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3D CFD Example: Saturation
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Relative Permeability & Hydrophobicity
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Some Issues & Approach

Complex geometry and interfaces

Capillary pressure J-function for PEM GDLs
Relative permeability

Water transport mechanisms/dynamics

YV V V

v

Dynamic VOF Fluorescence Pore Network
Simulations Microscopy Modelling

Visualization
Gas +

Liquid

JOE
il

S

Bniversity, [l BritishiEolumbiay

ofVictoriall MGanada



Dynamic Simulations in Reconstructed GDL

Solutions are obtained using Fluent 6.2:
* Volume-of-Fluid (VOF) method

* Sub-models for surface tension and wall
adhesion

» Re-constructed porous media (RPM) for
computational geometry
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Volume-of-Fluid Model

Static-grid Eulerian
representation

Gas

actual interface shape

Liquid

interface shape represented by
the geometric reconstruction
(plecewise-linear) scheme
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Surface Tension and Wall Adhesion

* Interface represented using a force
density proportional to interface
curvature [15]

- Simplifies calculation of surface
tension

* Three phase boundary is key
feature

- Contact angle condition is met by
calculating the curvature of the
interface

Reconstruction of the GDL

SEM Images of Toray TGP Series

Carbon Paper*

Computational Model of
Toray TGP-030 Carbon Paper

(ross section 1
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Geometry — Elementary Volumes

Transformation Constraints: 1 1
2D 1 1

«  Equal porosity. X :
1 1

» Equal surface area to ! ‘ !
volume ratio. I |

1 1

» Equal curvature.
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Mesh and BC’s
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Two-Phase Flow 0 =108°

1.01e+00

(Time=5.3355e-06)
FLUENT 8.2 (=
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Two-Phase Flow, cont’d
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Visualization: Fluorescence Microscopy

» Scalar based flow visualization

* Molecules that emit a photon immediately after
being excited by a light source.

» Three steps: Absorbance, dissipation, and
emission.

® [
L
* Increasingly employed in microfluidics for
velocimetry and quantifying mixing.

(ofVictoriadl lcaraoa)
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Fluorescence Microscopy
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Experimental Set Up
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Gas Diffusion Layer

= Thickness = 190um
= Porosity ~ 85%

of, Ktcﬂ Canada

= Mean Pore Dia. ~ 40 um
= Fibre Dia. = 8.5um




21

Raw Images
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Enhanced Images
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3D Imaging
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Distinct Flow Paths

« |dentification of distinct pathways through GDL.
» Used for analysis of the transport mechanism.

/
Path 5

Path 1
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Common Assumption

» Tree network with convergence of small capillaries
into larger capillaries.

02 — Gas Flow o Liquid ;
Transport 2" Lo oo Water % Membrane:
Flow Channel
ook Gas
vy Diffusion
Layer
Catalyst
-
Oz Liguid Water Layer U. Pasaogullari and C.Y.
Transport | Flow Wang. J. Electrochem. Soc.,
Gas Fio¥ Membrane 151(3):A399-A406, 2004

= Increasingly larger capillary near GDL surface does
not agree with experimental observations.
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New Hypothesis

S. Litster, D. Sinton & ND, J. Power Sources, Vol. 154 (1): 95-105, 2006 I

Insights: VOF + LIF

* Quantitative experimental and
numerical visualization of liquid water
transport within GDLSs.

* Improved understanding two-phase flow
in GDLs.

* New hypothesis for the liquid transport
mechanism within GDLs.
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Pore Network Model

= Porous media represented as

J | L a capillary network

Pores are non-resistive
elements providing fluid
storage

| ° = Throats are capillaries of
] D [ arbitrarily shape and size
- / = each throat is occupied with
j | \ f one phase only.

' = irregularity phase patterns
Fhroats due to local heterogeneities
-> random distribution (rt)

(ofVictoriadl fcaraoa)
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Pore Network: Method

= Total volume of pores (V) is

(.J+1) equal to the void volume of the
, ¥ porous medium.
}'rh?\' _
i H g_ZVp’l V
gﬂﬂ' s gnm‘ l
(i-1,j) (i.J) (i+1,))

= Permeability of network set
&re by adjusting the throats

(i, j-1) appropriately.
Given VP & flow rate (Q)

L
P
pinl _pout A
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Pore Network: Method (cont’d)

= In multiphase systems, transfer resistances and
potentials differ

- phase with the lower potential is displaced by
other(s) phase(s) with higher potential

= Phase content quantified by the phase saturation (s).

= Permeability (K;) of each phase calculated using
Darcy’s law (momentum)

K,
u, =-~Lvp,
Hi

l
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Pore Network: Method (cont’d)

= relative permeability
k= Ki/Ksp = (Qi/(Api/Li ))((AP/L)/Q)

(K;) is phase permeability
(K,,) single phase permeability

= Criterion for phase displacement: pressure
difference exceeds threshold capillary pressure

AP > p.=20]r;
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Numerical Procedure

o randomly generated throat radii

o invading fluid enters the network at one side (inlet)
and the invaded fluid flows out of opposite side
(outlet).

o invading fluid occupies in a sequence of discrete
steps throats with the lowest potential (largest throat
radius).

(ofVictoriadl fcaraoa)
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Numerical Procedure (contd)

o To compute (Ksp) and (K,) pressure solutions within
the network and the carrying backbone are required.

-> simultaneous solution of the balance equations
over all pores within network/backbone.

ij =0, c=4 (g,) flow rate
=1

o coordination number (c) represents the number of
throats belonging to each pore ( = four for regular
square 2-D network).
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ofVictoria




35

Numerical Procedure (cont’d)

a Balance for one throat

q, =g, (g, throat conductance

o For a capillary of radius (r,) and length (/)
conductance is obtained from Poiseuille’s law
4
_Th

877 8ul

o mass balance for each pore
- linear system of equations for pressure (p):
Ap=Db

Bniversiny B
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Simulation: One Mobile Phase

Set inlet and outlet pressure

High saturation
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Low saturation
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Two-Mobile Phases: Network/Flow Parameters.

n 1 . P
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Simulation: Two Mobile Phases

Set inlet and outlet pressure

 kPa

First phase

Phase flow rate

0=Y¢.(p.-p)

Second phase
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Relative Permeability

Power law for the overall phase saturation
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Maximum value of the power is observed for capillary
dominated flow (dash-dot line) due to the largest clusters.
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Insights

1 Saturation range in which both phases
percolate can be altered

0 Both (k, ) and (p,) vary with heterogeneities

r

and cluster size

2 For power law (k, ~ s™), (n) changes with
process extent, but not with heterogeneity
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Further Reading

* Berning, T., and N. Dijilali, “A 3D, Multi-Phase, Multicomponent Model
of the Cathode and Anode of a PEM Fuel Cell”, J. Electrochem.
Soc.Vol. 150, No. 12, pp. A1589-A1598, December, 2003.

» Litster, S. and N. Djilali “Two-Phase Transport in Porous Gas Diffusion
Electrodes” Chapter 5, in Transport Phenomena in Fuel Cells (Eds. M.
Faghri & B. Sundén), pp. 175-213, WIT Press, Southampton UK, 2005

» Litster, S., D. Sinton and N. Djilali, "Ex situ Visualization of Liquid Water
Transport in PEM Fuel Cell Gas Diffusion Layers”, J. Power Sources,
Vol. 154 (1): 95-105, 2006.
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