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We develop a microscopic and atomistic theory of electron spin based-qubits in gated quantum dots
in a single layer of transition metal dichalcogenides. The qubits are identified with two degenerate
locked spin and valley states in a gated quantum dot. The two qubit states are accurately described
using a multi-million atom tight-binding model solved in wavevector space. The spin-valley locking
and strong spin-orbit coupling result in two degenerate states, one of the qubit states being spin
down located at the +K valley of the Brillouin zone, and the other state located at the −K valley
with spin up. We describe the qubit operations necessary to rotate the spin-valley qubit as a
combination of the applied vertical electric field, enabling spin-orbit coupling in a single valley, with
a lateral strongly localized valley-mixing gate.

I. INTRODUCTION

There is currently interest in developing quantum cir-
cuits based on electron spin qubits [1–9] in gated quan-
tum dots in gallium arsenide and silicon [10–14]. In these
structures, electrons are localised in a volume containing
millions of atoms, hence the nuclear spins and atomic vi-
brations contribute to the decoherence of electron spins.
Recent realization of semiconductor layers with atomic
thickness [15–26] opens the possibility of confining sin-
gle electrons to a few-atom thick layers, potentially sig-
nificantly increasing the operating temperature and the
coherence of electron spin qubits.

Recently, quantum dots (QDs) in transition metal
dichalcogenides (TMDCs), graphene, and bilayer
graphene have been realized [21, 27–31] by creating elec-
trostatic confinement with lateral metal electrodes [30–
35]. Several groups reported the creation of finite-size
electron droplets using metallic gates [30, 31, 36]. Gated
quantum dots combined with large trion binding energies
allowed for electrical probing of excitons in TMDC QDs
[30, 31, 36–38]. For example, a local tunable confinement
potential has been realized by Kim and co-workers[30],
and gate tuning of QD molecules have been shown by
Guo and co-workers [39]. There has also been significant
progress in theoretical understanding of TMDC QDs.
Stability and electronic properties of small QDs with var-
ious composition, orientation, and edge type have been
studied within DFT (Density Functional Theory) [40–
45]. In particular, Galli and co-workers [45] studied the
electronic properties of triangular MoS2 quantum dots as
a function of the number of layers and predicted a tran-
sition to a direct gap semiconductor in a single layer.

Nevertheless, ab-initio approaches are limited to small
structures, and to describe quantum dots with lateral
sizes up to tens of nanometers, one can make use of

hybrid DFT based tight-binding models[46–57]. Using
a 3-band tight-binding model limited to metal orbitals,
Peeters, and co-workers analyzed the effect of quantum
dot shape and external magnetic field on the single-
particle energy spectrum [58, 59]. Using an atomistic
tight-binding approach, spin-valley qubits have been de-
scribed in small quantum dots by Bednarek and co-
workers [60, 61], Szafran and co-workers [62–64] and
Guinea and co-workers [65]. Using such an approach,
two valley-qubit operations have also been recently pro-
posed by some of us [66]. In order to understand the
size dependence of the electronic states in quantum dots
for realistic sizes involving millions of atoms, k · p and
effective massive Dirac fermion models were also applied
[67–72].

In our previous work, an ab-initio based tight-binding
model combining metal and chalcogen orbitals, applica-
ble to multi-million atom quantum dots in TMDCs, has
been developed [73]. We note that in a tight binding
model the correct level degeneracies occur, but their di-
rect identification with valleys is difficult. By working
in reciprocal space, the valleys were explicitly taken into
account. The effect of valley, spin, and band nesting
on the electronic properties of gated quantum dots in
a single layer of transition metal dichalcogenides was de-
scribed [74], along with valley- and spin-polarized broken-
symmetry many-body states discussed in Ref. 75. It
was shown that the lowest electronic state confined in
a quantum dot is a doublet of spin and valley locked
states. Hence, such a doublet could serve as a qubit.
In order to realize a spin-valley qubit, a way to control
spin and valley properties of electrons in these QDs is
needed. Several means of manipulating the valley index
in quantum dots have been already studied: strain [65],
magnetic field [67, 69, 70], and coupling to impurity [70].
Valley mixing by the confining potential has also been
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analyzed by Yao and co-workers [68] and the magnetic
control of the spin-valley coupled states in TMDC QDs
has been shown by Qu and co-workers [71, 72].

In this paper, building on our previous work, we
expand our microscopic theory of electron spin-valley
qubits and provide a prescription of how to manipu-
late the two qubit states. The microscopic tight-binding
model developed here is suitable for accurate description
of multi-million atom nanostructures compatible with ex-
isting experiments. The two degenerate qubit states, be-
longing to the two non-equivalent valleys, each with the
opposite-spin, are built out of conduction band states of
even parity with respect to the metal plane. The rotation
of the qubit, the logical σx operation, requires simultane-
ous transition between opposite spin states in each valley
and between the two nonequivalent valleys. The under-
standing of the orbital composition of conduction band
states as a linear combination of even parity metal or-
bitals and even parity sulfur dimer orbitals allows us to
show that the qubit rotation is accomplished by applying
both a time dependent vertical electric field and a time
dependent highly localized lateral potential. The electric
field couples primarily to the two sulfur layers, and acti-
vates odd conduction bands, which enables in turn spin
flips on metal atoms due to the spin-orbit interaction.
The admixture of an opposite-spin orbital and applica-
tion of a lateral local potential enables transition to the
opposite valley and spin qubit state. This process is il-
lustrated in Figure 1. Figure 1 shows a cross section of a
schematic device consisting of a single TMDC layer, with
metallic gates (shown in yellow ) producing a lateral po-
tential confining a single electron to a quantum dot in a
single TMDC layer , illustrated with a thick arrow below.
In addition, a metallic vertical gate, implemented here
with two graphene layers, generates an on demand verti-
cal electric field. The local gate, implemented here with
an STM (Scanning Tunneling Microscope) tip, generates
an on demand valley mixing potential. The suggested
set up shown in Figure 1 is compatible with experimen-
tal designs and implementation of gated quantum dot in
a single layer of WSe2 [76]. We will show that turning
these two gates on for a finite time rotates spin valley
qubit from logical qubit 0 to logical qubit 1.

The paper is organized as follows. In section 2, we
describe logical quantum bits encoded in two lowest de-
generate states of an electron confined in a lateral gated
quantum dot in TMDC. In section 3, we describe the
effect of two external gates allowing for flipping of the
spin and flipping of the valley, necessary for logical qubit
quantum operations. In section 4, we summarise our re-
sults.

II. LOGICAL QUANTUM BITS ENCODED IN
ELECTRONIC STATES OF AN ELECTRON

CONFINED IN A LATERAL GATED QUANTUM
DOT

FIG. 1: (Color online) Top: A schematic view of device.
Quantum dot in monolayer TMDC is induced by top gate
(gold), and highly localized potential necessary for valley mix-
ing is controlled here by scanning tunneling microscope tip.
Additional vertical electric field is induced by potentials ap-
plied to two graphite layers. Bottom: Schematic view of spin-
valley qubit (red arrow).

Here we identify and analyse the logical quantum bits
encoded in quantum states of an electron in a gated quan-
tum dot in a single layer of TMDC as shown in Figure
1. This is necessary, since valleys and the spin-orbit cou-
pling prevent us from identifying qubits with electron
spin states only.

Following Ref. [74], the Hamiltonian of an electron in
a single layer of TMDC is a sum of the bulk Hamiltonian
Hb and quantum-dot confinement potential VQD [73, 74].
The potential VQD(~r) is approximated here by a Gaus-
sian potential VQD(~r) = −V0 exp

(
−r2/R2

QD

)
, where V0

is the potential depth and RQD is the quantum dot ra-
dius. The electron quantum dot wavefunction |Φs〉 for
the electron state s satisfies the Schrödinger equation
[73, 74]:

(Hb + VQD(~r)) |Φs〉 = Es |Φs〉 . (1)

As explained in Ref. 74, we define a large computational
rhombus consisting of millions of metal atoms (sublat-
tice A), and two layers of upper and lower chalcogen
atoms (sublattice B). We retain only even metal orbitals
and form an even combination of the upper and lower
chalcogen p-orbital. We wrap the computational rhom-
bus on a torus, apply the periodic boundary conditions
and obtain a set of allowed k-vectors over which we di-
agonalize the bulk Hamiltonian Hb. The sublattice A
wavefunctions are expressed as a linear combination of
even metal d-orbitals, with angular momentum two and
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md = 0,±2 and even combination of two, top and bot-
tom, sulfur dimer p-orbitals with angular momentum one
and mp = 0,±1. The conduction band (CB) even wave-
function at each wavevector is a linear combination of
simple even Bloch functions on the metal and sulfur sub-
lattices l (l = 1, .., 6)∣∣∣φCB,ev

kσ

〉
=

6∑
l=1

ACB,ev
kσ,l

∣∣φevk,l〉⊗ |χσ〉 , (2)

where |χσ〉 represents the spinor part of wavefunction
and ∣∣φevk,l〉 =

1√
NUC

NUC∑
~Rl=1

ei
~k ~Rlϕevl

(
~r − ~Rl

)
(3)

are simple Bloch functions built with even orbitals ϕevl .
NUC is the number of unit cells and Rl define the position
of even orbitals in the computational box. By diagonalis-
ing the 6 by 6 bulk Hamiltonian we obtain the bulk even
energy bands ECB,ev

kσ and wavefunctions ACB,ev
kσ,l .

FIG. 2: (Color online) Bulk band structure of MoS2. (a)
Blue lines correspond to energy levels of even orbitals and red
lines correspond to energy levels of odd orbitals. (b) Lowest
conduction band energy levels on allowed values of k points.
+K and −K are global valley minima of the conduction band
while the three +Q and −Q points correspond to local minima
of the conduction band states.

Figure 2 shows the energy ECB
kσ of the lowest even con-

duction band (CB) as well as the map of the conduction
band energies on the rhombus of k-space over which com-
putations are carried out, including the +K and −K val-
ley minima. The figure also contains the even conduction
bands at a higher energy, to be discussed shortly.

In next step we expand the quantum dot wavefunc-
tion |Φs〉 in terms of even lowest energy conduction band
states given by Eq. 2

|Φs〉 =
∑
~k

∑
σ

Bs,CB,ev
~kσ

∣∣∣φCB,ev
~kσ

〉
. (4)

The electron Schrödinger equation now converts to an
integral equation for coefficients Bs,CB,ev

~kσ

ECB,ev
qσ Bs,CB,ev

qσ +
∑
~kσ′

Vq,kAqσ,kσ′B
s,CB,ev
kσ′ = EsBs,CB,ev

qσ .

(5)

We see that the quantum dot confining potential in
wavevector space turns out to be a product of the lateral
confinement Vq,k and band contribution Aqσ,kσ′ , with

Vq,k = −V0
S

4π
R2
QD exp

(
− (k − q)2

4
R2
QD

)
(6)

being the Fourier transform of the confining potential,
with RQD being the radius of the quantum dot, V0 −the
depth of the gate potential, and S −the reciprocal lattice
unit-cell area. The band structure contribution to the
scattering potential Aqσ,kσ′ is given by

Aqσ,kσ′ =
∑
l

(
ACB,ev
qσ,l

)† (
ACB,ev
kσ′,l

)
. (7)

Solving the integral equation, Eq. 5, we obtain the
quantum dot energy levels and wavefunctions. Figure 3

FIG. 3: (Color online) QD spectrum. Harmonic oscillator
shell like electronic states are formed due to the applied neg-
ative gate potential. Two qubit states are indicated, well
isolated from the rest of energy levels. Inset shows the highly
localized qubit wavefunction in k-space.

shows the energy levels of an electron confined in our
quantum dot. We see that the levels are grouped into
shells. The lowest energy shell consists of 4 low-energy
states, related to 2 spin, up and down, states and two
valleys, +K and −K. The 4 states are split into pairs of
levels by the spin-orbit interaction. The splitting, fully
characterised in Ref. [74], is limited by the bulk value.
From ab-initio calculations, the splitting is 3 meV for
MoS2 but splitting is greater than room temperature, 30
meV, for WSe2[16, 74]. We hence identify the two logical
qubits, |0〉 and |1〉, with the two lowest energy levels,
|0〉 = |+K,σ =↓〉 and |1〉 = |−K,σ =↑〉, shown in Figure
3. Additionally, the energy of the s states depends on the
depth of the confining potential of the order of 300 meV
used here. This guarantees stability of the qubit. The
dependence of the energy separation of the qubit states
from excited states on potential depth and radius were
already addressed by our previous work[74]. We want
to note that, in our unpublished work we also studied
the effect of impurity on the qubit states in the valence
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band . We found that the impurity shifted the energy
of qubit states but preserved the valley-spin locking and
degeneracy.

III. SINGLE QUBIT OPERATIONS

In this section we discuss the necessary steps for single
logical qubit manipulation. Before rotating qubit states,
the degeneracy of the valley-spin locked system should be
lifted so that one can use the doublet state as a qubit, as
can be seen from Figure 3. The degeneracy of spin-valley
locked system can be lifted by applying a magnetic field (
for σz operation), which is known as valley-Zeeman split-
ting [77, 78]. This procedure will prepare and initialize
the qubit states for σx rotation. Hence, in order to rotate
the qubit we need to be able to turn on both the σz and
σx operations in the space of the logical qubit. To rotate
the levels we need to be able to turn on the σx operation.
This operation needs to flip the logical qubit, i.e., induce
a transition changing the spin and changing the valley.
We will discuss this operation as composed of two steps,
spin flipping and valley flipping.

A. Vertical gate-valley conserving spin rotations

Let us discuss how we can rotate the spin of an elec-
tron in a logical qubit |0〉 = |+K,σ =↓〉 without chang-
ing the valley. We will accomplish this by turning on a
vertical electric field Ez. The vertical electric field im-
plies a higher potential VE/2 on the upper sulfur layer
and a lower potential −VE/2 on the lower sulfur layer,
with zero potential on the metallic layer. The applied
bias acts primarily on sulfur layers and mixes the even
combination of sulfur orbitals with odd combination of
sulfur orbitals, and this mixes the even and odd conduc-
tion bands. Hence we need to determine the electronic
states which are odd with respect to the metallic layer.
There are two odd metal orbitals, l = 2,md = ±1 on
the sublattice A, and three odd sulfur dimer mp = 0,±1
orbitals on the sublattice B. We expand the odd wave-
function in terms of odd metal and odd chalcogen dimer
wavefunctions as:

∣∣∣φCB,odd
kσ

〉
=

5∑
l=1

ACB,odd
kσ,l

∣∣φoddk,l

〉
⊗ |χσ〉 . (8)

The odd orbital Hamiltonian is obtained and diago-
nalised at each wavevector k. The lowest odd conduc-
tion band energy ECB,odd

k (red) is plotted in Figure 1 to-
gether with the energy of even conduction bands (blue).
We see that the odd band energy is higher than the even
band by approximately 1 eV. In order to understand all
the steps we now retain only the lowest even and odd

conduction band states and include both the spin-orbit
coupling VSO and the odd-even orbital coupling VE by
the applied electric field. In the presence of the electric
field and the spin-orbit coupling, the bulk Hamiltonian
can now be written in a block form as:

H =


Hev
↓ V ev-odd

E 0 VSO↓↑
Hodd
↓ VSO↓↑ 0

Hev
↑ V ev-odd

E

Hodd
↑

 . (9)

We assumed here that the applied electric field E created
negative and positive voltages applied to lower and up-
per chalcogen atoms of bulk TMDC layer, respectively.
The spin-orbit coupling in turn couples spin up and down
states with even and odd metal orbitals, hence the elec-
tric field and the spin-orbit coupling couple even and odd
band states.

The vertical gate generates a laterally homogeneous
electric field which couples odd and even orbitals of each
chalcogen dimer. This translates into coupling of odd
and even conduction bands at a given wavevector k. We
assume the voltage V̂E(z) due to applied electric field
such that −VE/2 is the voltage applied on the chalcogen
atom located on the lower layer, VE(z = 0) = 0 is the
voltage on the metal layer, and +VE/2 is the voltage on
the chalcogen atom located on the upper layer of TMDC.
The matrix element coupling the odd and even bands at
each wavevector is given by:

V ev-odd
E = 〈φCB,odd

kσ |V̂E |φCB,ev
kσ 〉 =

1

2NUC

∑
~RB′ ,

~RB

∑
mp′ ,mp

=0,±1

(
ACB,odd
~kσ,mp′

)∗ (
ACB,ev
~kσ,mp

)
ei
~k(~RB−~RB′)

×
∫∫

dzd2r
[
ϕump′

(z, ~r − ~RB′)− ϕdmp′
(z, ~r − ~RB′)

]∗
× V̂E(z)×

[
ϕump

(z, ~r − ~RB) + ϕdmp
(z, ~r − ~RB)

]
.

(10)
We see that the only contribution to the matrix element
comes from chalcogen orbitals on top (up) and bottom
(down) chalcogen layers. The main contribution to this
expression comes from combined orbitals on upper and
lower layers :

V ev-odd
E =

1

2NUC
×∑

~R
B
′ , ~RB

∑
mp′ ,mp

=0,±1

(
ACB,odd
~kσ,mp′

)∗ (
ACB,ev
~kσ,mp

)
ei
~k(~RB−~RB′)

×
[ ∫∫

dz d2rϕu∗mp′
(z, ~r − ~RB′ )

(
VE
2

)
ϕump

(z, ~r − ~RB )

−
∫∫

dz d2rϕd∗mp′
(z, ~r − ~RB′ )

(
−VE

2

)
ϕdmp

(z, ~r − ~RB)

]
.

(11)
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The integrals over r and z give δ(RB , R
′

B) and δ(mp,m
′

p).
It is now clear that the final approximate result can be
written simply as

V ev-odd
E =

VE
2

∑
mp=0,±1

(
ACB,o
~kσ,mp

)∗ (
ACB,ev
~kσ,mp

)
. (12)

We see that the electric field couples odd and even con-
duction bands and the magnitude of that coupling is pro-
portional to a product of odd and even band amplitudes
A at each wavevector k, summed over all mp orbitals.
However, the odd and even conduction bands have a dif-
ferent composition of chalcogen and metal orbitals at the
bottom of the +K valley. The selection rule derived in
Ref. 73 implies that metal md and chalcogen mp orbitals
satisfy the selection rule 1+mp−md = 0,±3 . Hence the
even band is built of md = 0 and mp = −1 orbital but the
odd band is built on the md = −1 and mp = +1 chalco-
gen orbitals. Chalcogen orbitals in the odd and even
bands are different and the coupling strength, product
of the same mp orbitals at the bottom of the +K valley,
vanishes. Hence the mixing of even and odd bands due to
the vertical electric field has a nontrivial dependence on
the wavevector and so does the contribution to quantum
dot states.

The mixing of odd and even bands for the same spin
is only the first step in the spin rotation. Let us now
turn our attention to the second step, induced by the
spin-orbit coupling. The spin-orbit interaction is acting
much more strongly on metal orbitals than calchogen or-
bitals. Starting with the even md = 0 spin-down orbital,
the spin-orbit interaction couples this state with the odd,
md = −1 and spin-up orbital. Hence it is clear that the
odd orbitals are needed to flip the spin. We can write
spin orbit interaction mixing the lowest odd and even
conduction bands on metal atoms (sublattice A) as:

VSO↓↑ = 〈φCB,ev
k↓ |V̂SO|φCB,odd

k↑ 〉 =

1

NUC

∑
~RA, ~RA′

∑
md=0,±2
md′=±1

(
ACB,ev
~k↓,md

)∗ (
ACB,odd
~k↑,md′

)
ei
~k(RA−RA′ )×

∫∫
dz d2rϕev∗

md
(~r − ~RA)〈↓ |V̂SO(z, r)| ↑〉ϕodd

md′
(~r − ~RA′).

(13)
The main contribution comes from the L·S Thomas spin-
orbit coupling on a given metal atom. Given that the
CB is composed mainly of md = 0 orbitals, results in
expression:

VSO↓↑ =
(
ACB,ev
~k↓,md=0

)∗ (
ACB,odd
~k↑,md=−1

)
×

〈↓ md=0|V̂SO| ↑ md=−1〉.
(14)

This SO term couples the even md = 0 spin-down band
with the md = −1 spin-up odd band, given by the prod-
uct of amplitudes of the two bands weighted by the spin-
orbit coupling matrix element.

Using the second-order perturbation theory in the ba-
sis of lowest even and odd conduction band states, we
obtain the wavefunction of an electron in the valley +K
in the presence of both the electric field and the SO cou-
pling. The wavefunction in the +K valley with spin down
⇓ acquires a small admixture of the spin-up state:

ΨCB,ev
k,+K,⇓ = φCB,ev

k↓ χ↓ +Dk↓↑φ
CB,ev
k↑ χ↑ (15)

where, in the second-order perturbation theory

Dk,↓↑ =

(
VSO↓↑VE

(εCB,ev
k,↓ − εCB,ev

k,↑ )(εCB,ev
k,↓ − εCB,odd

k,↑ )

+
VEVSO↓↑

(εCB, ev
k,↓ − εCB,ev

k,↑ )(εCB,ev
k,↓ − εCB,odd

k,↓ )

)
.

(16)

We see that the process of spin rotation is proportional
to the applied vertical electric field and involves even and
odd bands as well as the spin-orbit interaction. The same
procedure can be applied to the −K valley.

We can now return to quantum dot states and our
logical qubit. The logical qubit state |0〉 = |0,+K,⇓〉
acquires a small spin-up component as

Φ0
+K,⇓

∼=
∑
~k∈+K

BCB,ev
~k,⇓

(φCB,ev
k,↓ χ↓ +Dk↓↑φ

CB,ev
k,↑ χ↑) (17)

while the logical qubit state |1〉 = |0,−K,⇑〉 acquires a
small spin-down component

Φ1
−K,⇑

∼=
∑
~k∈−K

BCB,ev
~k,⇑

(φCB,ev
k,↑ χ↑ +Dk↑↓φ

CB,ev
k,↓ χ↓). (18)

We are now ready to couple the qubit states belonging
to two different valleys.

B. Local gate - intervalley rotation

We see that upon application of the vertical electric
field the qubit states acquire admixtures of states in the
same valley but with an opposite spin. We now introduce
a local lateral gate operator Ĝ which couples the two
spin-valley-locked states forming the qubit. The coupling
defines the σx matrix for logical qubit states:

〈1|σ|0〉 = 〈Φ−K,⇑|Ĝ|Φ+K,⇓〉

=
∑
~q∈−K

∑
~k∈+K

Bev
∗

~q,⇑B
ev
~k,⇓G(q, k)×

(D∗q↑↓A
ev
~q,md=0↑A

ev
~k,md=0↑ +Dk↓↑A

ev
~q,md=0↓A

ev
~k,md=0↓).

(19)
In what follows, we assume the local gate G to be a local-
ized Gaussian given by its Fourier transform G(q, k) =

−G0
R2

GS
4π exp(

−(~k−~q)2R2
G

4 ), where RG = 0.2 nm is the
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width of Gaussian and G0 = 1 eV is its strength. Be-
fore proceeding to analyze the coupling matrix element,
we can discuss the terms which significantly affect the
strength of the coupling. One of the important terms is
the QD wave function Bev~k(~q),⇓(⇑) which is highly localized

in k-space, as shown in the inset of Figure 3, where abso-
lute value of the wavefunction of one of the qubit states
is shown. As a result of the high localization in k-space,
we can safely concentrate on states close to the bottom of
the +K(−K) valley. Additionally, the energy differences
between even-even and even-odd states are considered to
be constant in this range and we take εCB,ev

k,↓ − εCB,ev
k,↑

∼= 3

meV and εCB,ev
k,↓ − εCB,odd

k,↑
∼= 1.3 eV.

Also, the coupling of states is non-zero when the terms
Dk(q)↓↑ are significant. These terms are proportional to
the strength of the applied electric field and the spin-orbit
coupling. While the spin-orbit coupling is the property
of the material, the electric field can be turned on to
activate the σx matrix. The lateral gate G is responsible
for the coupling of the valley +K and −K. The localized
Gaussian potential G(q, k) has to be a local perturbation

with nonzero Fourier components |~q − ~k| ∼ 2K. When
turned on, it will be responsible for flipping the valley
index. We propose that a scanning tunneling microscope
(STM) tip or a gated impurity could be used to realize
this effect experimentally. We now discuss the behavior

FIG. 4: (Color online) Logical qubit coupling matrix element
as a function of position of the local gate R0 for a given ver-
tical electric field VE .

of the coupling matrix element as shown in Figure 4. A
representative QD studied in this project has a diameter
of 40 nm centered at (x=0, y=0). We compute and plot
the coupling matrix element as a function of the position
R0 of the local perturbation G in a QD and R0 = Rxx̂+
Ry ŷ where Rx (nm) ∈ [0, 20] and Ry(nm)= 0 for a fixed
applied vertical field VE (where we take VE = 1 eV in
these calculations). We move the perturbation G from
the center to the edge of the QD. The coupling matrix
element has a finite value at the center of the QD and first
increases towards the halfway and decreases towards the
edge of the QD. This nontrivial behavior can be traced
to the nontrivial effect of the electric field on coupling of

odd and even bands in TMDCs.

IV. CONCLUSIONS

To summarise, we developed here a theory of valley-
spin based qubits in gated quantum dots in a single layer
of transition metal dichalcogenide. The qubits were iden-
tified with the two degenerate locked spin and valley
states in a gated quantum dot. The two qubit states were
accurately described using a multi-million atom tight-
binding model solved in k-space. The spin-valley locking
and strong spin orbit coupling results in two degenerate
states, one of the states of the qubit being spin-down lo-
cated at the +K valley, and the other state located at the
-K valley with spin up. We describe the gates necessary
to rotate the spin-valley qubit as a combination of the
applied vertical electric field enabling the spin orbit cou-
pling in a single valley combined with a lateral strongly
localised valley mixing gate. We note that suggested set
up shown in Figure 1 can be readily implemented for one
qubit operation. On the other hand, to be able to study
manipulation of two or more qubit realizations, one can
introduce impurity centers to mimic the role of the STM
set up proposed in Figure 1. In addition, the aim of
present work is to show how one can manipulate a single
spin-valley qubit. The universal quantum computation
requires also a two-qubit gate. Hence, our future work
will focus on a microscopic description of a two-qubit
gate operations where we will build on this and previous
works [79].
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[21] A. D. Güçlü, P. Potasz, M. Korkusinski, and P. Hawry-
lak, Graphene quantum dots (Springer, 2014).

[22] T. Scrace, Y. Tsai, B. Barman, L. Schweidenback,
A. Petrou, G. Kioseoglou, I. Ozfidan, M. Korkusiński,
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