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Introduction

• Multiple spatial and temporal scales are present in many physical processes.
• Because of wide range of scales direct numerical simulations are not affordable.
• One of the typical approaches is empirical or semi-empirical modeling of the

effects of small scale
• The main goal of multiscale computation is to bypass empirical modeling that is

often used for multiscale processes.
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Outline

• Porous media and heterogeneity
• Multiscale finite element methods (MsFEM) on coarse-grid
• Applications of multiscale finite element methods to porous media flows
• Multiscale finite element methods using limited global information
• Upscaling of transport equations
• Generalizations of MsFEM to nonlinear problems. Homogenization of nonlinear

parabolic equation with random fluxes.
Dtuε = div(aε(x, t, uε,Dxuε)) + a0,ε(x, t, uε,Dxuε).

• Upscaling of two-phase flow in flow-based coordinate system.
• Uncertainty quantification using upscaled models
• Flow in deformable inelastic media
• Conclusion and future work
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Darcy’s law and permeability

Darcy’s empirical law, 1856: The volumetric flux u(x, t) (Darcy velocity) is proportional to
the pressure gradient

u = − k

µ
∇p = −K∇p,

where k(x) is the measured permeability of the rock, µ is the fluid viscosity, p(x, t) is the
fluid pressure, u(x, t) is the Darcy velocity.
We obtain the second order elliptic system

u = −K∇p in Q Darcy’s Law

div(u) = f in Q conservation
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Heterogeneities

Log of permeability at large scales

−8

−6

−4

−2

0

2

4

6

Log of permeability at small scales

−1

−0.5

0

0.5

1

Upscaling: The system must be represented on a larger scale by incorporating the fine
details in an average sense.
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Multiscale finite element
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A simple example

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Exact solution

x

u
ε

−(aε(x) u’ε)’=1 

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Basis

x

φ
1
 φ

2
 φ

3
 

aε(x) = 1/(2 + 1.99 cos(x/ε)), ε = 0.01.
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Multiscale Finite Element Methods

Hou and Wu (1997) used this idea and defined multiscale finite elements.
Consider

div(kε(x)∇pε) = f ,
where ε is a small parameter.

• The central idea is to incorporate the small scale information into the finite element
bases

• Basis functions are constructed by solving the leading order homogeneous
equation in an element K

div(kε(x)∇φi) = 0 in K

• It is through the basis functions that we capture the local small scale information of
the differential operator.
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Multiscale Finite Element Methods

• Boundary conditions?

φi = linear function on ∂K, φi(xj) = δij

Coarse−grid Fine−grid

Multiscale modeling and computation of flow through porous media – p.9/157



Multiscale Finite Element Methods

• Except for the multiscale basis functions, MsFEM is the same as the traditional
FEM (finite element method). Find phε ∈ V h = {φi} such that

k(phε , v
h) = f(vh) ∀vh ∈ V h,

where

k(u, v) =

Z

Q
kεij(x)

∂u

∂xi

∂v

∂xj
dx, f(v) =

Z

Q
fvdx

• The coupling of the small scales is through the variational formulation
• Similar ideas have been used for:

Subgrid modeling (by T. Arbogast, I. Babuska, T. Hughes and others)
Subgrid stabilization (by F. Brezzi, L Franco, J.L. Guermond, T. Hughes, A. Russo,
and others).

• Computational advantages: 1) The method is adaptive; 2)The method is well
suited for parallel computation
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Brief introduction to homogenization

pε ∈ H1
0 (Q)

div(k(x,
x

ε
)∇pε) = f,

where k(x, y) is a periodic function with respect to y. Consider formal expansion

pε = p0(x, y) + εp1(x, y) + ε2p2(x, y) + ....

Taking into account

∇A(x,
x

ε
) = ∇xA+

1

ε
∇yA

we have

(divx +
1

ε
divy)[k(x, y)(∇x +

1

ε
∇y)(p0(x, y) + εp1(x, y) + ε2p2(x, y) + ...) = f.

ε−2 : divy(k(x, y)∇yp0(x, y)) = 0.

From here, p0(x, y) = p0(x).
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Brief introduction to homogenization

ε−1 : divy(k(x, y)∇yp1(x, y)) = −divy(k(x, y))∇xp0.

From here, p1(x, y) = Nl(x, y)
∂
∂xl

p0, where

divy(k(x, y)∇yNk) = −∇xikil(x, y).

ε0 : divy(k(x, y)∇yp2)+divy(k(x, y)∇xp1)+divx(k(x, y)∇yp1)+divx(k(x, y)∇xp0) = f.

Taking the average and noting that

〈divyA(x, y)〉 =

Z

Y
divyA(x, y)dy = 0,

we get
divx〈k(x, y)∇yp1〉 + divx(〈k(x, y)〉∇xp0) = f.

From here, we conclude that
divx(k

∗(x)∇xp0) = f,

where k∗(x) = 〈k(x, y) + k(x, y)∇yN〉. Multiscale modeling and computation of flow through porous media – p.12/157



Basic convergence in homogenization

pε → p0 weakly in H1,

uε = k∇pε → k∗∇p0 weakly in L2

For bounded domains, we have pε = p0(x) + εN(x, y) · ∇p0 + θ + ε2p2(x, y) + ..., where

div(k∇θ) = 0

θ = −εN(x, y) · ∇p0.

It can be shown that (e.g., JKO 94) ‖θ‖H1(Q) ≤ C
√
ε.
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Convergence property of MsFEM

Consider kε(x) = k(x/ε), where k(y) is periodic in y.
h - computational mesh size.
Theorem (by T. Hou, X. Wu, Z. Cai) Denote phε the numerical solution obtained by
MsFEM, and pε the solution of the original problem. Then,
If h >> ε,

‖pε − phε ‖1,Q ≤ C(h+

r

ε

h
)

• This theorem shows that MsFEM converges to the correct solution as ε→ 0

• The ratio ε/h reflects two intrinsic scales. We call ε/h the resonance error
• The theorem shows that there is a scale resonance when h ≈ ε. Numerical

experiments confirm the scale resonance.
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Resonance errors

• For problems with scale separation, we can choose h� ε in order to avoid the
resonance, but for problems with continuous spectrum of scales, we cannot avoid
this resonance.

• To demonstrate the influence of the boundary condition of the basis function on
the overall accuracy of the method we perform multiscale expansion of φi

• Multiscale expansion of φi

φi = φ0(x) + εφ1(x, x/ε) + εθ + . . . ,

• φ1(x, x/ε) = Nk(x/ε) ∂
∂xk

φ0, where Nk(x/ε) is a periodic function which depends

on k(x/ε).
• θ satisfies

div(kε∇θ) = 0 in K, θi = −φ1(x, x/ε) + (φi − φ0)/ε on ∂K

• Oscillations near the boundaries (in ε vicinity) of θi lead to the resonance error
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Illustration of θ
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Oversampling technique

• To capture more accurately the small scale information of the problem, the effect of
θ needs to be moderated

• Since the boundary layer of θ is thin (O(ε)) we can sample in a domain with size
larger than h+ ε and use only interior sampled information to construct the basis
functions.

• Let ψk be the functions in the domain S,

div(kε(x)∇ψk) = 0 in S, ψk = linear function on ∂S, ψk(si) = δik.

Fine−gridCoarse−grid
Oversampled

  domain

S

K
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Oversampling technique

• The base functions in a domain K ⊂ S constructed as

φi|K =
X

cijψ
j |K , φi(xk) = δik

• The method is non-conforming.
• The derivation of the convergence rate uses the homogenization method

combined with the techniques of non-conforming finite element method (Efendiev
et al., SIAM Num. Anal. 1999)

• By a correct choice of the boundary condition of the base functions we eliminate
the boundary layer in θ. We show that this leads to cancellation of the main
resonance error.
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Illustration of θ with oversampling
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Numerical Results

Table 1: ‖Uh

ε
− Uh

0
‖l2

, ε/h = 0.64
MsFEM MsFEM-os Resolved FEM

h
l2 rate l2 rate hfine l2

1/16 3.54e-4 7.78e-5 1/256 1.34e-4
1/32 3.90e-4 -0.14 3.38e-5 1.02 1/512 1.34e-4
1/64 4.00e-4 -0.05 1.97e-5 0.96 1/1024 1.34e-4
1/128 4.10e-4 -0.02 1.03e-5 0.95 1/2048 1.34e-4
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The convergence of MsFEM

• The MsFEM for elliptic equation with discontinuous coefficients The convergence
rate of MsFEM does not deteriorate in this case. The base functions capture the
singularities of the solution.

• The convergence of MsFEM for problems with multiple scales ε1 � ε2 � ...� εn.
• The convergence of MsFEM for random coefficients (continuous ε-spectrum).
• The expansion of the base function, φiε(x, ω) = φ0(x) + εφ1(x,x/ε, ω) + εθ, where
φ1(x,x/ε, ω) = Nk(x/ε, ω)∇kφ0(x).

• The estimates for stationary fields approximating N(x/ε, ω) have been derived
under the strong mixing condition for the coefficients (Yurinskii, 86) (power decay
of two point correlation).

• The convergence rate of MsFEM remains the same as in the periodic case if the
coefficients are quasi-periodic or almost periodic subject to some conditions.
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MsFEM for problems with scale separation

For periodic problems or problems with scale separation, multiscale finite element
methods can take an advantage of scale separation. Basis functions can be
approximated

φi = φi0 +Nε · ∇φi0,

where φ0
i is linear basis functions and N is the periodic solution of auxiliary problem in

ε-size period
−div(kε(x)(∇N + I)) = 0.

In this case, the coarse-scale equation will “exactly” correspond to solving

div(k∗∇p∗) = f,

where k∗ is computed using classical homogenization procedure (cf. Durlofsky 1981,
and etc.).
Note, the above procedure works not only for periodic heterogeneities, but also any
heterogeneities when “homogenization by periodization” is applicable (e.g., random
homogeneous case).
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Various global formulations

• Once basis functions are constructed, various global formulation (mixed, control
volume finite element, DG and etc) can be used to couple the subgrid effects.

• Control volume finite element: Find ph ∈ Vh such that

Z

∂Vz

k(x)∇ph · n dl =

Z

Vz

q dx ∀Vz ∈ Q,

where Vz is control volume.
• Mixed finite element: In each coarse block K, we construct basis functions for the

velocity field

div(k(x)∇wKi ) =
1

|K| in K

k(x)∇wKi n
K =

(

1
|eKi |

on eKi
0 else.

For the pressure, the basis functions are taken to be constants.
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MsFEM for problems with scale separation

For periodic problems or problems with scale separation, multiscale finite element
methods can take an advantage of scale separation. Basis functions can be
approximated

φi = φi0 +Nε · ∇φi0,

where φ0
i is linear basis functions and N is the periodic solution of auxiliary problem in

ε-size period
−div(kε(x)(∇N + I)) = 0.

In this case, the coarse-scale equation will “exactly” correspond to solving

div(k∗∇p∗) = f,

where k∗ is computed using classical homogenization procedure (cf. Durlofsky 1981,
HMM, and etc.).
Note, the above procedure works not only for periodic heterogeneities, but also any
heterogeneities when “homogenization by periodization” is applicable (e.g., random
homogeneous case).
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Applications of MsFEM to subsurface flow simulations

Two-phase flow model.
Darcy’s law for each phase

vi = − k
ki(Si)
µi

∇pi, i=1,2.

k - permeability field representing the heterogeneities (micro-level information), pi - the
pressure, vi - velocity, ki - relative permeability, Si -saturation, µi -viscosity

phase 1 phase 2
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Applications of MsFEM to subsurface flow simulations

Two-phase flow model.
Darcy’s law for each phase

vi = − k
ki(Si)
µi

∇pi, i=1,2.

k - permeability field representing the heterogeneities (micro-level information), pi - the
pressure, vi - velocity, ki - relative permeability, Si -saturation, µi -viscosity

phase 1 phase 2
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Two-phase flow model

• p1 = p2 = p if the capillary effects are neglected. The total velocity v is given by

v = v1 + v2 = −λ(S)k∇p, λ(S) =
k1(S)

µ1
+
k2(S)

µ2
.

where S = S1, S2 = 1 − S1.
• Incompressibility of the total velocity implies

div(λ(S)k∇p) = 0,

• From the conservation of mass St + div(v1) = 0 we can derive

∂S

∂t
+ v · ∇f(S) = 0, f(S) =

k1(S)
µ1

k1(S)
µ1

+
k2(S)
µ2
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Requirements/Challenges

• Accuracy and Robustness
• Retain geological realism in flow simulation
• Valid for different types of subsurface heterogeneity
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• Applicable for varying flow scenarios
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Existing upscaling techniques

• −div(λ(S)k∇p) = 0, St + v · ∇f(S) = 0, v = −λ(S)k∇p.

• Single-phase upscaling: (k → k∗), k
∗ = k∇p

∇p
.
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no flow 
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• Multiphase upscaling λ→ λ∗, f → f∗.
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Applications of MsFEM

At least two way one can apply MsFEM
1) Solve the pressure equation on the coarse-grid and solve the saturation equation on
the fine-grid

−div(λ(S)k∇p) = 0

∂

∂t
S + v · ∇f(S) = 0,

where v = −λ(S)k∇p. Basis functions are updated only near sharp fronts.
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MsFVEM applied to two-phase flow problem

(IM)plicit (P)ressure (E)xplicit (S)aturation:

Given S0, for n = 1, 2, 3, · · · , do the following:

• find pn−1
h ∈ Vh such that

Z

∂Vz

λ(Sn−1)k(x)∇pn−1
h · n dl =

Z

Vz

q dx ∀Vz ∈ Q

• compute v
n−1 = −λ(Sn−1)k(x)∇pn−1

h

• time march on the saturation equation:

Z

cz

`

Sn − Sn−1
´

dx+ ∆tn−1

Z

∂cz

f(Sn−1)vn−1 · n dl = ∆tn−1

Z

cz

qS̃ dx
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Numerical Setting

• Rectangular domain is considered. The permeability field is generated using
geostatistical libraries.

• The boundary conditions: no flow on top and bottom boundaries, a fixed pressure
and saturation (S = 1) at the inlet (left edge), fixed pressure at the outlet (right
edge).

• The production rate F = q0/q, where q0 the volumetric flow rate of oil produced at
the outlet edge and q the volumetric flow rate of the total fluid produced at the
outlet edge. The dimensionless time is defined as PV I = qt/Vp, where t is time,
Vp is the total pore volume of the system.
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Two-point geostatistics
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Fractional flow and total flow for a realization of permeability field with spherical variogram
and lx = 0.4, lz = 0.02, σ = 1.5.
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Two-point geostatistics

fine−scale saturation plot at PVI=0.5
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Applications of MsFEM

2) Obtain coarse-scale equations for the saturation equation. The approximate macro
scale equation is (Efendiev et al., 2000, 2002, 2004)

∂S

∂t
+ v · ∇f(S) = ∇if ′(S)2Dij∇jS

• Dij depends on two point correlation of the velocity field and S.
• The overall approach is obtained by combining the saturation equation with the

pressure equation in the form div(λ(S)k∇p) = 0.
• The multiscale base functions are constructed once. The two-point correlation of

the velocity can be found using the multiscale base functions. This approach is
very efficient and can predict the quantity of interest on a highly coarsened grid.
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Multiscale finite element
using limited global

information
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Channelized permeability fields

Benchmark tests: SPE 10 Comparative Project
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Channelized reservoir
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Channelized reservoir
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Comparison of saturation profile at PVI=0.5: (left) fine-scale model, (right) standard MsFVEM
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MsFVEM utilizing global information

• The numerical tests using strongly channelized permeability fields (such as SPE 10
Comparative) show that local basis functions can not accurately capture the
long-range information. There is a need to incorporate a global information.

• The main idea is to use the solution of the fine-scale problem at time zero, p0, to
determine the boundary conditions for the multiscale basis formulation.
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• These approach is different from oversampling technique.

• Previous related work: J. Aarnes; L. Durlofsky et al.
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MsFVEM utilizing global information

• If p0(xi) 6= p0(xi+1)

gi(x)|[xi,xi+1] =
p0(x) − p0(xi+1)

p0(xi) − p0(xi+1)
, gi(x)|[xi,xi−1] =

p0(x) − p0(xi−1)

p0(xi) − p0(xi−1)
.

If p0(xi) = p0(xi+1) 6= 0 then

gi|[xi,xi+1] = ψi(x) +
1

2p0(xi)
(p0(x) − p0(xi+1)),

where ψi(x) is a linear function on [xi, xi+1] such that ψi(xi) = 1 and ψi(xi+1) = 0.

• The modified MsFVEM is exact for linear elliptic problem.

• When global boundary changes, then reevaluation of the basis might be needed.
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Channelized reservoir
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Channelized reservoir
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Channelized reservoir
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Channelized reservoir

fine−scale saturation plot at PVI=0.5
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Comparison of saturation profile at PVI=0.5: (left) fine-scale model, (middle) standard
MsFVEM (right) modified MsFVEM
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Channelized reservoir
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Channelized reservoir
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Channelized reservoir
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Brief Analysis
• Main goal is to show that time-varying pressure is strongly influenced by the initial

pressure field.

• Use the streamline-pressure coordinates:

∂ψ/∂x1 = −v2, ∂ψ/∂x2 = v1

• Set η = ψ(x, t = 0) and ζ = p(x, t = 0) and transform as follows:
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x

y

− high flow channel

ζ

η − Ο(δ)

− Ο(δ)
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Brief Analysis

• The transformed pressure equation:

∂

∂η

„

|k|2λ(S)
∂p

∂η

«

+
∂

∂ζ

„

λ(S)
∂p

∂ζ

«

= 0

• The transformed saturation equation:

∂S

∂t
+ (v · ∇η)∂f(S)

∂η
+ (v · ∇ζ)∂f(S)

∂ζ
= 0

• |k|2λ(S) = |k0|2λ0(ζ, t)1Q1−δ
+ |k1|2λ1(η, ζ, t)1Qδ , λ(S) =

λ0(ζ, t)1Q1−δ
+ λ1(η, ζ, t)1Qδ .

• The pressure has the following expansion:

p(η, ζ, t) = p0(ζ, t) + δp1(η, ζ, t) + . . . ,

∂
∂ζ

“

λ0(ζ, t) ∂p0
∂ζ

”

= 0.

• Modified basis functions can exactly recover the initial pressure.
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Brief Analysis

Τ

Τ2

1

Consider

b1(x) =
pinitloc (x) − pinitloc (T2)

pinitloc (T1) − pinitloc (T2)
, b2(x) =

pinitloc (x) − pinitloc (T1)

pinitloc (T2) − pinitloc (T1)
.

Because 1 and pinitloc (x) is in span(φ1, ..., φ4), b1(x) and b2(x) are also in the span of φi,
i = 1, ..., 4.
It can be shown that the linear approximation of p0(ζ, t) in the span of b1 and b2.
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Analysis

Assumption G. There exists a sufficiently smooth scalar valued function G(η) (G ∈ C3),
such that

|p−G(psp)|1,Q ≤ Cδ,

where δ is sufficiently small.
Under Assumption G and psp ∈W 1,s(Q) (s > 2), multiscale finite element method
converges with the rate given by

|p−ph|1,Q ≤ Cδ+Ch1−2/s|psp|W1,s(Q)+Ch
1−2/s|psp|1,Q+Ch‖f‖0,Q ≤ Cδ+Ch1−2/s.
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Scale separation

Assumption G-S. There exists a sufficiently smooth scalar valued function G(η)

(G ∈ C3) such that
|p0 −G(psp0 )|1,Q ≤ Cδ0,

where δ0 is sufficiently small.
Under Assumption G-S and the fact that pspε ∈W 1,s (s > 2) and |p0|2,Q + |psp0 |2,Q is
bounded, multiscale finite element method converges with the rate given by

|pε − ciφ
K
i |1,Q ≤ C

√
ε|p0|2,Q + Cδ0 + Cε(|pspε |1,Q + |psp0 |1,Q)+

C
√
ε|psp0 |2,Q + Ch1−2/s ≤ Cδ0 + C

√
ε+ Ch1−2/s.
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Mixed finite element methods

In each coarse block K, we construct basis functions for the velocity field

div(k(x)∇wKi ) =
1

|K| in K

k(x)∇wKi n
K =

(

gKi on eKi
0 else,

For the pressure, the basis functions are taken to be constants. In Chen and Hou,
gKi = 1

|eKi |
and eKi are the edges of K.

Mixed multiscale finite element methods using single-phase flow information is given in
the following way (Aarnes, 2004).
Suppose that psp solves the single-phase flow equation. We set bKi = (k∇psp|eKi ) · nK

and assume that bKi is uniformly bounded. Then the new basis functions for velocity is
constructed by solving the following local problems with gKi = bKi /β

K
i , where

βKi =
R

eKi
k∇psp · nKds.

Lemma. Inf-sup condition holds.
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Mixed finite element methods. Analysis

Assume
‖u − A(x)usp‖0,Q ≤ δ

and

|
X

i

Ai

Z

∂eKi

u
sp

n
Kds| ≤ Cδ1h

2.

Then
‖u − uh‖H(div,Q) + ‖p− ph‖0,Q ≤ Cδ + Cδ1 + Chγ .
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Multiscale finite element for
nonlinear problems
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Generalizations of multiscale finite element methods

• Homogenization of nonlinear pdes. Non-periodic homogenization.
• Generalizations of multiscale finite element methods to nonlinear partial differential

equations.
• Convergence.
• Oversampling technique.
• Applications.
• (Efendiev and Pankov, SIAM MMS 2003, SIAM AP 2004, EJDE 2005, Appl. Anal.,

Efendiev, Hou and Ginting, Comm. Math. Sci. 2004).
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Nonlinear elliptic and parabolic equations

∂

∂t
uε − div(aε(x, t, uε,∇uε)) + a0,ε(x, t, uε,∇uε) = f.

Assumptions:
(aε(·, ·, η, ξ1) − aε(·, ·, η, ξ2), ξ1 − ξ2) ≥ C|ξ1 − ξ2|p

|aε(·, ·, η, ξ)| + |a0,ε(·, ·, η, ξ)| ≤ C(1 + |η| + |ξ|)p−1

|aε(·, ·, η, ξ1) − aε(·, ·, η, ξ2)| ≤ C(1 + |η|p−1−s + |ξi|p−1−s)|ξ1 − ξ2|s

|aε(·, ·, η1, ξ) − aε(·, ·, η2, ξ)| ≤ C(1 + |ηi|p−1 + ξ|p−1)ν(|η1 − η2|)

(aε(·, ·, η, ξ), ξ) + a0,ε(·, ·, η, ξ)η ≥ C|ξ|p − C0

p > 1, s ∈ (0,min(p− 1, 1))
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Random homogeneous case

Extensions of periodic case: Quasiperiodic; Almost periodic; Random Homogeneous.

(Ω,Σ, µ) - a probability space. Assume a(x, ω) is strictly stationary field. Then it can be
represented as a(x, ω) = a(T (x)ω), x ∈ Rd where a(ω) is a fixed r.v., T (x) : Ω → Ω is a
measure preserving transformation, s.t., T (0) = I, and T (x1 + x2) = T (x1)T (x2); 3)
T (x) : Ω → Ω preserve the measure µ on Ω;
Assume T (x) is ergodic (i.e., any invariant function is constant almost everywhere).
Birkhoff Ergodic Theorem:

fω(x/ε) →M{fω}

as ε→ 0 weakly in Lploc(R
d).

Periodic and almost periodic cases are special cases.
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Random case

Auxiliary problem.
Periodic: div(a(y)(ξ + ∇Nξ)) = 0, N ∈ H1

per , a∗ξ = 〈a(y)(ξ + ∇Nξ)〉.
Random: a(ω)(ξ + v(ω)) ∈ L2

sol, v(ω) ∈ L2
pot.

a∗ξ = E[a(ω)(ξ + v(ω))]

Homogenized solution
−div(a∗∇u∗) = f.

First order corrector: u1,ε = u∗ +Nε
k(x)

∂u∗

∂xk
, where

∇Nε
k(x) = vk(x/ε).

Note that ‖Nε
k‖L2(Q) = o(1) as ε→ 0.
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Nonlinear parabolic equations

Aεuε = Dtuε − div(aε(x, t, uε,Dxuε)) + a0,ε(x, t, uε,Dxuε) = f.

a(·, ·, η, ξ) and a0(·, ·, η, ξ) are Carathéodory functions on Q× R × R
n, with values in R

n

and R respectively, satisfying:

(aε(·, ·, η, ξ1) − aε(·, ·, η, ξ2), ξ1 − ξ2) ≥ C(1 + |ξ1| + |ξ2|)p−β |ξ1 − ξ2|β ,

|aε(·, ·, η, ξ)| + |a0,ε(·, ·, η, ξ)| ≤ C(1 + |η| + |ξ|)p−1,

|aε(·, ·, η, ξ1) − aε(·, ·, η, ξ2)| ≤ C(1 + |η, ξi|p−1−s)|ξ1 − ξ2|s,

(aε(·, η, ξ), ξ) + a0,ε(·, η, ξ)η ≥ C|ξ|p − C0

|aε(·, ·, η1, ξ) − aε(·, ·, η2, ξ)| ≤ C(1 + |ηi, ξ|p−1)ν(|η1 − η2|)

It is known that up there exists a parabolic operator A∗, such that Aε G
=⇒ A∗ (up to a

subsequence). This means that uε → u weakly in Lp(W 1,p), where A∗u = f .
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G-convergence

Introduce

V = Lp(0, T,W 1,p
0 (Q0)), V = Lp(0, T,W 1,p(Q0)),

W = {u ∈ V,Dtu ∈ Lq(0, T,W−1,q(Q0))},

W = {u ∈ V ,Dtu ∈ Lq(0, T,W−1,q(Q0))}, W0 = {u ∈W,u(0) = 0}

and L1(u, v) = Dtu− div
`

a(x, t, v,Dxu)
´

.
Let L1

k(uk, v) = L1(u, v). The sequence Lk is called G-convergent to L (in symbols,

Lk
G

=⇒ L) if for every v ∈ V and u ∈W0 we have that

limuk = u

weakly in W0 and

limΓk(u, v) = Γ(u, v),

limΓk0(u, v) = Γ0(u, v)

weakly in Lq(Q)n and Lq(Q), respectively, as k → ∞. Here Γ’s denote the nonlinear
fluxes.
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Homogenization in random media

(Ω,Σ, µ) - a probability space. Assume a(ω, η, ξ) is strictly stationary field for each
η ∈ R, ξ ∈ Rn. Then it can be represented as a(z, ω, η, ξ) = a(Tzω, η, ξ), z ∈ Rd+1

where a(ω, η, ξ) is a fixed r.v., T (z) : Ω → Ω is a measure preserving transformation, s.t.,
T (0) = I, and T (z1 + z2) = T (z1)T (z2); 3) T (z) : Ω → Ω preserve the measure µ on Ω;
Periodic and almost periodic cases are special cases. Using Birkhoff Ergodic Theorem:

fω(x/εβ , t/εα) →M{fω}

as ε→ 0 weakly in Lploc(R
n+1).

Dtuε = div a(T (x/εβ , t/εα)ω, uε,Dxuε) − a0(T (x/εβ , t/εα)ω, uε,Dxuε) + f

in Q = Q0 × [0, T ].
U(z)f(ω) = f(T (z)ω) defines a (d+ 1)-parameter group of isometries in the space of
Lp(Ω). Denote by ∂full = (∂1, · · · , ∂d+1) the collection of generators of the group U(z).
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Auxiliary problems

−div(a(x/ε, uε,Dxuε)) = f, uε ∈W 1,p
0 (Q0)

Periodic case. The auxiliary problem: find Nη,ξ(y) periodic for every η, ξ, such that

−div(a(y, η, ξ +DyNη,ξ(y))) = 0.

Then uε → u weakly in W 1,p, where

−div(a∗(u,Dxu)) = f

and a∗(η, ξ) = 〈a(y, η, ξ +DxNη,ξ(y))〉.
Random case. The auxiliary problem: find wη,ξ ∈ Lppot(Ω), 〈wη,ξ〉 = 0, such that

a(ω, η, ξ + wη,ξ(ω)) ∈ Lp
′

sol(Ω).

Then a∗(η, ξ) = 〈a(ω, η, ξ + wη,ξ(ω))〉.
Note that if we define N , such that ∂N = w, then N is no longer strictly stationary
(periodic case is exception).
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Auxiliary problem for nonlinear parabolic equations

µDτN
µ
η,ξ − divy a(y, τ, η, ξ +DyN

µ
η,ξ) = 0.

µ = ε2β−α. Depending on the relation between α and β, the auxiliary problem is
different.
(1) Self-similar case α = 2β:

DτNη,ξ − divy a(y, τ, η, ξ +DyNη,ξ) = 0.

(2) α < 2β:
−diva(τ, y, η, ξ +DyNη,ξ) = 0.

(3) α > 2β:
−diva(y, η, ξ +DyNη,ξ) = 0,

where a(y, η, ξ) = 〈a(y, τ, η, ξ)〉τ .
(4) α = 0 - spatial homogenization:

−divya(t, y, η, ξ +Nη,ξ) = 0.

(5) β = 0 - temporal homogenization:

â(x, η, ξ) = 〈a(τ, x, η, ξ)〉τ .Multiscale modeling and computation of flow through porous media – p.66/157



Auxiliary problem for nonlinear parabolic equations

Efendiev and Pankov, Homogenization of nonlin. random parab. eq., Adv. Diff. Eq., 2005

µσwµη,ξ − div a(ω, η, ξ + ∂wµη,ξ) = 0.

S ⊂ Lp(Ω) that is contained in the domains of all operators ∂αfull = ∂α1
1 · · · ∂αn+1

n+1 ,

α ∈ Zn+1
+ .

V = Vp the completion of S with respect to the semi-norm

‖f‖V =

 

n
X

i=1

‖∂if‖pLp(Ω)

!1/p

.

By duality we define the operator div : Lp
′

(Ω)n → V′

by

〈divu,w〉 = −〈u, ∂w〉, ∀w ∈ V.

The operators ∂i may be viewed as derivatives along trajectories of the dynamical
system T (z)

(∂if)(T (z)ω) =
∂

∂zi
f(T (z)ω)

for a.e. ω ∈ Ω and f ∈ D(∂i, L
p(Ω)). Multiscale modeling and computation of flow through porous media – p.67/157



Auxiliary problem for nonlinear parabolic equations

Define an unbounded operator σ = (Dt) from V into V ′ as follows. V1, defined as the
image of operator ∂, is a closed subspace of Lp(Ω)n and ∂ maps V onto V1

isomorphically. We say that v ∈ V1 belongs to the domain D(σ1) if there exists f ∈ V ′
1

such that
〈v, ∂n+1ϕ〉 = −〈f, ϕ〉, ∀ϕ ∈ S1

and set σ1v = f . The (unbounded) operator σ1 is a well-defined closed linear operator
from V1 into V′

1 and its domain is dense in V1. Using the mollifiers Jδ , it can be verified
that σ′

1 = −σ1, where σ′
1 : V1 → V′

1 is the adjoint operator to σ1. Now we set

σ = div ◦ σ1 ◦ ∂ .

Then σ is a closed linear operator from V into V ′, with domain W = D(σ).
We need so-called near solutions that approximate w by random fields with smooth
realizations.
Near solutions are defined by µσNµ

δ + ANµ
δ = ∂ρδ . It can be shown that

limδ→0〈|ρδ|p〉 = 0. Lemma. Assume ρδ ∈ Lp(Ω) and 〈|ρ|p〉 < s(δ), where s(δ) → 0 as
δ → 0. Then for any sequence δ → 0 there exists a sequence ε0(δ), such that ε0(δ) → 0

as δ → 0, and for any Q ⊂ Rn+1

Z

Q
|ρδ(T (x/εβ , t/εα)ω)|pdxdt < s(δ), ∀ε < ε0(δ),

where s(δ) → 0 as δ → 0.
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Homogenization result

The homogenized operator is defined for a.e. realization by

L∗u = Dtu− div(a∗(ω, x, t, u,Dxu)) + a∗0(ω, x, t, u,Dxu).

a∗ and a∗0 are defined as follows (Efendiev and Pankov 2005).
For self-similar case (α = 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂wη,ξ)〉, a0
∗(η, ξ) = 〈a0(ω, η, ξ + ∂wη,ξ)〉,

where wη,ξ = wµ=1 ∈ W is the unique solution of

σwµ=1 − div a(ω, η, ξ + ∂wµ=1) = 0.

For non self-similar case (α < 2β),

a∗(η, ξ) = 〈a(ω, η, ξ + ∂wη,ξ)〉, a0
∗(η, ξ) = 〈a0(ω, η, ξ + ∂wη,ξ)〉,

where wη,ξ = w0 ∈ V is the unique solution of

−div a(ω, η, ξ + ∂w0) = 0.
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Homogenization result

Denote Mt{f} = limT→∞
1

2T

R T
−T f(T (0, τ)ω)dτ,

Mx{f} = lim|K|→∞
1

|K|

R

K f(T (y, 0)ω)dy

a(ω, η, ξ) = Mt(a(ω, η, ξ)).

Vs is obtained by completing the elements of S

f(ω) = Mt{f(T1(t)ω}.

with respect to the norm ‖f‖ = (
Pn
i=1 ‖∂if‖

p
Lp(Ω)

)1/p.

For spatial case (α = 0),

a(ω, η, ξ) = Mx{a(T2(x)ω, η, ξ + ∂wη,ξ(T2(x)ω))},

a0(ω, η, ξ) = Mx{a0(T2(x)ω, η, ξ + ∂wη,ξ(T2(x)ω))},

where wη,ξ = wx ∈ V
−div a(ω, η, ξ + ∂wx) = 0.
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Homogenization result

For temporal case (β = 0), the homogenized fluxes are defined by

a∗(ω, η, ξ) = P1a(ω, η, ξ), a
∗
0(ω, η, ξ) = P1a0(ω, η, ξ).
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Self-similar case α = 2, β = 1

wµ=1
ε,δ (x, t, ω) = εwµ=1

δ (T (x/ε, t/ε2)ω).

wµε,δ satisfies in Rn+1 for a.e. ω

Dtw
µ=1
ε,δ − div(a(T (x/ε, t/ε2)ω, η, ξ +Dxw

µ=1
ε,δ )) = divxρδ .

For every δ > 0 wµ=1
ε,δ → 0 weakly in W as ε→ 0.

Dtw
µ=1
ε,δ −div(a(T (x/ε, t/ε2)ω, η, ξ+Dxw

µ=1
ε,δ )+a0(T (x/ε, t/ε2)ω, η, ξ+Dxw

µ=1
ε,δ ) = hε,δ

+divxρδ ,

where hε,δ = a0(T (x/ε, t/ε2)ω, η, ξ +Dxw
µ=1
ε,δ ).
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Self-similar case α = 2, β = 1

It is possible to chose a generic sequence of δk → 0 as k → ∞ and corresponding
εk = ε(δk) such that wµ=1

k = wµ=1
εk,δk

→ 0 weakly in W , and ρk = ρδk → 0 in Lp
′

(Q)n as
k → ∞.
Consider for each ω ∈ Ω

Lku = Dtu− div(a(T (x/εk, t/ε
2
k)ω, η, ξ +Dxu) + a0(T (x/εk, t/ε

2
k)ω, η, ξ +Dxu).

It is known that Lk G-converges to L̃ (up to a subsequence),

L̃u = Dtu− div(ã(ω, t, x, η, ξ +Dxu)) + ã0(ω, t, x, η, ξ +Dxu).

On the other hand using Ergodic Theorem

a(T (x/εk, t/ε
2
k)ω, η, ξ +Dxw

µ=1
k ) → 〈a(ω, η, ξ + ∂wµ=1)〉

a0(T (x/εk, t/ε
2
k)ω, η, ξ +Dxw

µ=1
k ) → 〈a0(ω, η, ξ + ∂wµ=1)〉,

as k → ∞ weakly in Lp
′

(Q)n and Lp
′

(Q).
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Individual homogenization

Let Cb(Rn+1) be the Banach space of all bounded and continuous functions on Rn+1.
The closure of the space Trig(Rn+1) in Cb(Rn+1) is called the space of Bohr almost
periodic (a.p.) functions and is denoted by CAP (Rn+1).
Bohr compactification of Rn+1. There exist a compact Abelian group Rn+1

B and a
continuous group monomorphism

iB : Rn+1 −→ Rn+1
B

with the following property: f ∈ Cb(R
n+1) is almost periodic if and only if there exists a

unique function f̃ ∈ C(Rn+1
B ) such that f(z) = f̃(iBz). Such a couple (Rn+1

B , iB) is
unique up to a natural equivalence and is called the Bohr compactification. CAP (Rn+1

B )

may be isometrically identified with C(Rn+1
B ).

We define a dynamical system T (z) on Rn+1
B by

T (z)ω = ω + z, ω ∈ Rn+1
B , z ∈ Rn+1.

Denote by µ the Haar measure on Rn+1
B normalized by µ(Rn+1

B ) = 1.
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Individual homogenization

Besicovitch almost periodicity. For a function

f ∈ Lploc(R
n+1), 1 ≤ p <∞,

we set

‖f‖pBp = lim sup
t→∞

1

|Kt|

Z

Kt

|f(z)|pdz, (-15)

where Kt = {z ∈ Rn+1 : |zi| ≤ t, i = 1, 2, . . . , n+ 1}. A function f ∈ Lploc(R
n+1) is said

to be Besicovitch almost periodic with the exponent p if there is a sequence
fk ∈ Trig(Rn+1) such that

lim
k→∞

‖f − fk‖Bp = 0.

Bohr compactification: One can extend, by continuity, the isomorphism f 7−→ f̃ between
CAP (Rn+1) and C(Rn+1

B ) to the map from Bp(Rn+1) into Lp(Rn+1
B ). The density of

C(Rn+1
B ) in Lp(Rn+1

B ) implies that this map is onto and ‖f̃‖
p,Rn+1

B
= ‖f‖Bp . The map

f 7−→ f̃ induces an isometric isomorphism between Bp(Rn+1) and Lp(Rn+1
B ).
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Individual homogenization

Comparison estimate (Efendiev, Jiang and Pankov 2006)

Suppose Ak and Bk are sequences of operators of the class Π, Ak
G

=⇒ A, and

Bk
G

=⇒ B. There exists α > 0 such that given R > 0

g(t, x, R) ≤ g(t, x, r) +K
h

ϕ(r)1/q + ϕγ(r) + (1 + r)γg(t, x, r)γ
i

for a constant K = K(R) and almost all x ∈ Q and for all r > 0, where γ = s
q2(β−1)

,

ϕ(r) = r−p + r−αp/(p+α), r > 0.

Here
g(t, x, r) = sup

|ξ|,|η|≤r
|a(t, x, η, ξ) − b(t, x, η, ξ)|

gk(t, x, r) = sup
|ξ|,|η|≤r

|ak(t, x, η, ξ) − bk(t, x, η, ξ)|,

g(t, x, r) = lim sup
ρ→0

lim sup
k→∞

1

|Uρ(t, x)|

Z

Uρ(t,x)
gk(t, y, r)dydt
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Individual homogenization

We shall say that a sequence Ak ∈ Π converges to A ∈ Π component-wise in L1 (c.-w.
in L1), if for any r ≥ 0

lim
k→∞

sup
|ξ|,|η|≤r

|ak(t, x, η, ξ) − a(t, x, η, ξ)| =

= lim
k→∞

sup
|ξ|,|η|≤r

|ak0(t, x, η, ξ) − a0(t, x, η, ξ)| = 0

strongly in L1(Q).

Corollary. Let Alk be a double sequence of operators of the class Π such that Alk
G

=⇒ Al

for any l ∈ N, as k → ∞. Assume that Alk → Ak c.-w. in L1 uniformly with respect to

k ∈ N and Al → A c.-w. in L1, as l → ∞. Then Ak
G

=⇒ A.
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Individual homogenization

Individual homogenization takes place for the operator

Lmε u = Dtu− div am(
t

εα
,
x

εβ
, u,Dxu) + am0 (

t

εα
,
x

εβ
, u,Dxu),

we have Lmε
G

=⇒ L̂m.
Consider

g(t, x, r) = sup
|η|,|ξ|≤r

|am(t, x, η, ξ) − a(t, x, η, ξ)|,

ĝ(t, x, r) = sup
|η|,|ξ|≤r

|âm(η, ξ) − b(t, x, η, ξ)|.

We set

g(t, x, r) = lim sup
ρ→0

lim sup
ε→0

1

|Kρ(t, x)|

Z

Kρ(t,x)
g(ε−ατ, ε−βy, r)dydτ

It follows from comparison theorem
ĝ(t, x,R) ≤ g(t, x, r) + c(R)

ˆ

ϕ(r)1/q + ϕγ(r) + (1 + r)γg(t, x, r)γ
˜

. Pass to the limit as
m→ ∞, then r → ∞ gives b(t, x, η, ξ) = â(η, ξ).

Multiscale modeling and computation of flow through porous media – p.78/157



Multiscale finite element methods for nonlinear problems

Consider uε ∈W 1,p
0 (Q), −div(aε(x, uε,∇uε)) + a0,ε(x, uε,∇uε) = f .

Let Sh be “usual” finite dimensional space defined on a coarse-grid (1 � h� ε).
Multiscale map: Define E : Sh → V hε such that for any uh ∈ Sh, uε,h = Euh is defined by

−div(aε(x, ηuh ,∇uε,h)) = 0 in K,

ηuh = 1/|K|
R

K uhdx and uε,h − uh ∈W 1,p
0 (K) in each K.

For the linear case, V hε is a linear space whose basis can be obtained by mapping the
basis of Sh. This is precisely MsFEM for linear problems.

Coarse−grid Fine−grid
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Multiscale finite element methods for nonlinear problems

Multiscale Formulation
MsFEM
Find uh ∈ Sh (uε,h = Euh ∈ V hε ) such that

A(uh, vh) =

Z

Q
fvhdx, ∀vh ∈ Sh,

where

A(uh, vh) =
X

K

Z

K
((aε(x, η

uh ,∇uε,h),∇vh) + a0,ε(x, η
uh ,∇uε,h)vh)dx.
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Multiscale finite element methods for nonlinear problems

Multiscale Formulation
MsFEM
Find uh ∈ Sh (uε,h = Euh ∈ V hε ) such that

A(uh, vh) =

Z

Q
fvhdx, ∀vh ∈ Sh,

where

A(uh, vh) =
X

K

Z

K
((aε(x, η

uh ,∇uε,h),∇vh) + a0,ε(x, η
uh ,∇uε,h)vh)dx.

MsFVEM

−
Z

∂Vz

aε
`

x, ηuh ,∇uε,h
´

· n dS +

Z

Vz

a0,ε

`

x, ηuh ,∇uε,h
´

dx =

Z

Vz

f,

where Vz is control volume.
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Convergence Theorems

(1) General heterogeneities (up to a subsequence) (Efendiev and Pankov, 2004)

lim
h→0

lim
ε→0

‖uh − u‖W1,p(Q) = 0

(2) Periodic heterogeneities (up to a subsequence) (Efendiev, Hou and Ginting, 2004)

lim
ε/h→0

‖uh − u‖W1,p(Q) = 0

Explicit convergence rates for strongly monotone operators are obtained.
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Proof. Periodic Case

Consider, uε ∈W 1,p
0 (Q), −div(a( x

ε
, uε,∇uε)) = f .

Homogenization. For each η ∈ R, ξ ∈ Rd, Nη,ξ ∈W 1,p
per(Y )

−div(a(y, η, ξ + ∇yNη,ξ(y))) = 0.

The homogenized fluxes are computed by a∗(η, ξ) = 〈a(y, η, ξ + ∇xNη,ξ(y))〉, and the
homogenized equation is given by −div(a∗(u,∇xu)) = f .
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Proof. Periodic Case

Theorem.
lim

ε/h→0
‖uh − u‖W1,p(Q) = 0,

where h = h(ε) � ε, and h(ε) → 0, as ε→ 0.
Lemma. Coercivity: ‖uh‖W1,p(Q) ≤ C.
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Proof. Periodic Case

Theorem.
lim

ε/h→0
‖uh − u‖W1,p(Q) = 0,

where h = h(ε) � ε, and h(ε) → 0, as ε→ 0.
Lemma. Coercivity: ‖uh‖W1,p(Q) ≤ C.

〈Aε,huh, vh〉 =
X

K

Z

K
(a(

x

ε
, ηuh ,∇uε,h),∇vh)dx= 〈f, vh〉

〈A∗uh, vh〉 =
X

K

Z

K
(a∗(uh,∇uh),∇vh)dx

〈A∗uh −A∗Phu, uh − Phu〉 = 〈A∗uh −Aε,huh, uh − Phu〉 + 〈Aε,huh − A∗Phu, uh − Phu〉

= 〈A∗uh − Aε,huh, uh − Phu〉,

where Phu is a Galerkin solution, 〈A∗Phu, vh〉 = 〈f, vh〉, ∀vh ∈ Sh.
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Proof. Periodic Case

Introduce P = ∇xuh + ∇yNηuh ,∇uh (y) in each K, where −divya(y, ηuh ,P) = 0.

〈Aε,huh −A∗uh, vh〉 =
X

K

Z

K
(a(

x

ε
, ηuh ,∇uε,h) − a(

x

ε
, ηuh ,P),∇vh)dx+

X

K

Z

K
(a(

x

ε
, ηuh ,P) − a∗(ηuh ,∇uh),∇vh)dx+

X

K

Z

K
(a∗(ηuh ,∇uh) − a∗(uh,∇uh),∇vh)dx = I + II + III

Lemma. ‖∇uε,h −P‖p,Q ≤ C
`

ε
h

´
1

p(p−s)

“

|Q| + ‖uh‖pp,Q + ‖∇uh‖pp,Q
” 1
p

Lemma. III → 0 as h→ 0 if ‖uh‖W1,p+α(Q) ≤ C, for some α > 0 (Meyers type estimate,
Efendiev and Pankov, Num.Math., 2004).
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Proof. Periodic Case

〈A∗uh −A∗Phu, uh − Phu〉 ≤ c

„

“ ε

h

” s
p(p−s)

+
ε

h

«

“

|Q| + ‖uh‖pp,Q + ‖∇uh‖pp,Q
” 1
q ×

‖∇(uh − Phu)‖p,Q + e(h)‖∇(uh − Phu)‖p,Q.
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Proof. Periodic Case

〈A∗uh −A∗Phu, uh − Phu〉 ≤ c

„

“ ε

h

” s
p(p−s)

+
ε

h

«

“

|Q| + ‖uh‖pp,Q + ‖∇uh‖pp,Q
” 1
q ×

‖∇(uh − Phu)‖p,Q + e(h)‖∇(uh − Phu)‖p,Q.

If A∗ is a monotone operator, explicit convergence rate can be obtained.
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Proof. Periodic Case

〈A∗uh −A∗Phu, uh − Phu〉 ≤ c

„

“ ε

h

” s
p(p−s)

+
ε

h

«

“

|Q| + ‖uh‖pp,Q + ‖∇uh‖pp,Q
” 1
q ×

‖∇(uh − Phu)‖p,Q + e(h)‖∇(uh − Phu)‖p,Q.

If A∗ is a monotone operator, explicit convergence rate can be obtained.
Approximation of the gradients

Theorem. If uh is a MsFEM solution, then uε,h = Euh converges to uε in W 1,p(Q) as
ε/h→ 0.
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Multiscale finite element methods of parabolic eqns

For any uh ∈ Sh define uε,h(x, t) = Euh such that E : Sh → V hε and

∂

∂t
uε,h = div(aε(x, t, η

uh ,∇uε,h)) in K × [tn, tn+1],

uε,h(x, t = tn) = uh(x), uε,h = uh on ∂K.
Find uh ∈ Sh such that

Z

Q
(uh(t = tn+1) − uh(t = tn))vhdx+ Aε,h(uh, vh) =

Z tn+1

tn

fvhdxdt

where

Aε,h(uh, vh) =

Z tn+1

tn

[(aε(x, t, η
uh ,∇uε,h),∇vh)dxdt+

a0,ε(x, t, η
uh ,∇uε,h)vh]dxdt

Explicit if uε,h = Euh(t = tn)

Implicit if uε,h = Euh(t = tn+1)
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Convergence result

Theorem. (General heterogeneities [Efendiev and Pankov, SIAM MMS 2004])

lim
h→0

lim
ε→0

‖uh − u‖
Lp(0,T,W

1,p
0 (Q))

= 0

(up to a subsequence).
Proof uses homogenization of random nonlinear parabolic operators (Efendiev and
Pankov, Adv. PDE).
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Remarks

• In the periodic case the problem in a period can be solved to approximate the
solution of the local problem by periodicity. Solve

−div(aε(x, ηuh ,∇uε,h)) = 0 in a period

ηuh = 1/|K|
R

K uhdx and uε,h − uh ∈W 1,p
per .

• Oversampling techniques both in space and time. The local problems are solved
in S ( K ⊂ S, K - target coarse block) to avoid “pollution” from artificial boundary
conditions.

• If aε(x, t, η, ξ) = kε(x)kr(η)ξ then the local problems are solved only once.
• In general one can avoid solving the local parabolic problems in K × [tn, tn+1].

Assume aε(x, t, η, ξ) = aε(x/εβ , t/εα, η, ξ). 1) if aε(x, t, η, ξ) = aε(x, η, ξ), then the
following local problems can be considered: for each vh ∈ Sh,
div(aε(x, ηvh ,∇vε,h)) = 0 in K. 2) if α < 2β, −div(a(x/εβ , t/εα, ηvh ,∇vε)) = 0 in
K.
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Oversampling technique

In general, given vh ∈ Sh, where vh is defined in K, we want to find vε,h that satisfies

div(aε(x, η
vh ,∇vε,h)) = 0 in S

such that vε,h(zi) = vh(zi), where zi are the nodal points of the target coarse element
K.
Special cases: aε(x, η, ξ) = aε(x, η)ξ. Given vh ∈ Sh, we define

vε,h =
3
X

i=1

ci φ
i
ε,

where φiε satisfies

div(a(x/ε, ηvh )∇φiε) = 0 in S, φiε = φi on ∂S.

The constants ci, i = 1, 2, 3 are determined by imposing the conditions
vε,h(zj) = vh(zj) j = 1, 2, 3.
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Oversampling. Illustration

Fine−gridCoarse−grid
Oversampled

  domain

S

K
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Numerical Examples

• Enhanced diffusion due to nonlinear heterogeneous convection

∂

∂t
uε −

1

ε
vε(x, t)) · ∇F (uε) − d∆xxuε = f,

where div(v) = 0.
• −div(aε(x, uε)∇uε) = f .
• Richards’ equation
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Enhanced diffusion

Dtuε −
1

ε
v(T (x/εβ , t/εα)ω) ·DxF (uε) − d∆xxuε = f,

where divv = 0. Assuming that there exists homogeneous stream function
H(T (x/εβ , t/εα)ω), divH = v .

Dtuε − div(a((x/εβ , t/εα)ω, uε)Dxuε) = f,

where

a =

 

d H((x/εβ , t/εα)ω)F ′(u)

−H((x/εβ , t/εα)ω)F ′(u) d

!

.
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Enhanced diffusion

Dtu = div(a∗(u)Dxu),

a∗ij(η) = dδij + 〈HikF ′(η)W kj
η 〉, where wiη = W ij

η ξi, wη = ∂Nη .

Numerical examples:H = 0.5(sin(t/εα) + sin(t
p

(2)/εα))(sin(2πy/ε) + sin(2
p

(2)πy/ε)),
ε = 0.1 and d = 0.1 (molecular diffusion) and vary α, α = 1, 2. The flux function is
chosen to be Buckley-Leverett function F (u) = u2/(u2 + 0.2(1− u)2)), also the case - H
is a Gaussian field is considered.
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Numerical Results
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Enhanced diffusion for horizontal and vertical directions, quasi periodic layered flow,
α = β = 1.
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Numerical Results
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Enhanced diffusion for horizontal and vertical directions, quasi periodic layered flow
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Numerical Results
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The solution comparison
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Numerical Results
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Numerical Results
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Enhanced diffusion for horizontal and vertical directions, Gaussian spatial field, α = 2,
β = 1.
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Numerical Results

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

time

fine model
averaged (no enhanced diffusion)
homogenized (with enhanced diffusion)

U 

The solution comparison

Multiscale modeling and computation of flow through porous media – p.99/157



Numerical Results
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Elliptic case

−div(aε(x, uε)∇uε) = f.

aε(x, η) = kε(x)/(1 + η)αε(x). kε(x) = exp(βε(x)) is chosen such that βε(x) is a
realization of a random field.
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Convergence

Table 1: Relative MsFEM Errors without Oversampling

N
L2-norm H1-norm L∞-norm

Error Rate Error Rate Error Rate
32 0.029 0.115 0.03

64 0.053 -0.85 0.156 -0.44 0.0534 -0.94
128 0.10 -0.94 0.234 -0.59 0.10 -0.94

Table 1: Relative MsFEM Errors with Oversampling

N
L2-norm H1-norm L∞-norm

Error Rate Error Rate Error Rate
32 0.002 0.038 0.005

64 0.003 -0.43 0.021 0.87 0.003 0.72
128 0.001 1.10 0.009 1.09 0.001 1.08
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Convergence

Table 1: Relative MsFEM Errors for random heterogeneities,
spherical variogram, lx = 0.20, lz = 0.02, σ = 1.0

N
L2-norm H1-norm L∞-norm hor. flux

Error Rate Error Rate Error Rate Error Rate
32 0.0006 0.0515 0.0025 0.027

64 0.0002 1.58 0.029 0.81 0.0013 0.94 0.018 0.58

128 0.0001 1 0.016 0.85 0.0005 1.38 0.012 0.58
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Richards’ Equation

∂

∂t
θ(u) − divK(x, u)∇(u+ x3) = 0,

where θ(u) is volumetric water content (soil moisture) and u is the pressure.
Haverkamp model - θ(u) =

α(θs−θr)

α+|u|β
+ θr , K(x, u) = Ks(x)

A
A+|u|γ

;

van Genuchten model (M. T. van Genuchten, 1980) - θ(u) =
α(θs−θr)

[1+(α|u|)n]m
+ θr ,

K(x, u) = Ks(x)
{1−(α|u|)n−1[1+(α|u|)n]−m}2

[1+(α|u|)n]m/2
;

Exponential model (A. W. Warrick, 1976) - θ(u) = θs eβu, K(x, u) = Ks(x) eαu.
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Numerical setting

Exponential model

• BC: no flow on the lateral sides and uB = −10 on the bottom. The top boundary is
divided into three equal parts with prescribed uT in the middle and no flow on
other two.

• The other parameters: β = 0.01, θs = 1, Ks = 1, and α = 0.01.
• The heterogeneity comes from Ks(x) and α(x).
• Isotropic and anisotropic heterogeneities are considered with lx = lz = 0.1 and
lx = 0.20, lz = 0.01, respectively.

• Backward Euler scheme is used with ∆t = 2.
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Numerical results

Exponential model with isotropic heterogeneity. Comparison of water pressure between the
fine model (left) and the coarse model (right).
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Numerical results

Exponential model with anisotropic heterogeneity. Comparison of water pressure between
the fine model (left) and the coarse model (right).
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Numerical Results

Figure 0: Haverkamp model

The use of limited global information for strongly channelized media.
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Upscaling of transport
equations
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Homogenization of hyperbolic equations

• Hyperbolic equation with oscillatory velocity field

∂Sε

∂t
+ v

ε · ∇f(Sε) = 0

• Homogenized (macro-scale) equation is a non-local equation with memory effects.

• Consider the linear equation, ∂S
ε

∂t
+ vε · ∇Sε = 0, in a layered media,

v
ε = (vε(y), 0).

• Assume the velocity vε(y) has finite number of distinct values vi,
mi = P{v(y) = vi}. Then the homogenized equation (Tartar, 89, Hou and Xin, 92)

St + vSx =
X

k

Z t

0
βkSxx(x− uk(t− τ), τ)dτ.
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Homogenization of hyperbolic equations, continued

• Homogenization of nonlinear hyperbolic equations in layered media.
• Main idea: the use of piece-wise linear discretization of the flux and piece-wise

constant discretization of the initial condition (Dafermos, 72).
• ‖Sk(·, t) − S(·, t)‖L1 ≤ ‖Sk(·, 0) − S(·, 0)‖L1 + Ct‖fk − f‖Lip.
• Homogenized equation (Efendiev and Popov, 2005)

St + USx =
X

k=1

Z t

0
βkSxx(x− uk(t− τ), τ)dτ,

where βk and uk depend only on one point correlations of v, f ′(S) and are defined
from (Riemann problem)

X

k

βk

uk − z
=

0

@

X

i,j

mi∆j

z − vif ′(Sj)

1

A

−1

− z + U, ∀z ∈ C.
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Perturbation technique

• Consider
∂Sε

∂t
+ v

ε · ∇Sε = 0

Expand the velocity and the saturation

vε = v + v
′, Sε = S + S

′

• The fluctuations can be neglected on the scale of a coarse grid block (not on the
scale of the entire domain!).

• Substituting the expansion into the equation and taking “average”

∂S

∂t
+ v · ∇S + v

′ · ∇S′

= 0.

Here we have used S′ = 0, v′ = 0.
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Perturbation technique, continued

• v
′ · ∇S′ represent the macro scale effects associated with the small scales. To

approximate it the equation for the fluctuating components is used

∂S
′

∂t
+ v · ∇S′

+ v
′ · ∇S + v

′ · ∇S′

= v
′ · ∇S′

.

• Solving for S
′

along the streamline dx/dt = v we get

v
′

kS
′

= −
Z t

0
v
′

k(x)v
′

j(x(τ))∇jSdτ +H.O.T

• Then v
′

S
′ is given by

v
′

kS
′

= −
Z t

0
v
′

k(x)v
′

j(x(τ))dτ∇jS
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Perturbation technique, continued

• The coarse scale equation is (Efendiev et al., WRR, 2000)

∂S

∂t
+ v · ∇S = ∇iDij∇jS,

where Dij =
R t
0 v

′

j(x)v
′

k(x(τ))dτ

• The correlation of the velocity appears as a diffusivity
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Perturbation technique for nonlinear saturation equation

• The approximate macro scale equation is (Efendiev et al., WRR, 2002)

∂S

∂t
+ v · ∇f(S) = ∇if ′(S)2Dij∇jS

• Dij depends on two point correlation of the velocity field and S.
• The overall approach is obtained by combining the saturation equation with the

pressure equation in the form ∇ · λ(S)k∇p = 0.
• The multiscale base functions are constructed once. The two-point correlation of

the velocity can be found using the multiscale base functions. This approach is
very efficient and can predict the quantity of interest on a highly coarsened grid.
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The essence of the derivation

• Expand vε = v + v
′, Sε = S + S′, and f = f + f ′. Substitute the expansions into

the original equation and take average

∂S

∂t
+ v · ∇f(S) + ∇ · fS(S)v′S′ +

1

2
∇ · vfSS(S)S′2 = 0.

• We need to model the coarse scale quantities, velocity-saturation covariance
(v′S′), and saturation-saturation covariance (S′S′). Their modeling is based on the
equation for fluctuating components

∂S′

∂t
+ vjS

′fSS(S)∇jS + vjfS(S)∇jS′ + v
′

jfS(S)∇jS = Φ(x, t),

where Φ(x, t) is a coarse scale function.
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The essence of the derivation, continued

• Solving for S′ along the coarse trajectories dx/dt = vfS(S),

S
′

(x, t) =

Z t

0
−v′j(x(τ), τ)fS(S(τ,x(τ)))∇jS(τ,x(τ)) exp (−

Z t

τ
L(x(µ), µ)dµ )dτ,

where L(x(µ), µ) is a coarse scale function. From here v′(x, t)S′(x, t) and
S′(x, t)S′(x, t) can be evaluated.

• Further we simplify the expression showing that dS(x(t), t)/dt = O(v′2), if
f ′(0) = f ′(1) = 0.
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Nonlinear equation

• We propose an alternative way to calculate the diagonal components of two-point
correlation of the velocity

v
′

i(x, t)v
′

i(x(τ), τ) ≈ α(σ, lx, lz)std(vi(x, t))vi(x(τ), τ).
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Coarse grid equation in FV framework

• Coarse grid transport equation:

∂S

∂t
+ v · ∇S = ∇ ·

˘

D(x, t)∇S(x, t)
¯

(single-phase),

∂S

∂t
+ v · ∇f(S) = ∇ ·

˘

fS(S)2D(x, t)∇S(x, t)
¯

(multi-phase)

where

Dij(x, t) =

Z

Vxi

»Z t

0
v′i(x)v

′
j(x(τ))dτ

–

dA.

• First order approximation: Dij(x, t) =
R

Vxi
v′i(x)LjdA,
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Numerical Results. Exponential variogram
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Numerical Results. Exponential variogram
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Numerical Results. Spherical variogram

0 0.25 0.5 0.75 1 1.25 1.5
0

0.25

0.5

0.75

1

lx=0.5, lz=0.025, σ=2, M=10

PVI

100 x 100         
10 x 10 (Fvs=0)   
10 x 10 (with Fvs)

F 

Multiscale modeling and computation of flow through porous media – p.122/157



Numerical Results. Spherical variogram
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Numerical Results. Spherical variogram

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
time = 0.15 PVI

X

Z 

Multiscale modeling and computation of flow through porous media – p.124/157



Two-component miscible flow

•

−∇ ·


k(x)

µ(C)
∇p
ff

= q

∂C

∂t
+ v · ∇C = (C̃ − C)q.

•

µ(C) =
µ(0)

“

1 − C +M
1
4 C
”4
,

• The pressure equation is solved using the MsFVEM.
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Two-component miscible flow
• Perturbation technique for the transport equation: v = v + v′, C = C + C′

Result in macrodiffusion representing the subgrid effect on the coarse grid

• Coarse grid transport equation:

∂C(x, t)

∂t
+ v · ∇C(x, t) −∇ · (D(x, t)∇C(x, t)) = (C̃ − C(x, t))q,

where Dij(x, t) = e−qt
Z t

0
eqτ v′i(x, t) v

′
j(x(τ), τ) dτ.

• Approximation of Dij .
Let

Lj(x, t) =

Z t

0
eqτ v′j(x(τ), τ) dτ.

Then

Dij(x, t) ≈ e−qt v′i(x, t)Lj(x, t).

• Numerical computation of Lj(x, t):
Let tp < t and yp denotes the particle location at time tp.
Then Lj(x, t) ≈ Lj(yp, tp) + eqt (t− tp) v′j(x, t).
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Numerical results (two-phase flow)
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Two-component miscible flow
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(left) and isotropic case (right). The mobility ratio, M = 5.
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Two-component miscible flow
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Comparison of fractional flow of displaced fluid at the production edge for anisotropic case
(left) and isotropic case (right). The mobility ratio, M = 3.
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Multiscale methods for
two-phase flow in flow-based

coordinate system
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Two-phase flow equations in flow-based coor.

∂

∂ψ

„

k2λ(S)
∂P

∂ψ

«

+
∂

∂p

„

λ(S)
∂P

∂p

«

= 0.

∂S

∂t
+ (v · ∇ψ)

∂f(S)

∂ψ
+ (v · ∇p)∂f(S)

∂p
= 0.

Consider λ(S) = 1. Homogenization of hyperbolic equations.

Sεt + vε0f(Sε)p = 0

S(p, ψ, t = 0) = S0,

vε0(p) = v0(p,
p

ε
).

Multiscale modeling and computation of flow through porous media – p.131/157



Homogenization of transport

Then, for each ψ, it can be shown that Sε(p, ψ, t) → S̃(p, ψ, t) in L1((0, 1) × (0, T )),
where S̃ satisfies

S̃t + ṽ0f(S̃)p = 0,

where ṽ0 is harmonic average of vε0, i.e.,

1

vε0
→ 1

ṽ0
weak ∗ in L∞(0, 1).

Theorem.

‖Sε − S̃‖n ≤ Gε1/n.

Note. S̃ can be considered as an upscaled Sε along streamlines. Can we average
across streamlines?
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Homogenization across streamlines

If the velocity field does not depend on p inside the cells, that is, ṽ(ψ, ψ
ε
), then the

homogenized solution, S̃, (weak∗ limit of S̃, which will be denoted by S), satisfies

St + ṽ0Sp =

Z t

0

Z

Spp(p− λ(t− τ), ψ, τ)dµψ
ε

(λ)dτ.

Here, dνψ
ε

the Young measure associated with the sequence ṽ0(ψ, ·) and dµψ
ε

is a

Young measure that satisfies

0

@

Z dνψ
ε
(λ)

s
2πiq

+ λ

1

A

−1

=
s

2πiq
+ ṽ0 −

Z dµψ
ε
(λ)

s
2πiq

+ λ
.

We have denoted by ṽ0 the weak limit of the velocity. This equation has no dependence
on the small scale and we consider it to be the full homogenization of the fine saturation
equation.
Efendiev and Popov (CPAA, 2005) have extended this method for the Riemann problem
in the case of nonlinear flux.

Multiscale modeling and computation of flow through porous media – p.133/157



Numerical Averaging across Streamlines

S̃ = S(p, ψ, t) + S′(p, ψ, ζ, t)

ṽ0 = ṽ0(p, ψ, t) + ṽ′0(p, ψ, ζ, t).

First, consider f(S) = S. Averaging fine-scale equations with respect to ψ we find an
equation for the mean of the saturation

St + ṽ0Sp + ṽ′0S
′
p = 0.

An equation for the fluctuations is

S′
t + (ṽ0 − ṽ0)Sp + ṽ0S

′
p − ṽ′0S

′
p = 0.

Together, the equations for the saturation are

St + ṽ0Sp + ṽ′0S
′
p = 0

S′
t + ṽ′0Sp + ṽ0S

′
p − ṽ′0S

′
p = 0.

(-28)
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dP

dt
= ṽ0, with P (p, 0) = p.

S′ = −
Z t

0

“

ṽ′0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ) + ṽ′0(P (p, τ), ψ)S′
p(P (p, τ), ψ, τ) + ṽ′0S

′
p)
”

dτ.

dP

dt
= ṽ0, with P (p, 0) = p.

S′ = −
Z t

0

“

ṽ′0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ) + ṽ′0(P (p, τ), ψ)S′
p(P (p, τ), ψ, τ) + ṽ′0S

′
p)
”

dτ.

ṽ′0S
′ = −

Z t

0
ṽ′0ṽ0(P (p, τ), ψ)Sp(P (p, τ), ψ, τ)dτ.

It can be easily shown that Sp(P (p, τ) depends weakly on time. Then

ṽ′0S
′ = −

Z t

0
ṽ′0ṽ

′
0(P (p, τ), ψ)dτSp.
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Nonlinear case

St + ṽ0f(S)p + ṽ′0(fS(S)S′)p = 0

S′
t + ṽ′0fS(S)Sp + ṽ0fS(S)S′

p − ṽ′0S
′
p = 0.

The macrodispersion is discretized as

ṽ′0(fS(S)S′)p =
ṽ′0fS(S)S′

i+1
− ṽ′0fS(S)S′

i

∆p
+O(∆p).

We solve the second equation on the coarse characteristics defined by

dP

dt
= ṽ0fS(S), with P (p, 0) = p

and form the terms that appear in the macrodispersion

ṽ′0fS(S)S′ = −
Z t

0
ṽ′0fS(S)ṽ′0(P (p, τ), ψ)fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ)dτ.

Multiscale modeling and computation of flow through porous media – p.136/157



Nonlinear case

We have dropped terms that are second-order in fluctuating quantities. It can be shown
that fS(S(P (p, τ), ψ, τ))Sp(P (p, τ), ψ, τ) does not vary significantly along the
streamlines and it can be taken out of the integration in time:

ṽ′0fS(S)S′ = −
Z t

0
ṽ′0ṽ

′
0(P (p, τ), ψ)dτfS(S)2Sp.

This expression is similar to the one obtained in the linear case, however the
macrodispersion depends on the past saturation through the equation for the coarse
characteristics.
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Numerical results
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Permeability fields used in the simulations. Left - permeability field with exponential
variogram, middle - synthetic channelized permeability field, right - layer 36 of SPE
comparative project
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Numerical results
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Saturation snapshots for variogram based permeability field (top) and synthetic channelized
permeability field (bottom). Linear flux is used. Left figures represent the upscaled saturation
plots and the right figures represent the fine-scale saturation plots.
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Numerical results
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Saturation snapshots for variogram based permeability field (top) and synthetic channelized
permeability field (bottom). Nonlinear flux is used. Left figures represent the upscaled
saturation plots and the right figures represent the fine-scale saturation plots.
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Numerical results

Upscaling error for permeability generated using two-point geostatistics

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0021 6.57e− 4 2.15e− 4 8.75e− 5

L1 error of S with macrodispersion 0.115 0.0696 0.0364 0.0135

L1 error of S fine without macrodispersion 0.1843 0.0997 0.0505 0.0191

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0023 8.05e− 4 2.89e− 4 1.29e− 4

L1 error of S with macrodispersion 0.116 0.0665 0.0433 0.0177

L1 error of S fine without macrodispersion 0.151 0.0805 0.0432 0.0186
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Numerical results

Upscaling error for SPE 10, layer 36

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S with macrodispersion 0.0554 0.0435 0.0307 0.0176

L1 error of S fine without macrodispersion 0.123 0.0798 0.0484 0.0258

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S with macrodispersion 0.0743 0.0538 0.0348 0.0189

L1 error of S fine without macrodispersion 0.0924 0.0602 0.0395 0.0202
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Numerical results

Total error for SPE10 layer 36

LINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0128 0.0093 0.0072 0.0042

L1 error of S̃ computed on coarse grid 0.023 0.0095 0.0069 0.0052

L1 upscaling error of S 0.0554 0.0435 0.0307 0.0176

L1 error of S computed on coarse grid 0.0683 0.052 0.0361 0.0205

NONLINEAR FLUX 25x25 50x50 100x100 200x200

L1 upscaling error of S̃ 0.0089 0.0064 0.0054 0.0033

L1 error of S̃ computed on coarse grid 0.0338 0.0148 0.0074 0.0037

L1 upscaling error of S 0.0743 0.0538 0.0348 0.0189

L1 error of S computed on coarse grid 0.115 0.0720 0.0406 0.0204
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Numerical results

Computational cost

fine x.y fine p, ψ S̃ S

layered, linear flux 5648 257 9 1

layered, nonlinear flux 14543 945 28 4

percolation, linear flux 8812 552 12 1

percolation, nonlinear flux 23466 579 12 1

SPE10 36, linear flux 40586 1835 34 2

SPE10 36, nonlinear flux 118364 7644 25 2
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Numerical results
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Left: Saturation plot obtained using coarse-scale model. Right: The fine-scale saturation
plot. Both plots are on coarse grid. Variogram based permeability field is used. µo/µw = 5.
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Numerical results
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Comparison of fractional flow for coarse- and fine-scale models. Variogram based
permeability field is used. µo/µw = 5.
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Numerical results

Convergence of the upscaling method for two-phase flow for variogram based permeability

with S̃ 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0014 0.007 0.004

L2 velocity error at t =
3Tfinal

4
0.0235 0.0137 0.0072

L1 saturation error t = Tfinal 0.0105 0.0052 0.0027

with S 50x50 100x100 200x200

L2 pressure error at t =
3Tfinal

4
0.0046 0.0021 0.0008

L2 velocity error at t =
3Tfinal

4
0.0530 0.0335 0.0246

L1 saturation error t = Tfinal 0.0546 0.0294 0.0134
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Multiscale methods for
transport equation
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Adaptive Multiscale Algorithm

For each T ∈ T ntr , do
• For Ki ⊂ TE , compute

S
n+1/2
i = Sni +

4t
R

Ki
φ dx

2

4

Z

Ki

qw(Sn+1/2) −
X

j 6=i

V ∗
ij

3

5 ,

where V ∗
ij =

(

Vij(S
n) if γij ⊂ ∂TE and vij < 0.

Vij(S
n+1/2) otherwise.

• Set Sn+1|T = Sn+1/2|T .

For each T 6∈ T ntr , do
• Set Sn+1|T = Sn|T .
• While

P

j4jt ≤ 4t, compute

S̄n+1
T = S̄n+1

T +
4jt
R

T φdx

2

4

Z

T
qw(Sn+1) dx−

X

γij⊂∂T

Vij(S
n+1)

3

5 ,

and set Sn+1|T = IT (S̄n+1
T ).
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Multiscale interpolation

The basis functions Φki = χi(x, τk) represent snapshots of the solution of the following
equation:

φ
∂χi

∂t
+ ∇ · (fw(χi)v) = qw in Ti.

The multiscale interpolation is chosen as

ITi (S̄
n
i ) = ωΦki + (1 − ω)Φk+1

i ,

where ω ∈ [0, 1] is chosen such that the interpolation preserves mass, i.e., such that

Z

Ti

ITi(S̄
n
i )φdx = S̄ni

Z

Ti

φ dx.
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The relation to pseudo type of approaches

∂S

∂t
+ ∇ · F ∗(x, S) = 0,

where F ∗(x, S) = vf∗w , v is the upscaled velocity field.
The pseudofunctions are computed from local fine scale problems such that they
provide the same average response as the fine grid model for the prescribed boundary
conditions. Assuming that the pseudofunctions have been computed, the corresponding
coarse scale equation takes the following form:

S
n+1

= S
n

+
∆t

R

T φdx

2

4

Z

T
qw(Sn)dx−

X

Γij⊂∂T

V ∗
ij(S

n)

3

5 ,

where V ∗
ij(S) = max{vijf∗w,i(Si),−vijf∗w,j(Sj)}.

Advantages: (1) adaptivity; (2) ability to downscale; (3) avoid no flow boundaries.
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Analysis

Gf (S) = − 1
R

T φ dx

Z

∂T
fw(S)(v · n) ds,

Gc(S) = − 1
R

T φ dx

Z

∂T
fw(I(S))(v · n) ds.

Let
δn = S

n − S
n
h .

It can be shown that

|δn| ≤ o(∆t) + ∆t

n−1
X

k=0

(1 + C∆t)k|Gf (Sn−k) −Gc(S
n−k

)| ≤ o(∆t) +

"

eC(n∆t) − 1

C

#

»

max
1≤i≤n

|Gf (Si) −Gc(S
i
)|
–

.

If we assume scale separation, then Gf (S) ≈ Gc(S). Analysis is also performed for the
cases without scale separation.
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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