An Overview of Fuel Cells

Brian Wetton

Mathematics Department University of British Columbia www.math.ubc.ca/~wetton

Hydrogen Fuel Cells, Ottawa, May 10-12, 2006

Outline

Introduction to PEM Fuel Cells

Fuel Cell Community Goals

Component Modelling

System Modelling

Scientific Questions

Mathematical Fields

Introduction to PEM Fuel Cells Unit Cells

- Membrane Electrode Assembly (MEA):
 - Electrodes
 - 2. Catalyst Layers
 - 3. Membrane
- Plates, Gas Channels, Coolant
- Large Aspect Ratio

Introduction to PEM Fuel Cells

Electrochemical Reactions

Main reactions under normal conditions:

Hydrogen oxidation at the anode (Platinum catalyst):

$$H_2 \rightarrow 2p^+ + 2e^-$$

occurs at low electrochemical potential.

Oxygen reduction at the cathode (Platinum):

$$O_2 + 4e^- + 4p^+ \rightarrow 2H_2O$$

occurs at high electrochemical potential.

Some additional reactions that can occur that lead to degradation:

- Carbon oxidation of catalyst support, occurs at high potential.
 - Intermediate product of hydrogen peroxide that destroys the membrane material, occurs at intermediate potential.
 - Platinum agglomeration.

Introduction to PEM Fuel Cells

Fuel Cell Stacks

- Bipolar Plates
- Same Total Current Through Each Cell
- Electrical Coupling
- Thermal Coupling
- End Cell Effects

Introduction to PEM Fuel Cells

The Bigger Picture

There are other kinds of fuel cells:

- Direct Methanol
- Solid Oxide
- Molton Carbonate

There are external systems:

- Fuel Production
- Fuel Storage
- Reformers
- Humidifiers
- Oxygen Enrichment
- Compressors
- Power Conditioning
- System Control

- Increase performance
- Decrease cost
- Make components more durable

Goals

Make the devices safer

- Improve components
- Improve systems

Component Modelling

Example: Catalyst layer

- Composite Material: Pores, carbon particles, Pt particles, and ionomer.
- On either side: electrode (microlayer) and membrane
- Issues: multi-phase transport, water removal, "sluggish" oxygen reduction reaction, Pt cost.

Component Modelling

Example: Catalyst layer, cont.

Modelling goals:

- Optimization of structure (performance, Pt usage)
- Identification of limiting behaviour
- Effect of contaminants
- Degradation mechanisms

Major Difficulty in Modelling: materials used in fuel cells are changing rapidly.

System Modelling

Example: Stack Modelling

Multiscale problem, but there is scale separation

Unit Cell Models:

- Couple channel transport, MEA transport, electrochemistry, temperature.
- Understanding "water management" is a key goal.
- Liquid water transport in the electrodes and channels is the least well understood.
- 3D models often based on commercial CFD codes.
- Reduced dimensional models:
 - 1. Cross plane transport decouples from channel transport (3D \rightarrow 2+1D).
 - 2. Averaging over cross-channel transport (2+1D \rightarrow 1+1D).

Stack Models combine multiple unit cell models with electrical and thermal interactions.

System Modelling Uses of Modelling

- System optimization
- Identification of system limiting components
- Virtual testing of new components in system environment
- Identification of component tolerances
- Insight into the closed system
- Tool for experimental design

Scientific Questions

- Two phase flow:
 - 1. Mechanisms of liquid water flow in channels (droplets).
 - 2. Mechanisms of liquid water flow in electrodes.
- Catalyst layer microstructure and its relation to performance.
- Structure and property changes of membrane due to hydration.
- Degradation mechanisms.
- Development of new materials.

Mathematical Fields

- 1. Homogenization (microstructure to macroscopic behaviour)
- 2. Free boundary problems (liquid water fronts)
- 3. PDE modelling
- 4. Numerical Analysis

