A Fictitious Domain Method for Particulate Flows

In collaboration with C. Diaz-Goano, C. Veeramani, and K. Nandakumar

University of Alberta

Contents

- Introduction
- Fictitious domain method with a distributed Lagrange multiplier.

- Fictitious domain method with a global Lagrange multiplier
- Discrete formulation
- Test problems
- Conclusions

Introduction

- Eulerian vs. Lagranian methods
- Fictitious Domain Methods
- Test Problems

Formulation

$$egin{aligned} & o_1 rac{D \hat{\mathbf{u}}_1}{Dt} = \nabla \cdot \hat{\sigma}_1, \quad
abla \cdot \hat{\mathbf{u}}_1 = 0 \ ext{in} \ \Omega_1 \ & \hat{\sigma}_1 = \hat{p}_1 \delta + 2 \mu_1 D[\hat{\mathbf{u}}_1] \ & M_i rac{d \mathbf{U}_i}{dt} = M_i \mathbf{g} + \mathbf{F}_i \ & \mathbf{I}_i rac{d \boldsymbol{\omega}_i}{dt} + \boldsymbol{\omega}_i imes \mathbf{I}_i \boldsymbol{\omega}_i = \mathbf{T}_i \end{aligned}$$

Ottawa, May 2006 - p.4

$$\int_{\Omega} \rho_1 (\frac{d\mathbf{u}}{dt} - \mathbf{g}) \cdot \mathbf{v} d\mathbf{x} - M(\frac{d\mathbf{U}}{dt} - \mathbf{g}) \cdot \mathbf{V} - (\mathbf{I}\frac{d\varpi}{dt} + \varpi \times \mathbf{I}\varpi) \cdot \xi + \int_{\Omega} \sigma : \mathbf{D}[\mathbf{v}] d\mathbf{x} = \langle \lambda, \mathbf{v} - (\mathbf{V} + \xi \times \mathbf{r}) \rangle_{P(t)}$$
(1)

$$\int_{\Omega} q \cdot \nabla \mathbf{u} d\mathbf{x} = \mathbf{0}$$
(2)
$$\langle \eta, \mathbf{u} - (\mathbf{U} + \boldsymbol{\varpi} \times \mathbf{r}) \rangle_{P(t)} = 0$$
(3)

- Step1 :Advection
- Step2 : Generalized Stokes
- <u>Step3</u>: Rigid body constraints

$$\begin{aligned} \mathbf{u}_{2}(\mathbf{x},t)|_{\Omega_{i}} &= \mathbf{U}_{i}(t) + \boldsymbol{\omega}_{i}(t) \times (\mathbf{x} - \mathbf{X}_{i}(t)) \\ &\frac{d}{dt} \int_{\Omega_{2,i}} \rho_{2,i} \mathbf{u}_{2} d\Omega = \int_{\Omega_{2,i}} (\rho_{2,i} - \rho_{1}) \mathbf{g} d\Omega + \int_{\partial\Omega_{2,i}} \hat{\boldsymbol{\sigma}}_{1} \mathbf{n}_{i} ds \\ &\int_{\Omega_{2,i}} \frac{D}{Dt} \left(\rho_{2,i} \mathbf{u}_{2}\right) d\Omega = \int_{\Omega_{2,i}} (\rho_{2,i} - \rho_{1}) \mathbf{g} d\Omega + \int_{\Omega_{2,i}} \nabla \cdot \boldsymbol{\sigma}_{1} d\Omega \\ &\int_{\Omega_{2,i}} \frac{D}{Dt} \left(\rho_{2} \mathbf{u}_{2,i}\right) d\Omega = \int_{\Omega_{2,i}} (\rho_{2,i} - \rho_{1}) \mathbf{g} d\Omega + \int_{\Omega_{2,i}} \left(-\nabla p_{1} + \mu_{1} \nabla^{2} \mathbf{u}_{1}\right) d\Omega \end{aligned}$$

$$\mathbf{F} = \begin{cases} -\rho_1 \frac{D\mathbf{u}_1}{Dt} + \mu_1 \nabla^2 \mathbf{u}_1 - \nabla p_1, & \text{in } \Omega_{2,i}, \quad i = 1, \dots, n \\ 0, & \text{in } \Omega_1 \end{cases}$$

$$\rho_1 \frac{D \mathbf{u}_1}{D t} = -\nabla p_1 + \mu_1 \nabla^2 \mathbf{u}_1 - \mathbf{F}, \quad \nabla \cdot \mathbf{u}_1 = 0 \text{ in } \Omega$$

$$\int_{\Omega_{2,i}} \frac{D}{Dt} \left(\rho_{2,i} \mathbf{u}_2 - \rho_1 \mathbf{u}_1 \right) d\Omega = \int_{\Omega_{2,i}} \left[(\rho_{2,i} - \rho_1) \mathbf{g} + \mathbf{F} \right] d\Omega$$

$$\int_{\Omega_{2,i}} \frac{D}{Dt} \left[(\rho_{2,i} - \rho_1) \mathbf{u}_2 \right] d\Omega = \int_{\Omega_{2,i}} \left[(\rho_{2,i} - \rho_1) \mathbf{g} + \mathbf{F} \right] d\Omega$$

$$\rho_1 \frac{D\mathbf{u}_1}{Dt} = -\nabla p_1 + \mu_1 \nabla^2 \mathbf{u}_1 - \mathbf{F}, \quad \nabla \cdot \mathbf{u}_1 = 0 \text{ in } \Omega$$
$$\Delta M_i \frac{d\mathbf{U}_i}{dt} = \Delta M_i \mathbf{g} + \int_{\Omega_{2,i}} \mathbf{F} d\Omega, \quad i = 1, \dots, n$$
$$\mathbf{U}_i(t) + \boldsymbol{\omega}_i(t) \times (\mathbf{x} - \mathbf{X}_i(t)) = \mathbf{u}_1, \text{ in } \Omega_{2,i}, \quad i = 1, \dots, n$$
$$\boldsymbol{\omega}_i(t) V_{\Omega_i} = 0.5 \int_{\Omega_{2,i}} \nabla \times (\mathbf{u}_1 - \mathbf{U}_i(t)) d\Omega, \quad i = 1, \dots, n$$

$$-\alpha \boldsymbol{\lambda} + \mu_1 \nabla^2 \boldsymbol{\lambda} = \mathbf{F}, \text{ in } \Omega$$
$$\boldsymbol{\lambda} = 0, \text{ on } \Gamma,$$

$$\rho_1 \frac{D \mathbf{u}_1}{Dt} = -\nabla p_1 + \mu_1 \nabla^2 \mathbf{u}_1 + \alpha \mathbf{\lambda} - \mu_1 \nabla^2 \mathbf{\lambda}, \quad \nabla \cdot \mathbf{u}_1 = 0 \text{ in } \Omega$$
$$\Delta M_i \frac{d \mathbf{U}_i}{dt} = \Delta M_i \mathbf{g} - \int_{\Omega_{2,i}} \alpha \mathbf{\lambda} d\Omega - \mu_1 \int_{\partial \Omega_{2,i}} \frac{\partial \mathbf{\lambda}}{\partial \mathbf{n}} ds, \quad i = 1, \dots, n$$

Substep 1 (advection-diffusion)

$$\begin{split} \mathbf{X}_{i}^{p,n+1} &= \mathbf{X}_{i}^{n-1} + 2\delta t \mathbf{U}_{i}^{n} \\ \rho_{1}\tau_{0}\mathbf{u}_{1}^{*} - \mu_{1}\nabla^{2}\mathbf{u}_{1}^{*} &= -\rho_{1}(\tau_{1}\tilde{\mathbf{u}}_{1}^{n} - \tau_{2}\tilde{\mathbf{u}}_{1}^{n-1}) - \nabla p^{n}, \text{ in } \Omega \\ \mathbf{u}_{1}^{*} &= 0 \text{ on } \Gamma \end{split}$$

Substep 2 (incompressibility)

$$\begin{aligned} \tau_0(\mathbf{u}_1^{**} - \mathbf{u}_1^*) &= -\nabla(p_1^{n+1} - p_1^n) \text{ in } \Omega \\ \nabla \cdot \mathbf{u}_1^{**} &= 0 \text{ in } \Omega \\ \mathbf{u}_1^{**} \cdot \mathbf{n} &= 0 \text{ on } \Gamma, \end{aligned}$$

• Substep 3 (rigid body constraint)

$$\begin{aligned} \boldsymbol{\lambda}^{0,n+1} &= 0 \\ \mathbf{u}_{1}^{0,n+1} &= \mathbf{u}_{1}^{**} \\ \tau_{0} \mathbf{U}_{i}^{0,n+1} &= -\tau_{1} \mathbf{U}_{i}^{n} - \tau_{2} \mathbf{U}_{i}^{n-1} + \mathbf{g} \\ V_{\Omega_{i}} \boldsymbol{\omega}_{i}^{0,n+1} &= 0.5 \int_{\Omega_{i}} \nabla \times \mathbf{u}_{1}^{0,n+1} d\Omega \\ \mathbf{u}_{2}^{0,n+1} &= \mathbf{U}_{i}^{0,n+1} + \boldsymbol{\omega}^{0,n+1} \times (\mathbf{x} - \mathbf{X}_{i}^{p,n+1}) \end{aligned}$$

Ottawa, May 2006 - p.13

$$\begin{cases} (1 + \frac{\rho_1}{\rho_{2,i} - \rho_1})(\alpha I - \mu_1 \nabla^2) \delta \boldsymbol{\lambda}^{k+1,n+1} \\ = -(\rho_1 \tau_0 I - \mu_1 \nabla^2)(\mathbf{u}_1^{k,n+1} - \mathbf{u}_2^{k,n+1}) & \text{ in } \Omega_{2,i}, \quad i = 1, \dots, n \\ (1 + \frac{\rho_1}{\rho_{2,i} - \rho_1})(\alpha I - \mu_1 \nabla^2) \delta \boldsymbol{\lambda}^{k+1,n+1} = 0 & \text{ in } \Omega_1 \\ \delta \boldsymbol{\lambda}^{k+1,n+1} = 0 & \text{ on } \Gamma, \end{cases}$$

Ottawa, May 2006 - p.14

•

$$\begin{cases} (\rho_1 \tau_0 I - \mu_1 \nabla^2) \delta \mathbf{u}_1^{k+1,n+1} = (\alpha I - \mu_1 \nabla^2) \delta \boldsymbol{\lambda}^{k+1,n+1} & \text{in } \Omega \\ \delta \mathbf{u}_1^{k+1,n+1} = 0 & \text{on } \Gamma \end{cases}$$

$$\begin{cases} \Delta M_{i}\tau_{0}\delta\mathbf{U}_{i}^{k+1,n+1} = -\frac{\rho_{2,i}-\rho_{1}}{\rho_{2,i}}\int_{\Omega_{2,i}}\alpha(\mathbf{u}_{1}^{k,n+1} - \mathbf{u}_{2}^{k,n+1})d\Omega \\ +\mu_{1}\frac{\rho_{2,i}-\rho_{1}}{\rho_{2,i}}\int_{\partial\Omega_{2,i}}\frac{\partial(\mathbf{u}_{1}^{k,n+1} - \mathbf{u}_{2}^{k,n+1})}{\partial\mathbf{n}}ds \\ V_{\Omega_{i}}\boldsymbol{\omega}_{i}^{k+1,n+1} = 0.5\int_{\Omega_{i}}\nabla\times\mathbf{u}_{1}^{k+1,n+1}d\Omega \\ \mathbf{u}_{2}^{k+1,n+1} = \mathbf{U}_{i}^{k+1,n+1} + \boldsymbol{\omega}_{i}^{k+1,n+1}\times(\mathbf{x}-\mathbf{X}_{i}^{p,n+1}) \text{ in }\Omega_{2,i} \\ \mathbf{u}_{2}^{k+1,n+1} = 0 \text{ in }\Omega_{1} \end{cases}$$

Ottawa, May 2006 - p.15

$$\mathbf{F} = \begin{cases} \frac{1}{Fr} \mathbf{e}_g + \frac{\rho_1}{\rho_2 - \rho_1} \hat{\mathbf{F}}, & \text{in } \Omega_{2,i}, \quad i = 1, \dots, n \\ 0, & \text{in } \Omega_1 \end{cases}$$

$$\frac{D\mathbf{u}_1}{Dt} = -\nabla p_1 + \frac{1}{Re} \nabla^2 \mathbf{u}_1 + \frac{\rho_2 - \rho_1}{\rho_1} \left(\mathbf{G} - \mathbf{F}\right), \text{ in } \Omega$$
$$\frac{d\mathbf{U}_i}{dt} = \frac{1}{V_i} \int_{\Omega_{2,i}} \mathbf{F} d\Omega$$

$$\tau_0(\mathbf{u}_1^{n+1} - \mathbf{u}_1^{**}) = -\frac{\rho_{2,i} - \rho_1}{\rho_1} \mathbf{F} \text{ in } \Omega,$$

$$\tau_0\left(\mathbf{U}_i^{n+1} - \mathbf{U}_i^*\right) = \frac{1}{V} \int_{\Omega_{2,i}} \mathbf{F} d\Omega,$$

$$\mathbf{u}_1^{n+1} - \left(\mathbf{U}_i^{n+1} + \boldsymbol{\omega}_i^{n+1} \times (\mathbf{x} - \mathbf{X}_i^{p,n+1})\right) = 0 \text{ in } \Omega_{2,i}.$$

$$-\frac{\rho_{2,i}-\rho_{1}}{\rho_{1}}\mathbf{F}-\frac{1}{V}\int_{\Omega_{2,i}}\mathbf{F}d\Omega = \tau_{0}\left(\mathbf{U}_{i}^{*}-\mathbf{u}_{1}^{**}\right)$$
$$+\frac{\tau_{0}}{2V}\left(\int_{\Omega_{2,i}}\nabla\times\mathbf{u}_{1}^{n+1}d\Omega\right)\times\left(\mathbf{x}-\mathbf{X}_{i}^{p,n+1}\right)\text{ in }\Omega_{2,i}.$$
$$\int_{\Omega_{2,i}}\mathbf{F}d\Omega = \frac{\rho_{1}}{\rho_{2,i}}\tau_{0}\int_{\Omega_{2,i}}\left(\mathbf{u}_{1}^{**}-\mathbf{U}_{i}^{*}\right)d\Omega.$$
Ottawa, May 2006 – p.18

$$\mathbf{u}_{1}^{n+1} = \mathbf{u}_{1}^{**} + \left[(\mathbf{U}_{i}^{*} - \mathbf{u}_{1}^{**}) + \frac{1}{2V} \left(\int_{\Omega_{2,i}} \nabla \times \mathbf{u}_{1}^{n+1} d\Omega \right) \times \\ - \frac{1}{V} \frac{\rho_{1}}{\rho_{2,i}} \int_{\Omega_{2,i}} (\mathbf{u}_{1}^{**} - \mathbf{U}_{i}^{*}) d\Omega \right] \mathbf{1}_{\Omega_{2}} \text{ in } \Omega,$$
$$\mathbf{U}_{i}^{n+1} = \frac{1}{V} \frac{\rho_{1}}{\rho_{2,i}} \int_{\Omega_{2,i}} \mathbf{u}_{1}^{**} d\Omega + \left(1 - \frac{\rho_{1}}{\rho_{2,i}} \right) \mathbf{U}_{i}^{*}.$$

Collision

$$F_i^w = \begin{cases} -6\pi r_i U_{\perp} \mu_1 \left(\frac{r_i}{\hat{h}} - \frac{r_i}{h}\right), & \text{if } \hat{h} < h \\ 0, & \text{otherwise} \end{cases}$$

$$s_{i,j} = |\mathbf{X}_i - \mathbf{X}_j| - (r_i + r_j)$$

$$\Delta \mathbf{r}_i = \frac{M_j(\epsilon - s_{i,j})}{M_i + M_j}$$

Ottawa, May 2006 - p.20

Mesh fitting

Ottawa, May 2006 - p.21

Figure 1: A cross section of the basic tetrahedral grid (left) and the boundary fitted grid (right).

Validation

Validation

Validation

•

Ottawa, May 2006 - p.24

Sedimenting particles Heavy and neutral particles Light and neutral particles

Three spheres

Three spheres interaction

Ottawa, May 2006 - p.26

64 particles swirl64 particles wave

64 spheres

•

Ottawa, May 2006 - p.28

Poiseuille flow

$U_m = 20.0$	DLM	Present	DLM	Present
d/R	U_y		ω_z	
0.10	19.4965	19.5805	0.7751	0.7812
0.20	18.8841	18.9658	1.5514	1.5734
0.30	17.8656	17.9730	2.3235	2.3537
0.40	16.4442	16.5582	3.0872	3.1523
0.50	14.6210	14.7561	3.8409	3.9060
0.60	12.3957	12.5155	4.5824	4.7483

Ottawa, May 2006 - p.29

Poiseuille flow

References

- C. Diaz-Goano, P. Minev, and K. Nandakumar, A fictitious domain/finite element method for particulate flows. J. Comp. Phys 192 (2003), 105-123.
- C. Veeramani, P. Minev, and K. Nandakumar, A fictitious domain method for particle sedimentation, to appear in Lecture Notes in Computer Science, Springer (2005).

