposed by Kitaev [26],

H = t
N−1

∑
n=1

(c†
n+1cn + H.c.) + ∆

N−1

∑
n=1

(c†
n+1c†

n + H.c.)− µ
N

∑
n=1

c†
ncn. (9)

Here, n numbers the s-orbitals in a 1D chain of quantum dots of length N, c†
n (cn) is a creation

(annihilation) operator of a spinless fermion at site n, t is a hopping integral, ∆ is the SC pairing energy
for electrons on neighboring sites, and µ is the chemical potential. The Hamiltonian does not conserve
the number of electrons as electron pairs are fluctuating between the nanowire and a superconductor.
Thus, single-particle energies in this model are the energies of Bogoliubov quasiparticles. Here, we will
focus on the emergence of Majorana zero energy modes, while its physical realization will be briefly
discussed later.

We start by rewriting Kitaev’s Hamiltonian in terms of Majorana operators. The Majorana
fermions are particles which are their own antiparticles, proposed by Ettore Majorana as real solutions
of the Dirac equation [77]. Following this idea, fermionic operators on site n are represented by a
superposition of two real Majorana operators γn,1 and γn,2,

c†
n =

1
2
(γn,1 − iγn,2), ci =

1
2
(γn,1 + iγn,2). (10)

The Majorana operators satisfy

γ†
n,σ = γn,σ, γm,σ1 γn,σ2 + γn,σ2 γm,σ1 = 2δnmδσ1,σ2 , γ2

n,σ = 1, (11)

where σ, σ1, σ2 = 1, 2.
The Hamiltonian, Equation (9), can be now expressed in Majorana operators:

H =
i
2
(t− ∆)

N−1

∑
j=1

γj+1,1γj,2 −
i
2
(t + ∆)

N−1

∑
j=1

γj+1,2γj,1 −
µ

2

N

∑
j=1

(1 + iγj,1γj,2). (12)

We now show how the Hamiltonian, Equation (12), can be diagonalized for a special case ∆ = t
and µ = 0. We start by pairing Majorana operator γn,1 on site n with other Majorana operator γn+1,2

on neighboring site, n + 1, through a new fermionic pair operator an:

a†
n = (γn,1 − iγn+1,2)/2. (13)

The set of new pair operators allows us to diagonalize the Hamiltonian for ∆ = t and µ = 0,

H = −it
N−1

∑
j=1

γj+1,2γj,1 = t
N−1

∑
n=1

(2a†
nan − 1), (14)

Now, the Hamiltonian pairs Majorana operators corresponding to different sites as illustrated
in Figure 5a, resulting in states of Bogoliubov quasiparticles with energies ±t = ±∆. However, there
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are two unpaired Majorana operators at the edges, γ1,2, and γN,1. Since they do not appear in the
Hamiltonian, they correspond to zero-energy eigenstates known as Majorana zero modes (MZMs).
Note the similarity to the Haldane chain—again, we expressed each physical operator (fermionic
creation or annihilation operator) with two auxiliary ones (Majorana operators), and paired them in
such a way that two auxiliary operators at the edges remain free.

Just like the Haldane edge spins, the existence of the Majorana zero modes is not limited to certain
parameter values. They are topologically protected, i.e., they are stable with respect to continuous
transformation of the Hamiltonian as long as the energy gap does not close, that is, as long as |µ| < 2|t|,
∆ 6= 0 (although in general their structure is more complicated than at ∆ = t, µ = 0 in the sense that
they are not perfectly localized at one site, but are exponentially localized at the edges). We will call the
region with MZM “topological” and the region without MZMs “trivial”. The existence of MZMs is tied
to a Z2 topological invariant, characterizing the band structure of an infinite chain [15]. In contrast to
the Haldane phase, which is protected by certain symmetries, the MZMs are stable to any perturbation.
This is because connecting a topological and trivial Kitaev chain adiabatically would mean violating
the fermion parity symmetry.

(c)

(b)

1 2 3 4 765

(a)

Figure 5. The qubits based on Majorana chain. (a) a schematic view of the single-particle eigenstates of
Kitaev model in the special case of ∆ = t, µ = 0. The blue rectangles represent the sites, described with
fermionic creation operators c†

i , the black circles represent Majorana operators, and the red ellipses
denote pairing two Majorana operators into a pair operator a†

i , being a fermionic creation operator;
(b) four Majorana zero modes (MZMs) in a network of nanowires. The gray and black denote the
trivial and topological regions of the wires, respectively. The blue and red dots represent the MZMs.
(c) braiding of two Majorana modes. The meaning of colors is the same as in (b). Although the MZMs
are indistinguishable, we have labeled them with two different colors for clarity.

3.2. Non-Abelian Statistics and Topological Quantum Computations

The potential of the MZMs for the quantum computing lies in their non-Abelian statistics [78,79].
The braiding operations, i.e., encircling one MZM by another one or exchanging their position, result
in mixing of several degenerate ground states [18]. This degeneracy can be understood by noting
that a pair of edge MZMs γ1,2, γN,1 can be expressed as a fermionic state a†

0 = (γ1,2 − iγN,1)/2,
which can be either occupied or filled, and both options correspond to zero energy. Thus, 2Nc MZMs
(appearing in Nc Kitaev chains) lead to the presence of 2Nc degenerate ground states. These states can
be used to collectively represent a set of qubits, and quantum gates can be encoded in the braiding
operations [15,29–31]. Since the effect or the braiding does not depend on the details of the trajectory,
only on its topology (e.g., on the fact if a given particle encircled another particle or not), it would be
protected from decoherence. This is called topological quantum computing.

Naively, a single qubit could be implemented using a single chain: the a†
0 fermionic state can be

either empty or filled, which we could choose as two qubit states. However, both the Hamiltonian and
the braiding operations conserve fermionic parity, so one cannot achieve a superposition of the two
qubit states. To overcome this problem, one can encode a qubit in two chains, in analogy to the singlet
triplet qubit discussed previously. Let us consider four Majorana modes: γ1, γ2 being the end states of
first chain and γ3, γ4 being the end states of second chain. We can use them to form two fermionic
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states ã†
1 = (γ1 − iγ2)/2, and ã†

2 = (γ3 − iγ4)/2. We consider a qubit encoded in two states of the
even-parity subspace, |00〉 and |11〉 = ã†

1 ã†
2 |00〉 [29–31,80].

The effect of exchanging MZMs i and j is described by an unitary operator [78,79]

exp(±π

4
γiγj) =

1√
2
(1± γiγj), (15)

with ± depending on the direction of the exchange. Equation (15) describes the statistics of the class of
anyons called Ising anyons. As an example of a quantum gate encoded using braiding, let us consider
the effect of exchanging γ2 and γ3 twice in the direction corresponding to “+” in Equation (15),

1√
2
(1 + γ2γ3)

2 = γ2γ3 = i(ã†
1 ã†

2 + ã2 ã1), (16)

where we considered only the terms acting within the qubit Hibert space {|00〉 , |11〉}. Such an
operation exchanges the two qubit states and implements a iσx gate. In similar way, one can encode
e.g., a π/2 phase gate and the Hadamard gate [29–31].

Representing several qubits can be achieved in at least two ways [80]. A “sparse” encoding
uses two chains per qubit (Nc = 2NQB, NQB being the number of qubits), each one created as
described above. On the other hand, the Hilbert space of Nc chains contains 2Nc−1 states in each
parity sector. Thus, a “dense encoding” is possible with only Nc = NQB + 1 chains representing NQB
qubits collectively. In the dense encoding, two-qubit gates can be encoded solely by braiding [30].
In the sparse encoding, the entanglement between the qubits cannot be achieved using braiding
only [31], and one should complement the braiding with measurements [80].

Unfortunately, for Ising anyons, the gate set constructed using braiding and measurements does
not allow for universal quantum computations [31]. It should be complemented with one operation
which is not protected topologically, a π/8 phase gate. A high-fidelity implementation of such a
gate relies on a procedure called “magic state distillation” [31,81]. In the case of topological qubits,
such a procedure can be performed on less qubits than in conventional quantum circuits, which is an
advantage of the topological setup [80].

How can the braiding operations be performed if the system is one-dimensional, and the MZMs
are glued to the ends of the chain? If the chemical potential is not a constant, but varies along the chain,
the system can be divided into topological and trivial parts, with MZMs appearing on the endpoints of
each topological region. We can consider a system which is not a single chain, but a network of chains
(see Figure 5b). By controlling the chemical potential at each point of the network, the topological
parts can be shifted, and the MZMs can be moved and braided [79]. For example, two MZMs can be
exchanged in a T-shaped junction, as shown in Figure 5c. Other braiding schemes also exist [82,83].

3.3. Physical Realization

Let us now briefly discuss how the Kitaev model can be realized in practice. For the existence of
unpaired Majorana modes, it is essential that the particles are spinless. If we simply take two copies
of Kitaev model corresponding to two spins, we will obtain two Majorana modes at each end, i.e.,
they will be paired and therefore not protected topologically. Spin degeneracy can be lifted e.g., in
a semiconductor nanowire or a chain of quantum dots by a combination of spin-orbit coupling and
magnetic field. The superconductivity can be induced by proximity effect, i.e., by placing the nanowire
close to a superconductor and allowing the Cooper pairs to tunnel into the nanowire. The specific kind
of superconductivity in the Kitaev model (p-wave, pairing spinless particles or particles with the same
spin) is significantly different than the s-wave pairing in ordinary superconductors where particles
with opposite spins create singlet Cooper pairs. Nevertheless, the combination of the spin-orbit
coupling, magnetic field and pairing induced by the proximity of an s-wave superconductor results
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in a system which can be mapped to Kitaev model [27,28,76]. Another proposal for creating MZMs
involves depositing a magnetic atomic chain on the top of the superconductor [84,85].

Systems like this were already constructed experimentally, and the existence of edge states has
been shown [86]. However, such states are not necessarily the MZMs; they may be, e.g., Andreev
bound states. Recently, the experiments have shown edge states exhibiting local conductance agreeing
with the theoretical result for MZMs [33], which rules out some alternative scenarios. Another observed
signature of Majorana zero modes is the fractional Josephson effect [87,88]. Nevertheless, a definite
proof would require the demonstration of braiding, which is not achieved yet. For the discussion of
other signatures of MZMs, the recent progress and alternative explanations of experimental results,
we refer the reader to Lutchyn et al. [89] and references therein.

There is also ongoing theoretical work on several aspects of the MZMs, to allow a good description
of the experiments. For example, in real systems, the electrons inside the nanowire will interact, which
is not included in the Kitaev model (apart from the mean-field pairing terms which are related to the
creation of Cooper pairs in the superconductor, not the interaction within the nanowire). This may
affect the formation of MZMs [90,91]. In addition, there are proposals to realize the Majorana modes
in number-conserving models, which may make it easier to create them with cold atoms in optical
lattices [92,93].

Finally, let us note that, in general, the existence of Majorana zero modes is not limited to the
Kitaev model. They can exist in two-dimensional topological superconductors [94,95], as well as the
Moore–Read quantum Hall state [24]. This subject is beyond the scope of this article, hence we refer
the Reader to Das Sarma et al. [80], Beenakker et al. [96] and Alicea et al. [97] and references therein.

4. Conclusions

In this work, we have reviewed our work on constructing quantum bits with macroscopic,
topologically protected, states in semiconductor devices. We discussed two approaches using the edge
states of one-dimensional topological phases, the synthetic Haldane and Kitaev chains of quantum
dots. In both cases, the topological protection is used to make the qubit robust against perturbations.
The two phases can be understood based on a similar scheme of expressing each physical site as
two auxiliary sites and coupling the nearest-neighboring auxiliary sites in such a way that two of
them remain unpaired at the ends. This is related to the fact that the topological phases in 1D can be
constructed as matrix product states [98,99]. In fact, different 1D topological phases, including the
Haldane phase, may be understood as several coupled Majorana chains [100,101].

On the other hand, the two qubit implementations are radically different. In the case of the
Haldane phase, the edge states are manipulated in a way similar to ordinary spins, while, in the case of
a Majorana qubit, the manipulations correspond to physically moving the endpoints of chains to braid
them. Both methods have their strengths and weaknesses. The Haldane phase qubit is based on a phase
of matter whose existence was already confirmed, in contrast to the MZMs. Haldane qubits would
be fully semiconductor-based, and thus can be easily integrated with other semiconductor devices,
while the Majorana qubits need the proximity of a superconductor. On the other hand, the topological
protection in the case of MZMs is stronger, as it does not rely on symmetry. Finally, the theory of
Haldane qubits is not fully developed; further studies are needed to describe initialization, readout,
realization of various gates and coupling with other qubits, as well as to perform detailed analysis
of decoherence mechanisms. On the other hand, the designs of quantum circuits based on Majorana
qubits do exist [79,83,89].

Clearly, much work is still needed to advance the field of quantum computation with macroscopic,
topologically protected, states in semiconductor devices.
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