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Abstract. We develop a general theory of reflection systems and, more specifically, partial
root systems which provide a unifying framework for finite root systems, Kac–Moody
root systems, extended affine root systems and various generalizations thereof. Nilpotent
and prenilpotent subsets are studied in this setting, based on commutator sets and the
descending central series. We show that our notion of a prenilpotent pair coincides, for
Kac–Moody root systems, with the one defined by Tits in terms of positive systems and
the Weyl group.
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Introduction

Root systems provide a powerful framework for dealing with combinatorial ques-
tions arising in the structure and representation theory of Lie algebras, the clas-
sical case being finite-dimensional semisimple Lie algebras and finite root sys-
tems [14]. The same is true for various generalizations of semisimple Lie algebras
and appropriately defined root systems. Without any claim of completeness, we
mention some examples. Locally finite root systems [26] arise in Lie algebras
of infinite rank, for example the affine Lie algebras of infinite rank [23, 7.11],
Lie algebras graded by infinite root systems [33] or split locally finite Lie algebras
[30, 31, 41]. Kac–Moody Lie algebras give rise to root systems with the same
name [23, 28], and generalizations of Kac–Moody root systems, called sets of root
data, have been used to describe subsystems and correspondingly certain subalge-
bras of Kac–Moody algebras [28, Chapter 5]. Extended affine Lie algebras, which
generalize affine Lie algebras without necessarily being themselves Kac–Moody
algebras, require extended affine root systems already in their definition [1], and
generalizations of extended affine root systems have come up naturally in the struc-
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ture theory of extended affine Lie algebras presently developed, see for example
[8, 5, 6], [29], [48] and the closely related root systems appearing in [37] and [38].
An axiom system for the root systems of the basic classical Lie superalgebras is
described in [39], and for the root systems of Borcherds’ generalization of Kac–
Moody algebras in [11, 12].

In the same vein, root systems are an important ingredient in the structure theory
of reductive algebraic groups, algebraic groups over local fields ([15], see §4.3) or
Kac–Moody groups [18, 24, 36, 43].

Looking at this list of examples of root systems, one notices that despite the
sometimes substantial differences there are some basic features common to all of
them. Yet there does not exist a general theory of root systems. One of the aims
of this paper is therefore

� to create a general framework for studying root systems, encompassing all the
examples mentioned above. We call these new objects partial root systems.

Our motivation for doing so goes beyond just providing a new setting for root sys-
tems. In fact, this paper grew out of an attempt to define groups “à la Steinberg”—
a terminology due to Tits [43]—in a general category of groups with commutator
relations, generalizing Kac–Moody groups. One of the special features of Kac–
Moody root systems is that they come equipped with a distinguished set of simple
and positive roots. This is no longer the case for, say, extended affine root systems
or locally finite root systems, where there always exist many (in fact, too many)
sets of positive roots and in general no simple roots at all. Since the distinguished
set of positive roots in a Kac–Moody root system is used to define prenilpotent
pairs, which are essential for Tits’ approach to Kac–Moody groups, one is faced
with the problem of finding a good concept of prenilpotent pairs which works in
general without reference to a distinguished positive system. A second aim of this
paper is therefore

� to study nilpotent subsets of partial root systems; in particular, prenilpotent
pairs.

Among partial root systems, the class of extended affine root systems [1] has re-
cently attracted much interest. There are presently many similar approaches with
sometimes conflicting terminology. As a third aim of this paper, we intend

� to put the theory of extended affine root systems and similar structures in a
bigger perspective by viewing them as extensions in an appropriate sense.

To achieve these goals we work on three levels of generality. They are, in decreas-
ing order: subsets of torsion-free abelian groups, reflection systems, and partial
root systems.
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In Section 1 we consider pairs .R;X/ where X is a torsion-free abelian group
and R is a subset of X which contains 0 and generates X . We study nilpotent
subsets in this framework, using appropriate definitions of the descending and
ascending series, very much in analogy to group theory.

The notion of a reflection system, developed in Section 2, is meant to capture
the essence of a consistent assignment of hyperplane reflections to some of the
elements of R as follows: Let X be a vector space over a field of characteristic
0 and let R � X be a spanning set with 0 2 R. Suppose s 7! s˛ is a map
assigning to each ˛ 2 R a hyperplane reflection s˛ or the identity on X . We put
Rim WD ¹˛ 2 R W s˛ D Idº and Rre WD R nRim, and call their elements imaginary
roots and reflective roots, respectively. This terminology is of course suggested
by the example of root systems of Kac–Moody Lie algebras where the reflective
roots are just the real roots. The triple .R;X; s/ is called a reflection system if the
following axioms hold:

� ˛ 2 Rre implies ˛ ¤ s˛.˛/ D �˛ 2 Rre, in particular 0 2 Rim,

� s˛.ˇ/ 2 R and ss˛.ˇ/ D s˛sˇ s˛, for all ˛; ˇ 2 R,

� sc˛ D s˛ whenever c 2 K� and both ˛ and c˛ belong to Rre.

We also introduce pre-reflection systems, defined by the first and a weak version
of the second axiom. As usual, s˛ is given by the formula

s˛.x/ D x � hx; ˛
_
i˛

where ˛_ is a linear form on X . It is possible to formulate the axioms in terms
of the map ˛ 7! ˛_ (§2.3). Observe that we do not assume R or even Rre to be
reduced in the sense that ˛; c˛ 2 Rre implies c D ˙1, nor that the Cartan numbers
hˇ; ˛_i be integers, although this condition will be introduced later. Also, in the
Bourbaki tradition [14] and unlike most of the papers quoted above, we do not
a priori require the existence of an invariant bilinear form, although such forms
do play an important role in special situations, in particular, for affine reflection
systems (Section 5).

In Section 3 we introduce partial root systems. These are reflection systems
with the following additional properties:

(PRS1) The Cartan numbers are integers and, for all ˛; ˇ 2 Rre, sgnh˛; ˇ_i D
sgnhˇ; ˛_i,

(PRS2) for all ˛ 2 Rre, ˇ 2 R, the root string R\ .ˇCZ˛/ is finite and without
gaps,

(PRS3) for all ˛; ˇ 2 Rre, hˇ; ˛_i � 0 and ˛ C ˇ 2 R imply ˛ C ˇ 2 Rre.
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We compare the notion of a prenilpotent set A, defined as in Section 1 by means
of the descending central series, with that introduced by Tits in the setting of Kac–
Moody algebras, which postulates the existence of Weyl group elements mapping
A to P and �P , respectively, where P is the standard set of positive roots. The
main result here is Theorem 3.7, which asserts the equivalence of the two notions
of prenilpotence for partial root systems in case A has cardinality at most two
and P is a positive system of scalar type. The latter condition is satisfied by
the standard positive systems of Kac–Moody algebras, so our result is applicable
in this important special case and hence gives a new approach to the concept of
nilpotent subsets of Kac–Moody roots (Corollary 3.8).

The last two sections deal with extensions and affine reflection systems. An
extension is a morphism f W .R;X/ ! .S; Y / of reflection systems satisfying
f .Rre/ D S re and f .Rim/ D S im. Of particular interest is the case where S
is nondegenerate in the sense that

T
ˇ2S ˇ

_ D 0, because then S is uniquely
determined by R. We describe extensions by means of extension data on S in
Theorem 4.6, and give necessary and sufficient conditions for R to be reduced or
a partial root system in Corollary 4.7.

An affine reflection system is defined as an extension of a locally finite root sys-
tem. Such systems can also be characterized using affine forms (Proposition 5.4),
and contain as special cases extended affine root systems and their many general-
izations (§5.3).

We plan to use the results obtained here to study groups “à la Steinberg” in a
general category of groups with commutator relations.

1 Nilpotent sets of roots

1.1 Closed and positive subsets

Let X be a torsion-free abelian group. For a subset A � X , let N.A/ be the free
abelian monoid generated by A, i.e., the set of all maps v W A ! N which are
zero except for finitely many ˛ 2 A. Depending on the context, it may be more
convenient to think of an element of N.A/ as a family .n˛/˛2A, where n˛ 2 N and
n˛ D 0 except for finitely many ˛. We denote by � W N.A/ ! X the canonical
map sending v to

P
˛2A v.˛/˛ and put

NŒA� WD �
�
N.A// and

NCŒA� WD �
�
N.A/

n ¹0º
�
D

1[
nD1

.AC � � � C A/„ ƒ‚ …
n

:
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We introduce the category SG, whose objects are pairs .R;X/ consisting of a
torsion-free abelian group X and a subset R � X which generates X as abelian
group and satisfies 0 2 R. The morphisms f W .R;X/ ! .S; Y / of SG are the
group homomorphisms f W X ! Y satisfying f .R/ � S .

Let .R;X/ 2 SG. Generalizing a concept of [26, 10.2], a subset C � R

is called additively closed (or simply closed if there is no ambiguity) if C D
R \ NCŒC �, i.e., if for all ˛1; : : : ; ˛n 2 C with ˇ WD ˛1 C � � � C ˛n 2 R, we
have ˇ 2 C . The additive closure Ac of a subset A of R is the smallest additively
closed subset containing A; it is given by

Ac D R \NCŒA�: (1.1)

In the special case A D ¹˛; ˇº, we write

Œ˛; ˇ� WD ¹˛; ˇºc (1.2)

and call it the closed root interval between ˛ and ˇ. If f W .R;X/! .R0; X 0/ is
a morphism of SG, then

f .Ac/ � f .A/c : (1.3)

This is immediate from the definitions.

A subset A ofR is called positive if it is additively closed and A \ .�A/ � ¹0º.
We will say a subset A of R is strictly positive if it is positive and 0 … A. Obvi-
ously,

A is strictly positive ” A is closed and 0 … A. (1.4)

For any subset A of R we put A� WD A n ¹0º. Then one shows as in [26, Lem-
ma 10.10 (a)] that

A is positive ” A� is strictly positive (1.5)

” A is closed and NCŒA� \NCŒ�A� � ¹0º. (1.6)

Using (1.6) one sees that a positive subset A defines a partial order �A on the
additive group of X by

x �A y ” x � y 2 NŒA�; (1.7)

for which A [ ¹0º D ¹˛ 2 R W ˛ �A 0º and A� D ¹˛ 2 R W ˛ �A 0º. Here the
notation x �A y means x �A y and x ¤ y.
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The following characterization of strictly positive subsets justifies our terminol-
ogy.

Lemma 1.1. Let .R;X/ 2 SG, and let ˛; ˇ 2 R�. Then ¹˛; ˇºc is strictly positive,
i.e., 0 62 ¹˛; ˇºc , if and only if there exists a function h W NCŒ¹˛; ˇº� ! NC
satisfying h. C ı/ D h./C h.ı/ for all ; ı 2 NCŒ¹˛; ˇº�.

A function h as above is called a height function.

Proof. If h exists then obviously 0 … ¹˛;ˇºc . Conversely, assume that 0 … ¹˛;ˇºc .
Recall that any  2 P WD NCŒ¹˛; ˇº� can be written in the form  D m˛ C nˇ.
Hence, for any choice of p; r 2 NC we obtain a function h W P ! NC with the
desired properties by putting

h.m˛ C nˇ/ D mr C np; (1.8)

as long as this function is well-defined. This is of course the case if ˛; ˇ are Z-free.
Otherwise, there exist p; q 2 Z, .p; q/ ¤ .0; 0/, such that p˛C qˇ D 0. If p D 0
then qˇ D 0 yields the contradiction q D 0 or ˇ D 0. We can therefore assume
that p ¤ 0 and q ¤ 0. Since 0 62 P , p and q have different signs. Without loss of
generality we can assume p > 0 > q D �r . To prove that with these p and r the
function h of (1.8) is well-defined, we suppose that  2 P can be written in the
form  D m˛ C nˇ and  D m0˛ C n0ˇ with m;m0; n; n0 2 N and show that

mr C np D m0r C n0p: (1.9)

Indeed, multiplying .m �m0/˛ D .n0 � n/ˇ by p and replacing p˛ by rˇ shows
.m �m0/rˇ D .n0 � n/pˇ, from which (1.9) immediately follows.

1.2 Commutator sets

Let .R;X/ 2 SG. For arbitrary subsets A, B of R we define the commutator set

.A;B/ WD R \
�
NCŒA�CNCŒB�

�
: (1.10)

Thus  2 .A;B/ if and only if  belongs to R and has the form

 D ˛1 C � � � C p̨ C ˇ1 C � � � C ˇq (1.11)

where p; q � 1, ˛i 2 A, and ǰ 2 B .
If A D ¹˛º consists of a single element, we simply write .˛;B/ instead of

.¹˛º; B/, and similarly

.˛; ˇ/ WD .¹˛º; ¹ˇº/ D R \
�
NC˛ CNCˇ

�
; (1.12)
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called the open root interval from ˛ to ˇ. The following properties follow easily
from the definition:

.A;;/ D ;; A [ .A;A/ D Ac D .A; 0/; (1.13)

A is closed ” .A;A/ � A; (1.14)

0 2 Bc H) Ac � .A;B/; (1.15)

.A;B/ D .B;A/ D .Ac ; B/ D .Ac ; Bc/ D .A;B/c ; (1.16)

A0 � A; B 0 � B H) .A0; B 0/ � .A;B/; (1.17)�
A [ B

�c
D Ac [ .A;B/ [ Bc ; (1.18)

.A; .A;B// � .A;B/: (1.19)

If f W .R;X/! .R0; X 0/ is a morphism in SG then for A;B � X ,

f .A;B/ � .f .A/; f .B// \ f .R/: (1.20)

Let A � R be additively closed. A subset B of A is called normal (in A) if
.A;B/ � B . We remark that in [40, p. 24], the terminology “B is an ideal in A” is
employed. By (1.14) and (1.17), a normal subset is in particular closed. Moreover,
by (1.13) and (1.14), ; and A are always normal subsets of A, and by (1.15) any
proper normal subset B of A has 0 … Bc .

Examples. (a) Let R be symmetric, i.e., R D �R, and let P � R be closed.
As an intersection of closed subsets, the symmetric part Ps WD P \ .�P / of P
is closed. Moreover, the unipotent part Pu WD P n .�P / of P is normal in P ,
cf. [26, 10.6]. Other examples of normal subsets will be given in §1.3 and §1.4.

(b) Let .R;X/ D .Z;Z/. For a; b 2 NC, the structure of the root intervals
.a; b/ and Œa; b� is closely tied to the so-called “postage stamp problem” of number
theory. It is no great restriction of generality to assume a and b relatively prime.
Then it is a well-known exercise in elementary number theory that ab … .a; b/
while every integer n > ab is contained in .a; b/. Obviously, aC b is the smallest
element in .a; b/, but the precise structure of the gaps between a C b and ab in
.a; b/ seems to be unknown. Similarly, if a > 1 and b > 1 then ab� .aC b/ does
not belong to Œa; b� but every n > ab � .aC b/ does.

1.3 The lower central series

Let .R;X/ 2 SG and let A � R be an arbitrary subset. The lower central series
of A is defined inductively by

C1.A/ D Ac ; CnC1.A/ D .A;Cn.A//: (1.21)
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From (1.16) and (1.17) it follows by induction that

Cn.A/ D Cn.Ac/ D Cn.A/c ; (1.22)

Cn.A/ � CnC1.A/; (1.23)

and (1.15) and (1.13) yield

0 2 Ac H) Cn.A/ D Ac ; (1.24)

for all n � 1. Thus the lower central series is mainly of interest for closed subsets
not containing 0, i.e., for strictly positive subsets, cf. (1.4). We note also that all
Cn.A/ are normal subsets of A if A is closed. The lower central series behaves
well with respect to inclusions and morphisms:

B � A H) Cn.B/ � Cn.A/; (1.25)

f .Cn.A// � Cn.f .A//: (1.26)

Indeed, (1.25) is a consequence of (1.17) while (1.26) follows from (1.3) and
(1.20).

Remark. Our requirement that X be torsion-free is explained by the following
fact. Let X be any abelian group, and define closedness of subsets as in §1.1.
Then a closed subset of X containing a torsion element necessarily contains 0 and
hence Cn.A/ D A for all n 2 NC.

1.4 The upper central series

Let .R;X/ 2 SG and let A � R be a closed subset. We define the upper central
series of A inductively by

Z0.A/ D ;; Zn.A/ D ¹ 2 A W .;A/ � Zn�1.A/º; (1.27)

and the centre of A by

Z.A/ WD Z1.A/ D ¹ 2 A W .;A/ D ;º: (1.28)

From the definition, it is clear that

; D Z0.A/ � Z1.A/ � Z2.A/ � � � � � A; (1.29)

and that

.A;Zn.A// � Zn�1.A/; (1.30)

in particular, the Zn.A/ are normal in A.



Reflection systems and partial root systems 357

As for the lower central series, only the case 0 … A is of interest, because 0 2 A
implies  D  C 0 2 .;A/ for all  2 A, so Z.A/ and therefore also all the other
Zn.A/ are empty.

1.5 Prenilpotent and nilpotent subsets

Let .R;X/ 2 SG. A subset A of R is said to be prenilpotent if Cn.A/ D ; for
sufficiently large n, and it is called nilpotent if it is closed and prenilpotent. From
the definition of strict positivity and from 1.3 it is immediate that

A nilpotent H) A strictly positive, (1.31)

A prenilpotent ” Ac nilpotent, (1.32)

A prenilpotent H) 0 … Ac ; (1.33)

B � A and A prenilpotent H) B prenilpotent, (1.34)

f .A/ prenilpotent H) A prenilpotent. (1.35)

The class of a nilpotent A is the smallest k such that CkC1.A/ D ;. Thus

k � 1 ” A D Z.A/ ” .A;A/ D ;;

k � 2 ” .A;A/ � Z.A/ ” .A; .A;A// D ;;

and we will call an A of class � 1 resp. � 2 abelian resp. 2-step nilpotent.

As in the case of groups, nilpotence can also be characterized by the upper
central series. More generally, let A be a strictly positive subset of R. A chain
of subsets A � A1 � A2 � � � � is called a central chain if .A;An/ � AnC1
for all n � 1. For example, the lower central series is a central chain, and so is
Ai WD ZmC1�i for some fixed m, provided we let Zj .A/ D ; for j < 0.

Clearly the terms An of a central chain are normal in A. From (1.21) and (1.27)
it follows easily that

A1 D A H) Ai � C i .A/; (1.36)

AnC1 D ; H) Ai � ZnC1�i .A/: (1.37)

Now (1.36) shows

A is nilpotent of class � n ”
there exists a central chain
with A1 D A and AnC1 D ;,

(1.38)
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and (1.37) implies

A is nilpotent of class � n ” Zn.A/ D A: (1.39)

Let us also note that the length of the upper central series of a nilpotent A of class
k is exactly k. Indeed, Zk.A/ D A holds by (1.39). Assuming Zk�1.A/ D A

would yield a central chain Ai WD Zk�i .A/ with A1 D A and Ak D Z0.A/ D ;,
so A would have class � k � 1, contradiction.

Examples 1.2. (a) A nilpotent subset need not be finite (but see Lemma 1.4 and
Proposition 1.6). For example, A D ¹"0 � "i W i 2 N; i � 1º is an abelian subset
of the root system R D PAN D ¹"i � "j W i; j 2 Nº in the notation of [26, 8.1].

(b) Let f W .R;X/! .Z;Z/ be a morphism in SG. Put Rn D ¹˛ 2 R W f .˛/ D
nº. Then A D

S
k�1Rk is a strictly positive subset and An WD

S
k�nRk defines

a central chain of A which even satisfies .Ai ; Aj / � AiCj . If f .A/ is bounded
above by some n 2 N, then A is nilpotent of class � n.

For example, if R is a locally finite root system over R, a morphism f is just a
coweight ofR, cf. [26, 7.1, 7.5(2)]. In case f is a basic coweight, we haveA7 D ;
by [26, 7.12], so A is nilpotent of class � 6. If f defines a 3-grading of A in the
sense of [26, 17.6] then A2 D ; so A D R1 is abelian.

(c) LetR D � be the set of (real and imaginary) roots of a Kac–Moody algebra g,
and let� D �C[�� be the usual decomposition of� into positive and negative
roots. The height function ht W R ! Z, as defined in [23, 1.1], is a morphism.
In this case, A D �C and the central chain An defined by the height function is
used in [24, 6.1.1] to give OgC D

Q
˛2�C

g˛ the structure of a pro-nilpotent Lie
algebra.

The following lemma gives a detailed description of the prenilpotent two-
element subsets of locally finite root systems.

Lemma 1.3. Let .R;X/ be a locally finite root system, let ¹˛; ˇº � R be prenilpo-
tent, and put R˛ˇ WD R \

�
Z˛ C Zˇ

�
and C WD .˛; ˇ/. Then Œ˛; ˇ� is nilpotent

of class k � 5 and of cardinality � 6. Moreover, CardC � 4, Card .C;C / � 1,
and C ¤ ; if and only if ˛ C ˇ 2 R.

Proof. This follows easily from the classification of root systems of rank � 2 in
[14]. The details are left to the reader. Note that, by (1.18), Œ˛; ˇ� D ¹˛ºc [ C [
¹ˇºc from which it follows easily that

C2
�
Œ˛; ˇ�

�
D
�
¹˛ºc n ¹˛º

�
[ C [

�
¹ˇºc n ¹ˇº

�
:



Reflection systems and partial root systems 359

Also, ¹˛ºc D ¹˛; 2˛º or ¹˛ºc D ¹˛º depending on whether 2˛ does or does not
belong to R.

We now list the cases where C ¤ ; in more detail. It is no restriction to assume
that k˛k � kˇk with respect to some invariant inner product.

Case h˛; ˇ_i hˇ; ˛_i C D .˛; ˇ/ k
ˇ̌
Œ˛; ˇ�

ˇ̌
R˛ˇ

1 2 2 2˛ 2 2 BC1

2 1 1 ˛ C ˇ 2 3 G2

3 0 0 ˛ C ˇ 2 3 or 5 B2 or BC2

4 �1 �1 ˛ C ˇ 2 3 A2

5 �1 �1
˛ C ˇ; 2˛ C ˇ;

˛ C 2ˇ
3 5 G2

6 �1 �2 ˛ C ˇ; 2˛ C ˇ 3 4 B2

7 �1 �2
˛ C ˇ; 2˛ C ˇ;

2˛ C 2ˇ
4 6 BC2

8 �1 �3
˛ C ˇ; 2˛ C ˇ;

3˛ C ˇ; 3˛ C 2ˇ
5 6 G2

Remarks. We put B WD ¹˛; ˇº.

Case 1: Here ˛ D ˇ.

Case 2: ˛ and ˇ are two short roots of G2 whose sum is a long root.

Case 3: ˛ and ˇ are weakly orthogonal short roots.

Case 4: B is a root basis of A2.

Case 5: B is a root basis for the subsystem of short roots of G2.

Case 6: R˛ˇ D B2 and B is a root basis of B2.

Case 7: B is a root basis of BC2.

Case 8: B is a root basis of G2.

Lemma 1.4. Let .R;X/ 2 SG and let A � R be a strictly positive subset of finite
cardinality n.

(a) There exist total orders � on A compatible with the partial order �A defined
by A in the sense that ˛ �A ˇ implies ˛ � ˇ.
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(b) Let � be as in (a), and enumerate A D ¹˛1; : : : ; ˛nº in such a way that
˛1 < � � � < ˛n. Then Ai WD ¹˛i ; : : : ; ˛nº for i D 1; : : : ; n, and Ai WD ;
for i > n, is a central chain of A. In particular, A is nilpotent of class � n.

Proof. (a) This follows from the Szpilrajn–Marczewski Lemma [21, Chapter 8,
Section 8.6].

(b) We show .A;Ai / � AiC1. By (1.11), an element  2 .A;Ai / has the form
 D ˛i1 C � � � C ˛ip C j̨1 C � � � C j̨q where p; q � 1, i� 2 ¹1; : : : ; nº and
j� 2 ¹i; : : : ; nº; in particular,  �A j̨1 . On the other hand,  2 A because A is
closed, say,  D ˛k . Hence k > j1 � i so ˛k 2 Ak � AiC1.

The statement about the nilpotence of A now follows from (1.38).

Lemma 1.5. Let F be a finite set and let NF , the set of functions F ! N, be
equipped with the partial order

v � w ” v.˛/ � w.˛/ for all ˛ 2 F .

Then every infinite subset S of NF contains a strictly increasing sequence v1 <
v2 < � � � .

Proof. The proof is by induction on the cardinality of F , the case F D ; being
trivial. If S has no maximal element then the assertion is clear. Otherwise, let m
be a maximal element of S . Then v > m holds for no v 2 S , i.e., for every v 2 S
there exists an element ˛ 2 F such that v.˛/ � m.˛/. Letting S˛ WD ¹v 2 S W
v.˛/ � m.˛/º, we thus have S D

S
˛2F S˛. Since S is infinite, there must be a

ˇ 2 F such that Sˇ is infinite. Consider the evaluation map Sˇ ! N, v 7! v.ˇ/,
whose image is contained in the finite interval I WD ¹0; 1; : : : ; m.ˇ/º of N. Since
Sˇ is infinite, there exists i 2 I such that the fibre S i

ˇ
WD ¹v 2 Sˇ W v.ˇ/ D iº

is infinite. Let F 0 WD F n ¹ˇº, denote by res W NF ! NF 0 the restriction map
induced by the inclusion F 0 ,! F , and put S 0 WD res.S i

ˇ
/ � NF 0 . Clearly,

res W S i
ˇ
! S 0 is bijective, with inverse ext W S 0 ! S i

ˇ
given by extending an

element v0 2 S 0 (which after all is a map F 0 ! N) to a map F ! N via ˇ 7! i .
By induction, there exists a strictly increasing sequence v01 < v

0
2 < � � � in S 0. Then

vk WD ext.v0
k
/ is the desired sequence in S .

Proposition 1.6. Let .R;X/ 2 SG. For a subset F � R, the following conditions
are equivalent:

(i) F is finite and prenilpotent,

(ii) F c is finite and 0 … F c ,

(iii) F c is finite and nilpotent,

(iv) F c is finite and strictly positive.
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Proof. (i)H) (ii): 0 … F c holds by (1.33). Now assume, by way of contradiction,
that F c is infinite. Then by definition of the closure of a set in (1.1) we have
S WD ��1.F c/ � NF infinite. Choose a sequence .vk/k�1 in S as in Lemma 1.5
and put k D �.vk/. We will show by induction that k 2 Ck.F / for all k � 1,
contradicting the fact that Ck.F / D ; for sufficiently big k, by nilpotence of F c .
Obviously, 1 2 F c D C1.F /. Suppose we have k 2 Ck.F /. Then kC1�k DP
˛2F n˛˛ where all n˛ WD vkC1.˛/�vk.˛/ 2 N, and at least one n˛ is positive

because vkC1 > vk . Hence kC1 2 .F; k/ � .F;Ck.F // D CkC1.F /.
(ii) H) (i) follows immediately from Lemma 1.4 (b). The equivalence of (i),

(ii) and (iii) now follows from (1.32), and that of (ii) and (iv) from (1.4).

2 Reflection systems

2.1 Pre-reflection systems

From now on K denotes a field of characteristic zero. We introduce a subcategory
of the category SVK [26, 1.1]. Recall that the objects of SVK are the pairs .R;X/,
where X is a K-vector space and R � X is a subset of X which spans X and
contains the zero vector of X . A morphism f W .R;X/ ! .S; Y / in SVK is a
K-linear map f W X ! Y such that f .R/ � S .

Let X be a vector space over K. By a (hyperplane) reflection we mean an ele-
ment � of GL.X/with �2 D Id and fixed point set a hyperplane. Thus, a reflection
� is uniquely determined by the hyperplane Ker.Id� �/ and the line Ker.IdC �/.
We denote by Ref.X/ the union of ¹IdXº and all hyperplane reflections of X , thus
considering IdX as an improper reflection.

Now let .R;X/ 2 SVK, and let s W R ! Ref.X/ be a map, written ˛ 7! s˛.
We put

Rim
WD ¹˛ 2 R W s˛ D Idº; Rre

D R nRim; (2.1)

called the imaginary roots and reflective roots, respectively. This terminology is
of course suggested by the example of root systems of Kac–Moody Lie algebras
where the reflective roots are just the real roots, cf. §2.12 (c). The triple .R;X; s/
is called a pre-reflection system if the following axioms hold for all ˛ 2 R:

(ReS1) ˛ 2 Rre implies ˛ ¤ s˛.˛/ D �˛ 2 Rre;

(ReS2) s˛.Rre/ D Rre and s˛.Rim/ D Rim.

Note that (ReS1) and (ReS2) imply

0 2 Rim; Rre
D �Rre and s˛.R/ D R (2.2)
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for all ˛ 2 R. The subgroup of GL.X/ generated by all s˛, ˛ 2 R, is called the
Weyl group of .R;X; s/ and denoted by W.R;X; s/ or simply W.R/ if .R;X; s/
is clear from the context.

Let .S; Y; s/ be a second pre-reflection system. Unless this might lead to con-
fusion, we will use the same letter s for the maps R! Ref.X/ and S ! Ref.Y /.
A morphism f W .R;X; s/ ! .S; Y; s/ is a linear map f W X ! Y such that
f .R/ � S and

f .s˛.ˇ// D sf .˛/.f .ˇ//; (2.3)

for all ˛; ˇ 2 R. With these definitions, pre-reflection systems form a category
which shall remain nameless. As usual, the automorphism group of .R;X; s/ is
denoted by Aut.R;X; s/ or simply by Aut.R/. Note that .�R;X/ together with
the maps s�˛ D s˛ for ˛ 2 R is a pre-reflection system isomorphic to .R;X; s/
via �Id.

As R spans X , formula (2.3) for a morphism f holds with ˇ replaced by an
arbitrary x 2 X , i.e.,

f ı s˛ D sf .˛/ ı f: (2.4)

Also observe that for any morphism f W .R;X; s/! .S; Y; s/,

f .Rim/ � S im; f .Rre/ � S re
[ ¹0º: (2.5)

Indeed, if s˛ ¤ IdX but sf .˛/ D IdY then

�f .˛/ D f .�˛/ D f .s˛.˛// D sf .˛/.f .˛// D f .˛/

shows 2f .˛/ D 0. Likewise, s˛ D Id implies f .˛/ D f .s˛.˛// D sf .˛/f .˛/

and hence sf .˛/ D Id. Thus, (2.5) holds. In fact, if f W .R;X/ ! .S; Y / is a
morphism in SVK, it is easily seen that

f is a morphism of pre-reflection systems

” f .Rim/ � S im and f ı s˛ D sf .˛/ ı f for all ˛ 2 Rre. (2.6)

2.2 Reflection systems

A pre-reflection system .R;X; s/ is called a reflection system if it satisfies the
following two additional axioms:

(ReS3) sc˛ D s˛ whenever c 2 K� and both ˛ and c˛ belong to Rre, and

(ReS4) s˛ 2 Aut.R/, for all ˛ 2 R,

equivalently, because of (ReS1) and s˛ D s�1˛ ,

(ReS4)0 ss˛.ˇ/ D s˛sˇ s˛ for all ˛; ˇ 2 R.
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Morphisms between reflection systems are defined to be morphisms of the under-
lying pre-reflection systems. We denote by ReS the category of reflection systems,
which is thus a full subcategory of the category of pre-reflection systems. By
abuse of notation, we will often refer to a reflection system simply by R instead of
.R;X; s/.

Since the reflections s˛ are automorphisms of R, it would be natural to call
W.R/ the inner automorphism group of R. But following tradition, we will retain
the name Weyl group.

It is immediate from (2.4) that W.R/ is a normal subgroup of Aut.R/.

Example. We leave it to the reader to show that a pre-reflection system .R;X; s/

with dimX D 1 is necessarily a reflection system. This is no longer true in higher
dimensions, as the following example shows.

Let X D K2 with standard basis e1; e2 and let G be the subgroup of GL2.K/
generated by A D

�
�1 0
0 1

�
and B D

�
�1 2
0 1

�
. Note that A2 D B2 D Id but

AB D
�
1 �2
0 1

�
has infinite order. It follows from A.e1/ D B.e1/ D �e1 that

g.e1/ D ˙e1 for every g 2 G. Hence g.e2/ … K � e1, otherwise g.e2/ D �e1
would imply g�1.e1/ D ��1e2 ¤ ˙e1. Now define

Rre
D ¹˙e1;˙2e1º; Rim

D ¹0º [ ¹g.e2/ W g 2 Gº; R D Rre
[Rim:

Then R is the disjoint union of Rre and Rim. Define the reflections s˛ by

s˛ D

8̂<̂
:

Id for ˛ 2 Rim;

A for ˛ 2 ¹e1;�e1º;
B for ˛ 2 ¹2e1;�2e1º:

One sees immediately that the axioms (ReS1) and (ReS2) hold so .R;X; s/ is
a pre-reflection system. On the other hand, (ReS3) does not hold because for
˛ D e1 and ˇ D 2e1 we have s˛ D A ¤ B D sˇ . Likewise, (ReS4) fails because
s˛.ˇ/ D �ˇ, so ss˛ˇ D s�ˇ D B while s˛sˇ s˛ D ABA ¤ B .

2.3 The map ˛ 7! ˛_

Let .R;X; s/ be a pre-reflection system. For every reflective root ˛, there exists a
unique linear form ˛_ on X such that s˛ is given by the familiar formula

s˛.x/ D x � hx; ˛
_
i˛: (2.7)

In particular, s˛.˛/ D �˛ ” h˛; ˛_i D 2. For ˛ 2 Rim we put ˛_ D 0. Then
_ W R! X� is a well-defined map and (2.7) holds for all ˛ 2 R and x 2 X .

Conversely, given .R;X/ 2 SVK with a map _ W R ! X�, taking (2.7) as
the definition of s˛ and putting Rre D ¹˛ 2 R W ˛_ ¤ 0º and Rim D R n Rre,
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the axioms of a pre-reflection system can also be phrased in terms of .R;X; _/ as
follows: For all ˛ 2 R,

(ReS1)_ ˛_ ¤ 0 implies h˛; ˛_i D 2 and .�˛/_ ¤ 0,

(ReS2)_ s˛.R/ � R and .s˛ˇ/_ D 0 ” ˇ_ D 0.

The morphism condition (2.4) is now expressed by

f ı s˛ D sf .˛/ ı f ” hx; ˛_if .˛/ D hf .x/; f .˛/_if .˛/ for all x 2 X

” f .˛/ D 0 or f �
�
f .˛/_

�
D ˛_: (2.8)

Here f � W Y � ! X� is the map sending a linear form h on Y to the linear form
hıf onX . Suppose f is a vector space isomorphism, and define f _ W X� ! Y �

by f _ WD .f �/�1. Then (2.8) shows that f is an isomorphism of pre-reflection
systems if and only if f .R/ D S and

f .˛/_ D f _.˛_/ (2.9)

for all ˛ 2 R. We can also re-formulate the axioms (ReS3) and (ReS4) of a
reflection system in terms of the map ˛ 7! ˛_, namely:

(ReS3)_ .c˛/_ D c�1˛_ whenever c 2 K� and both ˛ and c˛ belong toRre, and

(ReS4)_ .s˛ˇ/_ D ˇ_ � h˛; ˇ_i˛_ for all ˛; ˇ 2 R.

Indeed, because s˛ D s�1˛ we have

hx; s_˛ .ˇ
_/i D hs˛.x/; ˇ

_
i D

˝
x � hx; ˛_i˛; ˇ_

˛
D
˝
x; ˇ_ � h˛; ˇ_i˛_

˛
for all x 2 X , whence always s_˛ .ˇ

_/ D ˇ_ � h˛; ˇ_i˛_. Therefore, by (2.9),
s˛ is an automorphism if and only if (ReS4)_ holds.

2.4 Elementary properties

Let .R;X; s/ be a pre-reflection system. We will say R is

(i) reduced if ˛ 2 Rre, c 2 K� and c˛ 2 Rre imply c D ˙1 (note that we do
not require this condition for roots in Rim);

(ii) saturated if K�Rre\R D Rre, i.e., all roots that are non-zero scalar multiples
of reflective roots are themselves reflective;

(iii) integral if hR;R_i � Z;

(iv) nondegenerate if
T
˛2R Ker.˛_/ D ¹0º;

(v) symmetric if R D �R (cf. §1.2), equivalently, Rim D �Rim;

(vi) coherent if for ˛; ˇ 2 Rre we have h˛; ˇ_i D 0 ” hˇ; ˛_i D 0.
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It is easy to see from (ReS3)_ that in an integral reflection system,

˛ 2 Rre and c˛ 2 Rre for some c 2 K� H) c 2 ¹˙1=2; ˙1; ˙2º, (2.10)

and that ˛=2 and 2˛ cannot both be in Rre.
For a reflection system .R;X; s/ and ˛; ˇ 2 Rre we have

s˛ D sˇ ” ˇ 2 K�˛: (2.11)

Indeed, s˛ D sˇ implies �˛ D sˇ .˛/ D ˛ � h˛; ˇ_iˇ, whence h˛; ˇ_iˇ D 2˛

and so ˇ 2 K�˛. The converse follows from (ReS3). Moreover, a reflection sys-
tem is automatically coherent. Namely, for a reflection system R and ˛; ˇ 2 Rre,
one knows ([25, 2.2], [28, Chapter 5.2, Proposition 8]) that

h˛; ˇ_i D 0 ” s˛sˇ D sˇ s˛ and ˛ 62 K�ˇ

” hˇ; ˛_i D 0: (2.12)

For the convenience of the reader, we indicate a proof. As the condition in the
middle is symmetric in ˛ and ˇ, it suffices to prove the first equivalence. To do
so, observe that h˛; ˇ_i D 0 obviously implies ˛ 62 K�ˇ and sˇ .˛/ D ˛, whence
sˇ s˛ D s˛sˇ by (ReS4)0. Conversely, sˇ s˛ D s˛sˇ together with (ReS4)0 yields
sˇ D s for  D s˛.ˇ/, hence  D ˇ � hˇ; ˛_i˛ 2 K�ˇ by §(2.11) and thus
hˇ; ˛_i˛ 2 Kˇ. But then hˇ; ˛_i D 0 because of our assumption ˛ 62 K�ˇ.

Let .Ri ; Xi ; si /i2I be a family of pre-reflection systems, and let

.R;X/ D
a
i2I

.Ri ; Xi / D
�[
i2I

Ri ;
M
i2I

Xi
�

be its coproduct in the category SVK, cf. [26, 1.2]. We extend each s˛i , ˛i 2 Ri ,
to a reflection on X by s˛i

ˇ̌
Xj D Id for i ¤ j , and in this way obtain a map

s W R ! Ref.X/ which is easily seen to satisfy (ReS1) and (ReS2). The linear
form on X corresponding to ˛i 2 Ri is just the extension by zero of ˛_i . By abuse
of notation we will also write R D

L
i2I Ri , and call R the direct sum of the

pre-reflection systems .Ri ; Xi ; si /i2I . It is immediate that Rre D
S
i2I R

re
i and

Rim D
S
i2I R

im
i . Moreover, R is a reflection system if and only if each Ri is

a reflection system, and in this case W.R/ Š
L
i2I W.Ri /, the restricted direct

product of the family of Weyl groups
�
W.Ri /

�
i2I

. Similarly, R has any one of the
properties (i)–(vi) defined above if and only if each Ri does.

A pre-reflection system with a non-empty set of real roots is called indecom-
posable if it is not isomorphic to a direct sum of two pre-reflection systems, each
of which has a non-empty set of real roots.
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2.5 Subsystems

Let .R;X; s/ be a pre-reflection system. By a subsystem of .R;X; s/ we mean a
pre-reflection system .R0; X 0; s0/ where R0 � R (and hence in particular X 0 D
Span.R0/ is a subspace of X ), and the inclusion X 0 ,! X is a morphism. This
just means that s0˛.ˇ/ D s˛.ˇ/ for all ˛; ˇ 2 R0. It is immediately seen that
subsystems are in natural bijection with subsets R0 of R satisfying 0 2 R0 and
s˛.ˇ/ 2 R

0 for all ˛; ˇ 2 R0. This bijection will be treated as an identification in
the sequel.

Any subsystem R0 of R gives rise to the subgroup WR0.R/ of W.R/ generated
by all s˛, ˛ 2 R0. The restriction map res W WR0.R/ ! W.R0/, w 7! w

ˇ̌
X 0, is a

surjective homomorphism which need not be injective (see, however, [26, 5.8] as
well as the remark in Lemma 2.4 and Lemma 4.1). We now give some examples
of subsystems.

(a) It follows from (ReS2) that

Re.R/ WD Rre
[ ¹0º

is always a subsystem, and from (2.5) that the assignment Re W R 7! Re.R/ is an
idempotent functor from the category of reflection systems to itself. Similarly,

Rind WD ¹˛ 2 R
re
W ˛=2 … Rre

º [ ¹0º; (2.13)

is a subsystem. We call its elements the indivisible roots. By (2.10), Rind is a
reduced subsystem of any integral reflection system R.

(b) Let k � K be a subring containing hR;R_i and letM � X be a k-submodule.
Then (2.7) shows that M \ R is a subsystem. If k D K such a subsystem will be
called full.

(c) Let E � R be an arbitrary subset. The subsystem generated by E is the
smallest subsystem S containingE. IfR is a reflection system, S can be described
as

S D .H �E/ [ ¹0º (2.14)

where H is the subgroup of W.R/ generated by all s˛, ˛ 2 E.

2.6 Connectedness, cf. [26, 3.12]

Let .R;X; s/ be a coherent pre-reflection system, and let A be a subset of Re.R/
with 0 2 A. Two roots ˛ and ˇ of A� are said to be connected in A, if there exist
finitely many roots ˛ D ˛0; ˛1; : : : ; ˛n D ˇ, ˛i 2 A�, such that h˛i ; ˛_i�1i ¤ 0

for i D 1; : : : ; n. We then call ˛0; : : : ; ˛n a chain connecting ˛ and ˇ in A.
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Since R is coherent, connectedness is an equivalence relation on A�. A connected
component of A is defined as the union of ¹0º and an equivalence class of A�, and
A is called connected if A has only one connected component. In particular we
will use this terminology for Re.R/.

As an example, we observe that ˛ and w˛ are connected for any ˛ 2 Rre and
w 2 W.R/. Hence W.R/ preserves connected components of Re.R/. It is also
easily seen, cf. the proof of [26, 3.13], that each connected component S of Re.R/
is a subsystem. Moreover, if Re.R/ is connected then R is indecomposable. The
converse need however not be true.

Lemma 2.1. Let .R;X;s/be a nondegenerate coherent pre-reflection system. Then
the subsystem Re.R/ is the direct sum of its connected components. In particular,
Re.R/ is connected if and only if it is indecomposable.

Proof. The proof is a straightforward generalization of the proof of the corre-
sponding result for locally finite root systems [26, 3.13] and is left to the reader.

2.7 Invariant bilinear forms

Let .R;X; s/ be a pre-reflection system. A symmetric bilinear form b W X �X !

K is called invariant if b.wx;wy/ D b.x; y/ for all w 2 W.R/ and x; y 2 X .
Since W.R/ is generated by the reflections s˛, ˛ 2 Rre, the invariance under the
Weyl group is equivalent to b.s˛x; y/ D b.x; s˛y/ for all ˛ 2 Rre and x; y 2 X .
An easy computation, using the fact that h˛; ˛_i D 2 (because ˛ 2 Rre), shows
that this is, in turn, equivalent to

2b.x; ˛/ D hx; ˛_ib.˛; ˛/ for all x 2 X and ˛ 2 Rre. (2.15)

We will say that b is strictly invariant if (2.15) holds not only for all ˛ 2 Rre

but for all ˛ 2 R; thus,

b is strictly invariant

” 2b.x; ˛/ D hx; ˛_ib.˛; ˛/ for all x 2 X and ˛ 2 R. (2.16)

Obviously, the notions of invariant and strictly invariant form agree if R has no
imaginary roots¤ 0, i.e., if R D Re.R/.

Let Rad b D ¹x 2 X W b.x;X/ D 0º be the radical of b. Since ˛ 2 Rim if and
only if ˛_ D 0, it is clear that

b is strictly invariant ” b is invariant and Rim � Rad b. (2.17)
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In particular, for any strictly invariant form b,

R \ Rad b D ¹˛ 2 R W b.˛; ˛/ D 0º and
\
˛2R

Ker.˛_/ � Rad b: (2.18)

Hence a pre-reflection system with a nondegenerate strictly invariant form is non-
degenerate in the sense of §2.4 (iv). We denote by I.R/ the K-vector space of
strictly invariant forms on X . If R D

L
i2I Ri is a direct sum of pre-reflection

systems .Ri ; Xi ; si /, cf. §2.4, there is a canonical isomorphism given by restriction

I.
M

Ri / Š
Y

I.Ri /: (2.19)

Several criteria for the existence of invariant bilinear forms on pre-reflection
systems are given in [25]. For example, by [25, Theorem 1.5], there exists an
invariant symmetric bilinear form b satisfying s˛jRad b D Id for all ˛ 2 Rre if
and only if the following two conditions are fulfilled:

(i) there exists a family .d˛ W ˛ 2 Rre/ of scalars d˛ 2 K n ¹0º such that
d˛hˇ; ˛

_i D dˇ h˛; ˇ
_i holds for all ˛; ˇ 2 Rre, and

(ii) there exists a linear map ˆ W SpanK.R
re/ ! X� satisfying ˆ.˛/ D d˛˛

_

for all ˛ 2 Rre.

If b exists, one can take d˛ D b.˛; ˛/. Conversely, if (i) and (ii) hold, one defines
b on SpanK.R

re/ � X by b.x; y/ D ˆ.x/.y/ and then arbitrarily extends b to all
of X �X .

Example. Suppose W.R/ is finite, and let � be any bilinear form. Then

b.x; y/ D
X

w2W.R/

�.w.x/; w.y//

defines an invariant form on X . If Rim � Rad � then b is strictly invariant. Other
examples and constructions of (strictly) invariant forms are given in §2.8, Propo-
sition 2.2, §2.9, Lemma 4.1 (e) and in §5.

In the remainder of this section we will discuss examples of (pre-)reflection
systems. More examples are given in §3.1.

2.8 Locally finite root systems

We will use the term “locally finite root system” for a locally finite root system over
K in the sense of [26, 4.14]. As already mentioned in [26, 4.14], the classification
of locally finite root systems over K and over R is the same.

A pre-reflection system R is a finite root system in the usual sense of [14]
(except that we require 0 2 R) resp. a locally finite root system in the sense
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of [26] if and only if R is finite resp. locally finite, integral, and Rre D R�.
Indeed, it suffices to remark that the axioms (ReS3)_ and (ReS4)_ of §2.2 hold in
locally finite root systems; they are, respectively, the formulas (2) of [26, 4.8] and
(2) of [26, 3.9].

Every locally finite root system R has a nondegenerate strictly invariant form,
see Proposition 2.2. Moreover, R is the direct sum of its connected components,
see [26, 3.13] or Lemma 2.1. In particular, R is connected if and only if R is
indecomposable, in which case R is traditionally called irreducible. Finally, we
note that W.R/ is in general not a Coxeter group [26, Corollary 9.9].

Proposition 2.2. For an integral pre-reflection system .R;X; s/ the following con-
ditions are equivalent:

(i) R is a locally finite root system;

(ii) there exists a nondegenerate strictly invariant form on .R;X/, and for every
˛ 2 R the set hR; ˛_i is bounded as a subset of Z.

In this case, .R;X/ has a unique invariant form . j / which is normalized in the
sense that for every connected component C ¤ ¹0º of R

2 2 ¹.˛j˛/ W ˛ 2 C�º � ¹2; 4; 6; 8º: (2.20)

In fact, the normalized invariant form . j / satisfies

¹.˛j˛/ W ˛ 2 C�º 2
®
¹2º; ¹2; 4º; ¹2; 6º; ¹2; 8º; ¹2; 4; 8º

¯
: (2.21)

It is nondegenerate in general and positive definite for K D R.

Remark. Since locally finite root systems have no nonzero imaginary roots, we
need no longer distinguish between invariant and strictly invariant forms, as re-
marked in §2.7.

Proof. Suppose (i) holds. Then it is of course well known that jhR;R_ij � 4. The
existence of a unique normalized invariant form with the stated properties follows
from [26, 4.2, 4.6, 4.14].

Conversely, suppose that (ii) holds with respect to the nondegenerate strictly
invariant form b. Since b is nondegenerate, Rim D ¹0º. Hence, by §2.8, it remains
to show that R is locally finite, i.e., jR \ Y j < 1 for every finite-dimensional
subspace Y of X .

Since R spans X , every finite-dimensional subspace lies in a finite-dimensional
subspace QY which is tight, i.e., QY D Span. QY \ R/. It is therefore no harm to
assume that Y itself is tight. One can then embed Y in a finite-dimensional tight
subspace Y 0 for which b

ˇ̌
Y 0 � Y 0 is nondegenerate. Thus after replacing Y by Y 0,
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we may assume b is nondegenerate on Y . Let ¹˛1; : : : ; ˛nº � R \ Y be a basis
of Y . We claim that the linear map ˆ W Y ! Kn W y 7! .hy; ˛_i i/1�i�n is
injective. Indeed, if ˆ.y/ D 0 we have b.y; ˛i / D 0 by (2.16) and hence y 2
Y \ Y ? D ¹0º. By assumption there exists M 2 N such that jhˇ; ˛_i ij � M for
all ˇ 2 R \ Y and 1 � i � n. Hence ˆ.R \ Y / is contained in the finite set
¹.m1; : : : ; mn/ 2 Zn W jmi j �M º.

Remark. We note that an integral reflection system with a nondegenerate invariant
or even strictly invariant form is in general not a locally finite root system. For
example, consider X D Q4 with the hyperbolic quadratic form q.x/ D x1x2 C

x3x4 and let b.x; y/ D x1y2 C x2y1 C x3y4 C x4y3 be the associated bilinear
form. Let .R;X; s/ be the integral reflection system of §2.9 with R D Re.R/ and
Rre D ¹˛ 2 Z4 W q.˛/ D 1º. The form b is strictly invariant and nondegenerate
but R is infinite, since the vectors .1; nC 1;�1; n/ belong to R for all n 2 Z.

2.9 Reflection systems associated to bilinear forms

Let .R;X/ 2 SVK, and let . j / be a symmetric bilinear form on X . For ˛ 2 X
we denote the linear form x 7! .˛jx/ by ˛[. Let ˆ � ¹˛ 2 R W .˛j˛/ ¤ 0º be a
subset, define _ W R! X� by

˛_ WD

8̂<̂
:
2˛[

.˛j˛/
if ˛ 2 ˆ,

0 otherwise,
(2.22)

and define s˛ by (2.7). Thus s˛ is the orthogonal reflection in the hyperplane ˛?

if ˛ 2 ˆ, and the identity otherwise. If s˛.R/ � R and s˛.ˆ/ � ˆ for all ˛ 2 R,
then .R;X; s/ is a reflection system with the given subset ˆ as set of reflective
roots. Indeed, the axioms (ReS1)_, (ReS2)_, (ReS3)_ and (ReS4)_ of §2.3 are
easily verified. The bilinear form . j / is invariant, and it is strictly invariant if and
only if Rim D R \ Rad . j /, i.e., . j / is affine in the sense of §5.1.

Besides the locally finite root systems, many reflection systems are of this type.
We mention as examples the root system associated to the geometric representation
of a Coxeter group (§2.10), the root system associated to root data (§3.1.c) and the
affine reflection systems (Lemma 5.3, Proposition 5.4). Other examples are the
not necessarily crystallographic root systems, as for example defined in [20, 1.2],
or the set R D ˆ [ ¹0º where ˆ � R2 is the set of vectors which enter into
Tits’ description of the Ree groups of type 2F4 [42, Figure 1 on p. 547]. We note
that this R is not reduced and that W.R/ is isomorphic to the dihedral group of
order 16.
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2.10 Reflection systems à la Hée [18]

Let X be a K-vector space with a basis .˛i /i2I , and suppose .si /i2I is a family
of reflections with si .˛i / D �˛i for all i 2 I . Let W be the subgroup of GL.X/
generated by all si , i 2 I , and putR D ¹0º[W � ¹˛i W i 2 I º. It is straightforward
to check that there exists a reflection system .R;X; s/ such that s˛i D si for all
i 2 I if and only if for all w 2 W , i; j 2 I and c 2 K� the following condition is
fulfilled:

w.˛i / D c j̨ H) w si D sj w: (2.23)

In this case, the reflection s˛ for ˛ 2 R� is given by

s˛ D w si w
�1 for ˛ D w.˛i /; (2.24)

so Rre D R� and W D W.R/.
Let now K be an ordered field, and suppose that R D RC [ .�RC/ where RC

denotes the set of all ˛ 2 R which can be written in the form ˛ D
P
i ci˛i with

all ci � 0. Thus,
�
I;X; .˛i /; .si /

�
is a “root basis” in the terminology of [18]. By

[18, 2.13 (d)], the condition (2.23) is fulfilled and hence (2.24) defines a reflection
system on R. We will establish (2.23) in another situation in Proposition 2.5.

By [18, 2.13] the Weyl group of R is isomorphic to the Coxeter group W , as
defined in [18, 1.3 (c)]. In particular, by [18, 2.12 (b)] every Coxeter system .W; S/

gives rise to a “root basis” in the sense of [18] over K D R, and hence to a real
reflection system R.W; S/ whose Weyl group is isomorphic to W . In this setting,
the reflection system R.W; S/ is also described in [14, V, §4] and [16]. By [16,
Proposition 3.1], R.W; S/ is of the type considered in §2.9 above.

2.11 Lucas polynomials

We will study the reflection system generated by two reflective roots in more de-
tail and to this end first recall some facts about Lucas polynomials, see [27, Chap-
ter 18].

Let p;q be indeterminates. The Lucas polynomials Un 2 ZŒp;q� are defined
inductively for all n 2 N by

U0 D 0; U1 D 1; UnC1 D pUn � qUn�1 .n � 1/: (2.25)

Note thatUn is homogeneous of degree n�1 provided p is given the degree 1 and q
the degree 2. For negative indices, we define Lucas polynomials U�n 2 ZŒp;q�1�
by

U�n.p;q/ WD �q�nUn.p;q/ D �q�1Un.p=q; 1=q/; (2.26)

where the second formula follows from the homogeneity property of the Un. It is
easily seen that the recursion relations (2.25) then hold for all n 2 Z.
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The significance of the Lucas polynomials for the powers of a 2 � 2-matrix A
with coefficients in an arbitrary commutative ring k is shown by the following
formulas. Let us put

p WD tr.A/; q WD det.A/; un WD Un.p; q/ (2.27)

for short and denote by A] D tr.A/I � A the adjoint matrix of A. Then for all
n 2 N,

An D unA � qun�1I (2.28)

D unC1I � unA
]: (2.29)

For completeness, we indicate the proof. Clearly, (2.28) holds for n D 1. If it holds
for n, then multiplying by A we obtain AnC1 D unA

2 � qun�1A D un.pA �

qI / � qun�1A (by Cayley–Hamilton) D .pun � qun�1/A � qunI D unC1A �

qunI (by (2.25)). Now (2.29) follows from (2.28) because An D un.pI � A]/ �
qun�1I D .pun � qun�1/I � unA

] D unC1I � unA
].

If A is invertible then q D det.A/ 2 k�, and induction shows that (2.28) and
(2.29) hold for all n 2 Z, where the un are defined as before, but now for all
n 2 Z.

Now specialize to the case where k is a totally ordered commutative ring, e.g.,
k D R, and A 2 SL2.k/ and hence q D det.A/ D 1. We identify Z with
Z � 1k � k [13, §2.1, Proposition 1]. Then (2.26) shows that

u�n D �un: (2.30)

We assume next that jpj D j tr.A/j � 2, and put " D sgn.p/. Then the following
estimate holds:

"nC1un � max.n; "nun�1 C 1/ for all n 2 N. (2.31)

We remark that these formulas are a compact version of [18, (1.13)].

Proof. This is clear for n D 0 because u0 D 0 and u�1 D �u1 D �1. For the
induction step, use (2.25) with q D 1:

"nC2unC1 D "
nC2

�
pun � un�1

�
D jpj"nC1un � "

nun�1: (2.32)

Since jpj � 2 and "nC1un � n is in particular positive by induction, we have

"nC2unC1 � 2"
nC1un � "

nun�1 D "
nC1un C

�
"nC1un � "

nun�1
�

� "nC1un C 1; (2.33)

from which the assertion follows.
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The lemma below is a simplification (in our situation) of [18, 1.21], see also
[28, Proposition 5.1.11].

Lemma 2.3. Let K be a field of characteristic ¤ 2, let A 2 SL2.K/ and v 2 K2

(column vector), and put QA WD
�
A v
0 1

�
2 SL3.K/. If A ¤ I (the 2� 2 unit matrix),

then A and QA have the same order.

Proof. LetBn WD ICAC� � �CAn�1. Induction shows that QAn D
�
An Bnv
0 1

�
. IfA

has 1 as an eigenvalue then detA D 1 implies that both eigenvalues of A are 1,
and since A ¤ I , it must be of the form A D I CN where N ¤ 0 D N 2. Hence
An D I C nN and Bn D nI C

�
n
2

�
N D n.I C n�1

2
N/ for all n 2 N. Hence A

has infinite order if K has characteristic zero, and order p if K has characteristic
p > 2, and so does QA. If 1 is not an eigenvalue of A then A � I is invertible,
and hence Bn D .I � A/�1 � .I � An/, showing again that A and QA have the
same order.

The lemma fails for A D
�
1 1
0 1

�
, v D

�
0
1

�
and K of characteristic 2.

Lemma 2.4. Let Y be a K-vector space with basis ¹˛; ˇº and let s˛, sˇ be reflec-
tions with s˛.˛/ D �˛ and sˇ .ˇ/ D �ˇ. We denote byD the subgroup of GL.Y /
generated by s˛ and sˇ , and put S D ¹0º [D � ¹˛; ˇº, cf. §2.10.

(a) We identify Y with K2 by means of the ordered basis ˛; ˇ and let A D s˛sˇ .
Define a WD �hˇ; ˛_i and b WD �h˛; ˇ_i where ˛_, ˇ_ are given by (2.7).
Then

A D

 
ab � 1 �a

b �1

!
2 SL2.K/: (2.34)

Also,D D N Ì¹Id; s˛º D N Ì¹Id; sˇ º (semidirect product) whereN denotes
the cyclic group generated by s˛sˇ , so D is a dihedral group.

(b) Put un D Un.tr.A/; det.A// D Un.ab � 2; 1/ as in (2.27). Then

S D ¹0º [ ¹˙An˛; ˙Anˇ W n 2 Zº; (2.35)

where, for all n 2 Z,

An˛ D .unC1 C un/˛ C bunˇ; (2.36)

�Anˇ D aun˛ C .un C un�1/ˇ: (2.37)

Proof. (a) is easily verified and well known, cf. [14, IV, §1.2].
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(b) We have tr.A/ D ab�2, det.A/ D 1 and hence unC1 D .ab�2/un�un�1
by (2.25). Thus (2.29) yields

An D

 
unC1 0

0 unC1

!
� un

 
�1 a

�b ab � 1

!

D

 
unC1 C un �aun

bun unC1 � .ab � 1/un

!

D

 
unC1 C un �aun

bun �un � un�1

!
:

Now (2.36) and (2.37) follow immediately, and (2.35) is clear from the fact that
D D N P[Ns˛ D N P[Nsˇ .

Remark. We will later (in Lemma 3.6) apply this lemma and the following propo-
sition to the situation where .R;X; s/ is a reflection system and ˛; ˇ 2 Rre are
linearly independent reflective roots. Since s˛ and sˇ leave Y WD K˛ ˚ Kˇ in-
variant, the lemma is indeed applicable.

LetH be the subgroup ofW.R/ � GL.X/ generated by s˛ and sˇ . WithD de-
fined as above, the restriction mapH ! D.� GL.Y // is an isomorphism. Indeed,
since A ¤ I the injectivity of the restriction map is an immediate consequence of
Lemma 2.3. Moreover, in this case the set S is the subsystem of R generated by
¹˛; ˇº, cf. (2.14).

Proposition 2.5. With the assumptions and notations of Lemma 2.4, suppose fur-
thermore that a; b 2 Z and that ab D 0 implies a D 0 D b. We also assume
a � jbj � 0, which can always be achieved by switching ˛ and ˇ and replac-
ing ˇ by �ˇ if necessary. Then the condition (2.23) is fulfilled and hence S is a
reflection system. Moreover:

(a) If tr.A/ � 2, i.e., ab � 4, then .˛; ˇ/ \ S is infinite while .˛;�ˇ/ \ S D ;.

(b) If tr.A/ < �2, i.e., ab < 0, both .˛; ˇ/ \ S and .˛;�ˇ/ \ S are infinite.

(c) In the remaining cases, i.e., .a; b/ D .0; 0/, .1; 1/, .2; 1/ or .3; 1/, S is a finite
reduced root system of rank 2 of type A1 � A1, A2, B2 and G2, respectively,
with root basis ˛; ˇ. In particular, .˛; ˇ/ \ S is finite and .˛;�ˇ/ \ S D ;.

Proof. Note first that a; b 2 Z implies all un 2 Z and S � Z˛ ˚ Zˇ. In (a) and
(b) we will prove that, for all n 2 Z,

unC1 C un ¤ 0; and un D 0 ” n D 0: (2.38)
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Assuming (2.38), we show that Condition (2.23) is fulfilled, and hence S is a
reflection system. Indeed, let w 2 D and consider w˛. By Lemma 2.4, we have
w D Ansi˛ for some n 2 Z and i 2 ¹0; 1º, sow˛ D .�1/i

�
.unC1Cun/˛Cbunˇ

�
by (2.36). Because of (2.38), w˛ 2 K�ˇ is impossible, and if w˛ 2 K�˛ then
bun D 0 forces n D 0 by (2.38). Hence w D si˛ and then obviously ws˛ D s˛w

holds. The cases wˇ 2 K�˛ and wˇ 2 K�ˇ can be done similarly. Thus, for the
proof of (a) and (b) it remains to establish the claims about the root intervals as
well as (2.38). Because of (2.30) it is sufficient to show (2.38) for all n 2 N.

(a) We use (2.31) with " D 1. Thus un � n for all n � 0 follows, which
obviously implies (2.38) for n 2 N. Since b > 0, (2.36) shows that the set
¹An˛ W n 2 NCº is infinite and contained in .˛; ˇ/ \ S . Similarly, (2.37) shows
that�Anˇ 2 .˛; ˇ/\S for all n � 1. For negative exponents,A�n˛ D .u�nC1C
u�n/˛ C bu�nˇ D �.un�1 C un/˛ � bunˇ (by (2.30)) 2 �.˛; ˇ/ \ S , and
similarly, �A�nˇ 2 �.˛; ˇ/ \ S . Now (2.35) shows that .˛;�ˇ/ \ S D ;.

(b) Here we use (2.31) with " D �1. This yields �u2n � 2n and u2nC1 �
2n C 1 as well as u2nC1 C u2n � 1 and �.u2n C u2n�1/ � 1, for all n � 1.
Again (2.38) follows. Also, (2.37) shows A2nˇ D �au2n˛ � .u2n C u2n�1/ˇ 2
.˛; ˇ/ \ S , for all n � 1. Similarly, since u�n D �un by (2.30), �A�2nˇ D
�au2n˛ � .u2nC1 C u2n/ˇ 2 .˛;�ˇ/ \ S , for all n � 1. Since �au2n � 2na,
there are infinitely many roots of these types.

(c) In the cases listed, one shows easily that A has order 2; 3; 4; 6 and that S is
A1 � A1, A2, B2, G2, respectively, cf. [14]. In particular, S is a reflection system.
The details are left to the reader.

Remarks. (i) That, in case (a), S is a reflection system, follows also from
[18, 2.11 (ii), 2.13 (d)].

(ii) Because of (2.12), our assumption that ab D 0 implies a D 0 D b is
necessary for S to be a reflection system.

(iii) We summarize our results in the following table, where a; b 2 Z satisfy the
assumptions of the proposition:

a > 0 0 1 2 3 4 2 > 0

b < 0 0 1 1 1 1 2 > 0

tr.A/ < �2 �2 �1 0 1 2 2 > 2

S ‹ A1 � A1 A2 B2 G2 BC.2/1 A.1/1 hKM

j.˛; ˇ/ \ S j @0 0 1 2 4 @0 @0 @0

j.˛;�ˇ/ \ S j @0 0 0 0 0 0 0 0
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Here BC.2/1 and A.1/1 denote the sets of real roots of the corresponding affine
Kac–Moody algebras [28, p. 452], and hKM indicates that S is the set of
real roots of a hyperbolic Kac–Moody algebra, cf. [28, p. 454]. The case
a > 0 > b does not seem to have appeared “naturally” in Lie algebras.

2.12 More examples

(a) Restriction along subsystems. Let U � R be a subsystem of a pre-reflection
system R. Then it follows easily that R together with the modified definition

Qs˛ WD

´
s˛ for ˛ 2 U ,
Id for ˛ 2 R n U ,

(2.39)

defines a new pre-reflection system .R;X; Qs/ which we denote by RU or simply
by QR and call the restriction of R along U . Clearly, the reflective roots of QR are
those of U , i.e., Re.RU / D Re.U /. If R is a reflection system, then so is RU .

(b) Quotients of classical root systems. Let I be a set and XI D
L
i2I K"i the

free K-vector space on the set I . We will use the following description of the
classical root systems, cf. [26, 8.1]:

PAI D ¹"i � "j W i; j 2 I º; DI D PAI [¹˙"i ˙ "j W i ¤ j º;

BI D DI [ ¹˙"i W i 2 I º; CI D DI [ ¹˙2"i W i 2 I º;

BCI D BI [ CI :

The notation PAI (instead of AI ) serves to indicate the fact that the span of PAI has
codimension 1 in XI . In all other cases, except DI for jI j D 1, the span of R
is XI . For a subset J of I we put K D I n J and define

BCI .J / D BI [ ¹˙2"j W j 2 J º D BCI n ¹˙2"k W k 2 Kº; (2.40)

DCI .J / D DI [ ¹˙2"j W j 2 J º D CI n ¹˙2"k W k 2 Kº; (2.41)

cf. [26, 12.18]. Our notation is motivated by the fact that BCI .J / interpolates
between the root systems BI D BCI .;/ and BCI D BCI .I /, while DCI .J / does
the same for DI D DCI .;/ and CI D DCI .I /. By [26, 12.15], a quotient of a
classical root system by a full subsystem is either again a classical root system or
isomorphic to BCI .J / or DCI .J / for suitable I; J .

Let R D BCI .J / or DCI .J /. For 0 ¤ ˛ 2 R \ .XJ [XK/ let s˛ be the usual
reflection with respect to ˛ in the root system BCI . Then s˛ leaves R as well as
R \ .XJ [XK/ invariant. Since (ReS3) and (ReS4) hold in BCI , it is immediate
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that R becomes a reflection system for which

Re.R/ D R \ .XJ [XK/ D

´
BCJ [ BK if R D BCI .J /,
CJ [ DK if R D DCI .J /,

(2.42)

Rim
D ¹0º [ ¹˙"j ˙ "k W j 2 J; k 2 Kº: (2.43)

It is symmetric, integral and saturated, but R D BCI .J / is not reduced. It is
immediately seen that DCI .J / is a subsystem of .BCI .J /; s/.

There exists a second structure of a reflection system on BCI .J / as follows.
The subset U WD CJ [ BK is a subsystem of R D BCI .J / and hence restriction
along U gives rise to the new reflection system

QR D BCI .J /U (2.44)

whose reflective and imaginary roots are

Re. QR/ D CJ [ BK ; QRim
D Rim

[ ¹˙"j W j 2 J º; (2.45)

with Rim as in (2.43). The reflection system QR is integral and reduced but not
saturated. Note that DCI .J / is a subsystem of both R and QR.

(c) Root data in the sense of Moody–Pianzola. Let D D .A;…;…_; V; V _; h ; i/

be a set of root data over K in the sense of [28, 5.1], let W be its Weyl group,
and let † D W � … be the set of real roots of D . Also, let R be the root string
closure of † [28, 5.8]. For ˛ 2 †, let s˛ D r˛ be the reflection defined by ˛ as
in [28, 5.2], while for � 2 R n † put s� D Id. Then R is a symmetric, reduced,
saturated and integral reflection system in the vector space X � V spanned by …,
with † as its set of reflective roots. This follows easily from [28, Chapter 5]. Let
us point out that in particular the roots of a Kac–Moody algebra are examples of
root data and hence of reflection systems.

(d) Weight systems. Let g be a Kac–Moody algebra over K [28, 4.1] with root
system � D �re [ �im � h� in the usual notation. We do not assume that h

is minimally realized in the sense of [28, 4.2] and hence allow for example that
g is a finite-dimensional reductive Lie algebra with a split semisimple part. Let
.M; �/ be an integrable g-module [28, 6.1] with weight system P.M/. We have
.R;X/ 2 SV for

R WD ¹0º [� [ P.M/

and X D spanK.R/. For ˛ 2 �re let s˛ 2 h� be the usual reflection. It then fol-
lows from [28, Proposition 4.1.5, 4.1.7 and 6.1.10] that s˛.R/ D R and s˛.�re/ D

�re. Also, by [28, Proposition 4.1.2], (ReS4)_ is satisfied. Hence R is a reflection
system with Rre D �re. It is also integral: For ˛ 2 �re we have h�; ˛_i � Z by
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[28, Proposition 4.1.7 and Proposition 4.1.9] and hP.M/; ˛_i � Z by [28, Propo-
sition 6.1.4]. We note that R is symmetric if and only if

�P.M/ � R: (2.46)

For example, (2.46) is fulfilled if M is isomorphic to its dual module. We will
discuss this further in §3.1(d,e).

(e) Integrable roots in Lie algebras with split toral subalgebras. Let L be a Lie
algebra over K with a split toral subalgebra T . This means that T is a subalgebra
of L with the following property: L D

L
˛2R L˛.T / where, for any � 2 T �, we

put L�.T / D ¹x 2 L W Œt; x� D �.t/x for all t 2 T º and where R D ¹� 2 T � W
L�.T / ¤ 0º. We denote by Rint the subset of integrable roots, i.e., those ˛ 2 R
for which there exists an sl2-triple .e˛; h˛; f˛/ 2 L˛ � T � L�˛ such that the
adjoint maps ad e˛ and adf˛ are locally nilpotent.

Let X D SpanK.R/ � T �, and for ˛ 2 Rint define ˛_ 2 X� by ˛_.�/ D
�.h˛/. It is then a straightforward exercise in sl2-representation theory to verify
that .R;X/ is an integral pre-reflection system with Rre D Rint. We note that
many of the examples above arise in this way, e.g., locally finite root systems [33],
Kac–Moody root systems [23, 28] or the examples in (d).

3 Partial root systems

Lemma 3.1. Let R be a pre-reflection system, let ˛ 2 Rre, ˇ 2 R, and assume
that a WD �hˇ; ˛_i 2 Z. Consider the ˛-string through ˇ, defined by

S.ˇ; ˛/ WD .ˇ C Z˛/ \R;

and let Z.ˇ; ˛/ WD ¹i 2 Z W ˇ C i˛ 2 Rº.

(a) s˛ leaves S.ˇ; ˛/ invariant and corresponds to the reflection i 7! a � i of
Z.ˇ; ˛/ about the point a=2.

(b) Z.ˇ; ˛/ is bounded if and only if it is bounded on one side. In this case, we
put �q D min Z.ˇ; ˛/ and p D max Z.ˇ; ˛/ and then have p; q 2 N and
p � q D a D �hˇ; ˛_i.

(c) The following conditions are equivalent:

(i) S.ˇ; ˛/ contains no gaps, i.e., Z.ˇ; ˛/ is a finite interval in Z or equals
Z,

(ii) for all  2 S.ˇ; ˛/ and all integers i between 0 and h; ˛_i we have
 � i˛ 2 S.ˇ; ˛/,

(iii) for all  2 S.ˇ; ˛/, h; ˛_i > 0 implies  � ˛ 2 R and h; ˛_i < 0

implies  C ˛ 2 R.
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Proof. (a) follows immediately from s˛.ˇ C i˛/ D ˇ C .a � i/˛.
(b) The first statement is clear from (a) and the symmetry of Z.ˇ; ˛/ about the

point a=2. We have p; q 2 N because 0 2 Z.ˇ; ˛/. Now �q and p are exchanged
by the map i 7! a � i , whence �q D a � p.

(c) The implication (i)H) (ii) follows from the fact that S.ˇ; ˛/ is stable under
s˛ and s˛./ D  � h; ˛_i˛, and (ii) H) (iii) is trivial. Assume that (iii) holds
but that S.ˇ; ˛/ has a gap, say with left endpoint  D ˇ C l˛ and right endpoint
ı D ˇC r˛, so that lC1 < r . Since C˛ and ı�˛ do not belong to R, we have

0 � h; ˛_i D hˇ C l˛; ˛_i D hˇ; ˛_i C 2l;

0 � hı; ˛_i D hˇ C r˛; ˛_i D hˇ; ˛_i C 2r:

Subtracting these inequalities yields the contradiction l � r .

Lemma 3.2. Let .R;X/ be an integral pre-reflection system. Then there exists a
unique integral reflection system . QR;X/ such that

(i) QR contains R as a subsystem, and QRre D Rre;

(ii) for every ˛ 2 Rre and Q̌ 2 QR the root string . Q̌ C Z˛/ \ QR is without gaps;

(iii) QR is the smallest with respect to inclusion among all reflection systems sat-
isfying (i) and (ii).

If R is symmetric or a reflection system, then so is QR.

Proof. For R the set of real roots associated to a set of root data, see §2.12 (d),
this is proven in [28, §5.8] where QR is called the “root string closure” of R. The
construction given there also works in our more general setting.

Definition 3.3. A partial root system is an integral reflection system .R;X; s/with
the following additional properties:

(PRS1) (Signs) For all ˛; ˇ 2 Rre, sgnh˛; ˇ_i D sgnhˇ; ˛_i, where sgn.n/ is
defined as zero, 1, or �1 according to whether n is zero, positive, or
negative.

(PRS2) (Root string property) For all ˛ 2 Rre, ˇ 2 R, the root string S.ˇ; ˛/ is
finite and without gaps.

(PRS3) (Partial closure) Whenever ˛; ˇ 2 Rre, hˇ; ˛_i � 0 and ˛ C ˇ 2 R then
˛ C ˇ 2 Rre.

By a morphism between partial root systems, we mean a morphism of the un-
derlying reflection systems. Thus the partial root systems form a full subcategory,
denoted PRS, of the category ReS of reflection systems.
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Let us point out that we do not assume that R be reduced as defined in §2.4. We
note that (PRS1) is equivalent to:

(PRS1)0 For all ˛; ˇ 2 Rre, h˛; ˇ_i > 0 ” hˇ; ˛_i > 0.

Indeed, (PRS1)0 implies h˛; ˇ_i < 0 ” hˇ; ˛_i < 0 since .�ˇ/_ D �ˇ_ by
(ReS3)_, while h˛; ˇ_i D 0 ” hˇ; ˛_i D 0 holds for all reflection systems
by (2.12).

We also note that for ˛; ˇ as in (PRS3), we have ˛ C ˇ 2 R�, else hˇ; ˛_i D
�h˛; ˛_i D �2. In particular, (PRS3) always holds if Rre D R�. However, in
general Re.R/ D Rre [ ¹0º is not a closed subset of R.

The following fact will be useful:

˛ 2 Rre and n˛ 2 R for n � 2 H) n˛ 2 Rre, n D 2 and s˛ D s2˛. (3.1)

Indeed, by (2.10) it suffices to show that n˛ 2 Rre. The ˛-string through ˛ con-
tains no gaps by (PRS2), hence i˛ 2 R for 1 � i � n� 1. As hi˛; ˛_i D 2i > 0,
induction and (PRS3) shows n˛ 2 Rre.

3.1 Examples

Examples of partial root systems are the so-called EARS or, more generally, some
of the affine reflection systems, see Corollary 4.7 (b). Other examples are some of
the reflection systems of §2, discussed below.

(a) Locally finite root systems. By well-known facts [14, 26], the (locally) fi-
nite root systems in the usual sense are precisely those (locally) finite partial root
systems for which Re.R/ D R.

(b) Quotients of classical root systems. We consider the three types of integral
reflection systems defined in §2.12 (b). We use the notation introduced there. Since
the reflections are always the ones induced from BCI , it suffices to indicate the
reflective and imaginary roots:

R D BCI .J /; Re.R/ D BCJ [ BK ; Rim
D ¹0º [ ¹˙"j ˙ "k W j 2 J; k 2 Kº;

QR D BCI .J /; Re. QR/ D CJ [ BK ; QRim
D Rim

[ ¹˙"j W j 2 J º;

S D DCI .J /; Re.S/ D CJ [ DK ; S im
D Rim:

Then R is not a partial root system (unless J or K is empty), because for j 2 J
and k 2 K we have "j ; "k 2 Rre and h"j ; "_ki D 0 but "j C"k 2 Rim. On the other
hand, QR and S are symmetric partial root systems. Indeed, (PRS1) holds since it
does so in BCI . To show (PRS2) for QR, let ˛ 2 QRre, ˇ 2 QR and denote by S.ˇ; ˛/
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and S�.ˇ; ˛/ the root strings in QR and BCI , respectively. Then S.ˇ; ˛/ is finite
since it is contained in S�.ˇ; ˛/. Because

BCI n QR D ¹˙2"k W k 2 Kº;

the structure of root strings in root systems shows that the only possibility for
S.ˇ; ˛/ to have a gap is a situation where ˇC .i ˙ 1/˛ 2 QR and ˇC i˛ D ˙2"k
for some k 2 K. But by [14, VI, §1.3, Remarque], the longer roots are at the end
of root strings in BCI , contradiction. The proof for S is analogous. Finally, it is
easily seen that (PRS3) holds by inspecting all possibilities for two reflective roots
˛; ˇ with hˇ; ˛_i � 0.

(c) Root data. The reflection system associated to a set of root data D in §2.12 (c)
is a symmetric partial root system. Indeed, we have already seen that R is sym-
metric and integral. Property (PRS1)0 is proven in [28, Proposition 5.2.8 (ii)]. By
construction, R is the root string closure of †, so the root string through ˇ in di-
rection of a real root ˛ 2 † is without gaps, by Lemma 3.1 (c). It is also finite:
Since † D W � …, we may assume that ˛ D ˛i 2 …. If, say, ˇ 2 RC then
ˇ C n˛i 2 R is only possible for n � 0, by the “Wonderful Union Property”.
Thus root strings are bounded on one side, and hence bounded, by Lemma 3.1 (b).
It remains to verify (PRS3), so let ˛; ˇ 2 Rre D †, let hˇ; ˛_i � 0, and as-
sume that  WD ˛ C ˇ 2 Rim. For an imaginary root of a Kac–Moody algebra,
it is known [28, Corollary (i) of Proposition 5.8.9] that every integer multiple is
again an imaginary root. Using the covering map of [28, Proposition 5.1.1], it fol-
lows that the same is true in R; in particular, 2 2 R. Now consider the ˛-string
2 � q˛; : : : ; 2; : : : ; 2 C p˛ through 2 . We have q � p D h2; ˛_i � 4, in
particular, 2 � 2˛ 2 R. But 2 � 2˛ D 2ˇ … R by [28, Proposition 5.1.6],
contradiction.

(d) Weight systems. Let R D ¹0º[�[P.M/ be the integral reflection system of
§2.12 (d) associated to a Kac–Moody algebra g and an integral g-module M with
weight system P.M/. We claim that R is a partial root system with Rre D �re if
and only if

S.�; ˛/ is finite for � 2 P.M/ and ˛ 2 �re, and (3.2)

˛; ˇ 2 �re, hˇ; ˛_i � 0 and ˛ C ˇ 2 P.M/ implies ˛ C ˇ 2 Rre. (3.3)

Indeed, from (c) we know that (PRS1) and (PRS2) hold for ˛; ˇ 2 �re. By [28,
Proposition 6.2.1] we also know that S.�; ˛/ for � 2 P.M/ does not contain
gaps, and hence (PRS2) holds in general if and only if (3.2) is fulfilled. Finally,
for (PRS3) assume ˛; ˇ 2 Rre D �re, hˇ; ˛_i � 0 and ˛ C ˇ 2 R. If ˛ C ˇ 2 �
then ˛Cˇ 2 �re, as we have seen in (c). The remaining case, i.e., ˛Cˇ 2 P.M/,
is condition (3.3).
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(e) Root systems of classical Lie superalgebras. Recall that a simple finite-
dimensional Lie superalgebra L over an algebraically closed field K of charac-
teristic 0 is called classical if the representation of the even part L N0 on the odd
part L N1 is completely reducible, and is called basic classical if it is classical and
has an invariant nondegenerate even symmetric bilinear form. In the following we
assume L N1 ¤ 0. For a classical Lie superalgebra the even part L N0 is necessarily
reductive, hence a Kac–Moody algebra, say with root system �. We are therefore
in the setting of example (d) above. We claim that R D ¹0º [ � [ P.L N1/ is a
partial root system with Rre D �, which is symmetric if L is not of type P.n/, in
particular if L is classical. To see this, it suffices by finite dimensionality of L to
verify the condition (3.3). To do so, we will use the description of the root systems
in classical Lie algebras given in [22, Proposition 2.1.2 and 2.5.4]. This will also
show symmetry of R (of course, for classical Lie superalgebras this also follows
from the existence of a nondegenerate invariant bilinear form).

1. A.m; n/, m; n 2 N, m ¤ n or m D n � 1: Let S be the 3-graded root system
AmC1mCnC1 in the notation of [26, 17.8], thus S D AmCnC1 and S0 D Am �An.
Then R is the restriction of S along the full subsystem S0, cf. §2.12 (a), from
which (3.3) easily follows.

2. B.m; n/, m 2 N, n 2 NC: R is isomorphic (as reflection system and hence
also as partial root system) to the partial root system QR D BCI .J / of (b) above,
with jI j D mC n and jJ j D n.

3. C.n/, n 2 N, n � 2: Here R is isomorphic to the partial root system S D

DCI .J / of (b) above, with jI j D n and jJ j D n � 1.

4. D.m; n/, m; n 2 NC, m � 2: R is isomorphic to the partial root system
S D DCI .J / of (b) above, with jI j D mC n and jJ j D n.

5. D.2; 1I˛/: Here R � K"1 ˚K"2 ˚K"3 with Rre D ¹˙2"i W 1 � i � 3º and
Rim D ¹0º [ ¹˙"1 ˙ "2 ˙ "3º. Obviously (3.3) holds by inspection.

6. F.4/: We have R � K"1 ˚ K"2 ˚ K"3 ˚ Kı with Rre D ¹˙"i ;˙"i ˙ "j W

i ¤ j º [ ¹˙ıº D B�3 [A�1 and Rim D ¹1
2
.˙"1˙ "2˙ "3˙ ı/º [ ¹0º. Again,

(3.3) follows by inspection.

7. G.3/: It is straightforward to check (3.3). The details are left to the reader.

8. P.n/: R D CnC1 n ¹�2"i W 1 � i � nC1º with R D ¹"i � "j W i ¤ j º D A�n .
Condition (3.3) holds since Re.R/ is closed in R (it consists of the trace-0-
elements).

9. Q.n/: R D An D Re.R/ D Rim, so R is a root system and hence in particular
a partial root system.
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(f) Let � be a root system in the sense of [12, p. 110ff.] which is further-
more integral, i.e., for all ˛ 2 � with .˛j˛/ > 0 and all ˇ 2 �, we have
2.ˇj˛/=.˛j˛/ 2 Z. Let X be the span of � (in the vector space in which �
lives), and put R WD � [ ¹0º and Rre D ¹˛ 2 R W .˛j˛/ > 0º. Define
˛_ by (2.22) and note that s˛.R/ D R holds by axiom (S4) (c) of [12]. Since
s˛R

re D Rre is obvious, we are in the setting of §2.9 and see that R is an inte-
gral reflection system. We claim that .R;X; s/ is a symmetric partial root system.
Indeed, axiom (PRS1) is clear from (2.22), and (PRS3) follows from the fact that
.˛ C ˇj˛ C ˇ/ D .˛j˛/C hˇ; ˛_i.˛j˛/C .ˇjˇ/ > 0 whenever ˛; ˇ 2 Rre and
hˇ; ˛_i � 0. Finally, (PRS2) follows easily from (S3), (S4) (d) and Lemma 3.1 (c),
and symmetry ofR is axiom (S2). Note that the axioms (S1) and (S5)–(S7) of [12]
are not required, and axiom (S3) is only needed in case one of the roots ˛, ˇ is real.
As a consequence, the root systems of symmetrizable Kac–Moody–Borcherds
algebras, which satisfy Bardy’s axioms except possibly (S1) and are integral by
[12, Proposition 1.1, Remarque], are in particular examples of partial root sys-
tems.

3.2 T-nilpotence

The concepts which we introduce now generalize a definition due to Tits in the
setting of real roots of Kac–Moody algebras ([43, 3.2], see also [36, 6.2.4]).
They were called pre-nilpotence respectively nilpotence by Tits and will be called
T-(pre)nilpotence here, in order to distinguish them from the notions of nilpotence
introduced in §1.

Let R be a reflection system with Weyl group W.R/, and let P � R be a posi-
tive system in the sense of [26, 10.10.5], i.e., a positive subset withP[.�P / D R.
A subset A � Rre is called T-prenilpotent with respect to P if

(i) A is finite and prenilpotent,

(ii) there exist w;w0 2 W.R/ such that w.A/ � P and w0.A/ � �P .

Recall from Proposition 1.6 that condition (i) is equivalent to

(i)0 Ac is finite and does not contain 0,

where Ac denotes the closure of A, cf. (1.1).

A subset A � Rre is T-nilpotent with respect to P if it is T-prenilpotent and,
moreover, satisfies

(iii) A is closed with respect to sums of two roots in Rre, i.e., if ˛; ˇ 2 A and
˛ C ˇ 2 Rre then ˛ C ˇ 2 A.
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We now relate T-nilpotence to nilpotence in locally finite root systems and also
show that for the root systems of Kac–Moody algebras, the above definition of T -
prenilpotence is consistent with the definition of prenilpotence given by Tits [43].

Lemma 3.4. (a) Let R be a locally finite root system and A a finite subset of R.
Then the notions of (pre)nilpotence and of T-(pre)nilpotence (with respect to any
positive system) for A coincide.

(b) LetR be the reflection system determined by a set of root data as in §2.12 (c),
let P D RC be the positive system associated with …, and let A � † D Rre be a
subset satisfying (ii) of §3.2. Then condition (i) holds as well, and Ac � †.

Proof. (a) First suppose A is (pre)nilpotent. Since A is finite and R is locally
finite, there exists a finite subsystem S of R containing A, and P \ S is a positive
system in S . Now Ac is strictly positive by (1.31). Hence, there exists some
positive system P 0 of S containing Ac [26, Proposition 10.13 (a)]. In finite root
systems, positive systems are conjugate under the Weyl group. Hence there exist
w;w0 2 W.S/ with w.P 0/ � P \ S and w0.P 0/ � .�P / \ S , and since w;w0

are induced from elements of W.R/, we see that condition (ii) of §3.2 holds. If A
is nilpotent, then it is in particular closed, so condition (iii) of §3.2 holds. Thus,
any (pre)nilpotent subset is T-(pre)nilpotent. For the converse, it suffices to show
that a set A satisfying the weaker closure condition (iii) is actually closed. This is
a consequence of the fact that Rre D R� and that locally finite root systems have
the partial sum property, see [26, 10.2, 10.3].

(b) It suffices to prove condition (i)0 of §3.2. After replacing A by w.A/ and
w0 by w we may assume A � †C and w.A/ � †� D �†C. Let ˛1; : : : ; ˛n 2 A
and ˇ D ˛1 C � � � C ˛n 2 R. Since A is a subset of the strictly positive set R�

C
,

we have 0 ¤ ˇ 2 R�
C

. Moreover, w.˛i / 2 R�� and hence also w.ˇ/ belongs
to R��. Since the Weyl group stabilizes Rim

C
, ˇ cannot be imaginary. This proves

Ac � † D Rre; in particular, 0 … Ac . Finally, Sw WD ¹˛ 2 †C W w.˛/ 2 †�º
is finite (of cardinality equal to the length of w) by [28, Proposition 5.2.3], so
Ac � Sw is finite as well.

Obviously, ifA is T-prenilpotent (with respect to someP ) then it is prenilpotent.
Our aim for the rest of this section is to show a converse of this, namely: For a
partial root systemR andA D ¹˛; ˇº � Rre of cardinality at most 2, prenilpotence
of A (in the sense of 1.5) implies T-prenilpotence with respect to any positive
system P of scalar type (Theorem 3.7). We begin with two lemmas.

Lemma 3.5. Let R be a partial root system, let ˛; ˇ 2 Rre and let hˇ; ˛_i � 0.
Then the closed root interval Œ˛; ˇ� D R \NC

�
¹˛; ˇº

�
is contained in Rre and is
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one of the following:

¹˛; ˇº; ¹˛; 2˛; ˇº; ¹˛; ˇ; 2ˇº; ¹˛; ˛ C ˇ; ˇº; ¹˛; 2˛; ˛ C ˇ; ˇ; 2ˇº:

In particular, ¹˛; ˇº is prenilpotent and .˛; ˇ/ � ¹˛ C ˇº. If .˛; ˇ/ ¤ ;, i.e.,
˛ C ˇ 2 Rre by (PRS3), then ˛ and ˇ are indivisible in Rre.

Proof. (a) As a first step, we show: If � belongs to the open root interval .˛; ˇ/
and thus � D m˛ C nˇ where m; n 2 NC then

k˛ C lˇ 2 R for all k; l 2 Z with jkj � m and jl j � n, and (3.4)

m; n 2 ¹1; 2º: (3.5)

Indeed, h�; ˇ_i D mh˛; ˇ_i C nhˇ; ˇ_i D mh˛; ˇ_i C 2n � 2n. Now consider
the ˇ-string through �:

� � qˇ; : : : ; � � ˇ; �; � C ˇ; : : : ; � C pˇ:

Since q � q � p D h�; ˇ_i � 2n, we have � � iˇ 2 R for i D 0; : : : ; 2n,
equivalently,

m˛ C jˇ 2 R for jj j � n: (3.6)

Interchanging the roles of ˛ and ˇ, it follows in the same way that

i˛ C nˇ 2 R for ji j � m: (3.7)

By applying (3.6) repeatedly to roots of the form (3.7) where 1 � i � m, and vice
versa, we see that (3.4) holds. This together with (3.1) implies (3.5).

(b) We now show that
2˛ C 2ˇ … R: (3.8)

Assume to the contrary that ı WD 2˛ C 2ˇ 2 R. By (3.4), we then have also
2˛ C ˇ and ˛ C 2ˇ in R, as well as  WD ˛ C ˇ 2 R. Moreover,  2 Rre

by (PRS3), and therefore also ı D 2 2 Rre, by (3.1). Now consider the ı-
string through ˛ C 2ˇ. Then .˛ C 2ˇ/ C ı D 3˛ C 4ˇ … R by (3.5), while
.˛ C 2ˇ/ � ı D �˛ 2 R but .˛ C 2ˇ/ � 2ı D �.3˛ C 2ˇ/ … R by (3.5). This
shows p D 0 and q D 1 where p; q are as in Lemma 3.1 (b) for S.˛ C 2ˇ; ı/.
It follows that h˛ C 2ˇ; ı_i D q � p D 1. Now 2ı_ D _ by (ReS3)_ so we
obtain

2 D 2h˛ C 2ˇ; ı_i D h˛ C 2ˇ; _i D h; _i C hˇ; _i D 2C hˇ; _i:

This implies hˇ; _i D 0 and therefore, by integrality, also 0 D h; ˇ_i D
h˛; ˇ_i C 2 � 2, contradiction.
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(c) For the statement concerning .˛; ˇ/, it remains in view of (3.5) and by
symmetry to show that 2˛ C ˇ … R.

Assume to the contrary that " WD 2˛Cˇ 2 R. By (3.4), we have 2˛ 2 R hence
2˛ 2 Rre by (3.1), and therefore " 2 Rre by (PRS3). Furthermore,

h"; .2˛/_i D
1

2
h"; ˛_i D

1

2
h2˛ C ˇ; ˛_i D 2C

1

2
hˇ; ˛_i > 0;

whence also h2˛; "_i > 0, and even h2˛; "_i � 2, by integrality. Therefore, the "-
string through 2˛ contains the root 2˛� 2" D �.2˛C 2ˇ/ 2 R which contradicts
what we proved in (b). This establishes .˛; ˇ/ � ¹˛ C ˇº.

(d) Now let ˛ C ˇ 2 R, and assume that ˛ is not indivisible in Rre, say,
˛ D 2˛0 where ˛0 is in Rre. Then h˛0; ˇ_i � 0, and ˛ C ˇ D 2˛0 C ˇ 2 .˛0; ˇ/,
contradicting what we already proved. Likewise, ˇ must be indivisible. Now
assume 2˛ 2 R, put again  D ˛ C ˇ, and consider the  -string through 2˛. By
(3.4), we have ˛ � ˇ 2 R, and 2˛C  D 3˛C ˇ … R by (3.5). Hence p D 0 and
q � 1 for this string. Since q � p D q D h2˛; _i is even, it follows that q � 2,
whence 2˛ � 2 D �2ˇ 2 R. This completes the proof.

Lemma 3.6. LetR be a partial root system and suppose ˛; ˇ 2 Rre satisfy hˇ; ˛_i�
h˛; ˇ_i � 3. Then T WD R \ .Z˛ C Zˇ/ is a finite root system of rank 2 in the
vector space Y spanned by ˛ and ˇ and T � � Rre.

Proof. Since .�˛/_ D �˛_ we may replace ˛ by�˛ if necessary and thus assume
that hˇ; ˛_i � 0. Then also h˛; ˇ_i � 0 by (PRS1). Lemma 3.5, applied to ˛ and
�ˇ, shows that

hˇ; ˛_i � 0 H) .˛;�ˇ/ � ¹˛ � ˇº � Rre and 2˛ � ˇ; ˛ � 2ˇ … R: (3.9)

We also remark that ˛ and ˇ are linearly independent. Indeed, assuming s˛Ctˇ D
0 for some s; t 2 K implies 2s C thˇ; ˛_i D 0 D sh˛; ˇ_i C 2t . The integral
matrix

� 2 hˇ;˛_i
h˛;ˇ_i 2

�
has determinant � 1, whence s D t D 0.

(a) As a first step in the proof, we show that it is no restriction of generality to
assume that .˛;�ˇ/ D ;. Indeed, assume .˛;�ˇ/ ¤ ;, hence  WD ˛ � ˇ 2 Rre

by (3.9), and put a WD �hˇ; ˛_i and b WD �h˛; ˇ_i for short. We claim that

ab 2 ¹0; 1º: (3.10)

If this were not the case then ab 2 ¹2; 3º because 0 � ab � 3. Possibly after
interchanging ˛ and ˇ we may assume b D 1 and a 2 ¹2; 3º. Then sˇ .˛/ D
˛ C ˇ 2 Rre, and h.˛ C ˇ/; ˛_i D 2 � a � 0. Hence by (3.9), applied to ˛ and
˛Cˇ instead of ˛ and ˇ, we have 2˛� .˛Cˇ/ D ˛�ˇ … R, contradiction. This
proves (3.10), which is obviously equivalent to a D b 2 ¹0; 1º because a; b 2 N
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and sgn.a/ D sgn.b/. Then h; ˇ_i D h˛; ˇ_i � 2 D �b � 2 2 ¹�2;�3º,
and hence also hˇ; _i < 0, by (PRS1). Moreover, .;�ˇ/ D ;, otherwise
 � ˇ D ˛ � 2ˇ 2 R, contradicting (3.9).

We claim next that hˇ; _i � h; ˇ_i � 3, i.e., that hˇ; _i D �1. Consider the
 -string through ˇ. We have ˇ �  D 2ˇ � ˛ … R by (3.9), ˇ C  D ˛ 2 R, but
ˇ C 2 D 2˛ � ˇ … R, again by (3.9). Thus q D 0 and p D 1 for this string,
which implies hˇ; _i D q � p D �1, as desired.

Thus we see that the pair .; ˇ/ satisfies the assumptions made on .˛; ˇ/, and
additionally has  � ˇ … R, i.e., .;�ˇ/ D ;. Clearly, Z C Zˇ D Z˛ C Zˇ
holds as well. We can therefore replace ˛ by  and then have (a).

(b) Assume now that ˛ has been replaced by  as above if necessary, and that
therefore .˛;�ˇ/ D ;. From example (b) of §2.5, it follows that T is a subsystem
of R in the subspace Y .

As before, we may assume that a WD �hˇ; ˛_i � 0, b WD h˛; ˇ_i � 0, and
a � b. Let S be the subsystem generated by ¹˛; ˇº. We are therefore in the
situation considered in Lemma 2.4. By Proposition 2.5 (c), S is a finite reduced
root system of rank 2, and clearly S � T . Let

T �ind WD ¹� 2 T
�
W �=2 … T �º

be the set of roots of T � which are indivisible in T � and note that �=2 2 R is
possible for an element of T �ind. We put Tind D ¹0º[T

�
ind. As ˛=2 … Z˛˚Zˇ, we

have ˛ 2 T �ind and likewise ˇ 2 T �ind. Let H be the subgroup of W.R/ generated
by s˛ and sˇ , cf. the remark in Lemma 2.4. Then H leaves Z˛ ˚ Zˇ invariant,
and therefore stabilizes T and Tind and, of course, S . Now Formula (2.14) shows
that S � Tind. We claim that in fact

S D Tind; (3.11)

i.e., that E WD Tind n S is empty.
Indeed, .˛;�ˇ/ D ; implies T D TC [ T� where TC D T \ .N˛CNˇ/ and

T� D T \ .�N˛ � Nˇ/. Accordingly, E D EC [ E� where E˙ D E \ T˙.
Since Tind and S are H -stable so is E. Let us show that in fact EC is H -stable.
It suffices to do this for the generators of H . Let � D m˛ C nˇ 2 EC. Then
necessarilym > 0 and n > 0; otherwise, say, � D m˛ wherem 2 ¹1; 2º by (2.10).
But ˛ 2 S� and 2˛ … Tind, so � … E. Now

s˛.�/ D .an �m/˛ C nˇ; sˇ .�/ D m˛ C .bm � n/ˇ (3.12)

implies that s˛.�/ and sˇ .�/ belong to EC.
Assume EC ¤ ; and let � D m˛ C nˇ 2 EC be a minimal element with

respect to the lexicographic order� given by the ordered basis .˛; ˇ/ of the vector
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space Y . Such an element exists because EC � N˛ C Nˇ. Then s˛.�/ � �,
sˇ .�/ � � and (3.12) imply an � m � m and bm � n � n, which yields ban �
2bm � 4n and hence ab � 4, contradicting our assumption ab � 3. Thus
EC D ;. One proves in the same way that E� D ;, whence (3.11) holds.

Suppose ı 2 T n Tind. Then ı D 2� where � 2 T �ind D S
� and, since � 2 S� �

Rre, we have 2� 2 Rre by (3.1). This shows that T is finite (with jT �j � 2jS�j),
and that T � D T re. Hence by §2.8, T is a finite root system of rank 2 in Y .

Theorem 3.7. Let R be a partial root system, and let ˛; ˇ 2 Rre. Moreover, let P
be a positive system of R such that P \Rre is of scalar type in the sense that there
exists a linear form h on X such that h.Rre/ is contained in an ordered subfield of
K and h.P re/ > 0. Then the following conditions are equivalent:

(i) ¹˛; ˇº is T-prenilpotent with respect to P ,

(ii) ¹˛; ˇº is prenilpotent,

(iii) .˛; ˇ/ is finite,

(iv) hˇ; ˛_i � 0 or hˇ; ˛_ih˛; ˇ_i � 3.

If these conditions hold, then Œ˛; ˇ� D ¹˛; ˇºc , the closure of ¹˛; ˇº in R, is
finite of cardinality � 6, nilpotent of class � 5, and contained in Rre. Moreover,
.˛; ˇ/ ¤ ; if and only if ˛ C ˇ 2 R.

Proof. (i) H) (ii) is evident from the definition in §3.2.

(ii) H) (iii): Œ˛; ˇ� is finite by Proposition 1.6, and hence so is .˛; ˇ/ � Œ˛; ˇ�.

(iii) H) (iv): Assume �a WD hˇ; ˛_i � 0 hence also �b WD h˛; ˇ_i � 0, but
ab � 4. Then .˛; ˇ/ is infinite by Proposition 2.5 (a).

(iv) H) (i): There are two possibilities:
(a) hˇ; ˛_i � 0. Prenilpotence of Œ˛; ˇ� was shown in Lemma 3.5. We have

Rre D P re P[ .�P re/. Hence, possibly after replacing both ˛ and ˇ by their
negatives, it suffices to consider the following cases:

Case 1. ¹˛; ˇº � P re,

Case 2. ¹˛;�ˇº � P re.

Let us first assume that hˇ; ˛_i D h˛; ˇ_i D 0. Then s˛.ˇ/ D ˇ and sˇ .˛/ D ˛

while s˛.˛/ D �˛ and sˇ .ˇ/ D �ˇ. Hence in Case 1, w D Id and w0 D
s˛sˇ satisfies the requirements of §3.2 (ii), and in Case 2, we can put w D sˇ
and w0 D s˛.

Next, let hˇ; ˛_i > 0, and consider Case 1. Suppose to the contrary that
w¹˛; ˇº 6� �P re for all w 2 W.R/. Then in particular s˛¹˛; ˇº D ¹�˛; s˛.ˇ/º 6�
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�P re and sˇ ¹˛; ˇº D ¹sˇ .˛/;�ˇº 6� �P re, and therefore s˛.ˇ/ 2 P re and
sˇ .˛/ 2 P

re. By our assumption on P re, this means

h.s˛.ˇ// D h.ˇ/ � hˇ; ˛
_
ih.˛/ > 0;

i.e., h.ˇ/ > hˇ; ˛_ih.˛/ > 0, and likewise h.˛/ > h˛; ˇ_ih.ˇ/ > 0. But then
h.ˇ/ > hˇ; ˛_ih˛; ˇ_ih.ˇ/ and therefore 1 > hˇ; ˛_ih˛; ˇ_i > 0, contradicting
integrality. This establishes Case 1.

Now consider Case 2. Then s˛.ˇ/ D ˇ C hˇ; ˛_i.�˛/ 2 .�P re/ since
hˇ; ˛_i > 0, and similarly sˇ .˛/ D ˛ C h˛; ˇ_i.�ˇ/ 2 P re. Hence s˛¹˛; ˇº �
.�P re/ while sˇ ¹˛; ˇº � P re.

(b) hˇ; ˛_ih˛; ˇ_i � 3. Then T D R \ .Z˛ ˚ Zˇ/ is a finite root system
of rank 2 by Lemma 3.6; in particular, ˛ and ˇ are linearly independent. Also,
Œ˛; ˇ� is closed and does not contain 0, and is thus a positive subset of T , cf. (1.4).
By [26, Proposition 10.13 (a)], which also holds in our setting, it is contained in
a positive system, say TC, of T . Now P \ T is also a positive system of T . By
conjugacy of positive systems in finite root systems, there exist w;w0 2 W.T /
with w.TC/ D P \ T and w0.TC/ � �.P \ T /. Since w and w0 are induced by
elements of W.R/, the assertion follows. The remaining statements follow from
Lemma 3.5 and Lemma 1.3.

Corollary 3.8. For the partial root systems determined by root data, in particular,
for the root systems of Kac–Moody algebras, the notions of prenilpotent pair and
T-prenilpotent pair of roots (relative to the standard positive system) coincide.

Proof. Let R be the partial root system determined by a set of root data as in
§3.1 (b). Then the standard positive system P is of scalar type with respect to the
usual height function h. Hence a prenilpotent pair ¹˛; ˇº is T-prenilpotent with
respect to P by Theorem 3.7. The converse was shown in Lemma 3.4 (b).

Remark. It is an open problem to extend this result to sets of more than two roots.

4 Extensions

Lemma 4.1. Let f W .R;X/ ! .S; Y / be a morphism of pre-reflection systems
and put Z WD Ker.f /, R0 WD R \ Z and R1 WD ¹0º [ .R n Z/. We denote by
Wi .R/ the subgroups of W.R/ generated by ¹s˛ W ˛ 2 Riº.

(a) R0 and R1 are W.R/-stable subsystems of R in the subspaces Xi spanned by
Ri , i D 0; 1.

(b) W.R/ stabilizes Z and W1.R/ fixes Z pointwise. The restriction map w 7!

w
ˇ̌
X1 is an isomorphism W1.R/

Š
�! W.R1/.
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(c) NR WD f .R/ is a subsystem of S in the vector subspace NX of Y spanned by
f .R/. There is a unique surjective homomorphism

� D W.f / W W.R/! W. NR/

satisfying �.s˛/ D .sf .˛/
ˇ̌
NX/ for all ˛ 2 R, and

f ı w D �.w/ ı f (4.1)

for all w 2 W.R/.

(d) � induces an exact sequence

0 // V
inc // W1.R/

�1 // W. NR/ // 1 (4.2)

where �1 D �
ˇ̌
W1.R/ and V WD W1.R/\Ker.�/ is isomorphic to a subgroup

of the additive group of Hom. NX;Z/.

(e) If f .R/ D S , an invariant form bS on Y lifts to an invariant form bR on
X defined by bR.x; y/ D bS .f .x/; f .y//, and if bS is strictly invariant, so
is bR.

(f) If R is a reflection system, the subgroups Wi .R/ are normal and their product
is W.R/.

Proof. (a) From (2.4) it is clear that W.R/ stabilizes R1, R0 and Z. This implies
that R1 and R0 are subsystems of R

(b) If ˛ 2 R1 then (2.8) shows hZ; ˛_i D 0 and hence s˛ is the identity on Z
by (2.7). From R D R1[R0 we have X D X1CX0 and clearly X0 � Z. Hence
the restriction map W1.R/ ! W.R1/, which is obviously surjective, is injective
as well.

(c) It is immediate from (2.3) that f .R/ is a reflection subsystem of S . Since
W.R/ stabilizes Z, every w 2 W.R/ induces a unique transformation �.w/ of
NX Š X=Z satisfying (4.1), and � W W.R/ ! GL. NX/ is obviously a group

homomorphism. From (2.4) we see that �.s˛/ D sf .˛/
ˇ̌
NX 2 W. NR/, whence

�
�
W.R/

�
D W. NR/.

(d) From the definition of W1.R/ it is clear that also � W W1.R/ ! W. NR/ is
surjective, so we have (4.2). An element v 2 V induces the identity both on Z
(by (b)) and on NX Š X=Z. Hence, it has the form v.x/ D xChv

�
f .x/

�
(x 2 X ),

for a unique hv 2 Hom. NX;Z/. It is easily checked that the map v 7! hv is an
injective homomorphism of V into the additive group Hom. NX;Z/.
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(e) For w 2 W.R/ we have bR.w.x/; w.y// D bS .�.w/f .x/; �.w/f .y// D

bR.x; y/ by (4.1), so bR is invariant. If bS is strictly invariant then Rim � Rad bR
holds because of (2.5), so bR is also strictly invariant.

(f) (ReS4)0 shows that Wi .R/ is normal in W.R/. Now W.R/ D W1.R/ �

W0.R/ follows from R D R1 [R0.

Definition 4.2. Let f W .R;X/! .S; Y / be a morphism of pre-reflection systems
with f .R/ D S , and let S 0 � S be a subsystem spanning Y . A partial section of
f over S 0 is a morphism g W .S 0; Y /! .R;X/ of pre-reflection systems such that
f ı g D IdY . Note that X D Ker.f /˚ g.Y / because of f ı g D IdY . Naturally,
a section of f is a partial section of f over all of S .

As we will see in Lemma 4.3, a partial section of f leads to a partial section
of the exact sequence (4.2) over W.S 0/. Moreover, while sections of f need not
exist, Proposition 4.4 shows that partial sections always exist in ReS and, under
some additional assumptions, lead to a splitting of the exact sequence (4.2).

Lemma 4.3. In the setting of Definition 4.2 suppose that g W .S 0; Y /! .R;X/ is
a partial section of f W .R;X/! .S; Y /. As in Lemma 4.1 we denote by W1.R/
the subgroup of W.R/ generated by R1 D ¹0º [ ¹˛ 2 R W f .a/ ¤ 0º and by
�1 W W1.R/! W.S/ the unique group epimorphism satisfying �1.s˛/ D sf .˛/.

Then there exists a unique group monomorphism  W W.S 0/ ! W1.R/ such
that  .s�/ D sg.�/ for all � 2 S 0. In particular, �1 ı  D IdW.S 0/.

Proof. Since g W S 0 ! R is a morphism of reflection systems, Lemma 4.1 (c)
shows that R0 WD g.S 0/ is a subsystem of R in the subspace X 0 WD Span.R0/ D
g.Y / of X . Clearly, f 0 WD f

ˇ̌
X 0 W .R0; X 0/ ! .S 0; Y / is an isomorphism of

pre-reflection systems with inverse g. Consider the subgroup H of W.R/ gen-
erated by all s˛, 0 ¤ ˛ 2 R0. Then H stabilizes X 0 and the restriction map
res W H ! GL.X 0/ maps H onto W.R0/. Since f .˛/ ¤ 0 for 0 ¤ ˛ 2 R0, we
have H � W1.R/ and thus H fixes Z WD Ker.f / pointwise, by Lemma 4.1 (b).
Now X D X 0 ˚ Z shows that res W H ! W.R0/ is an isomorphism. Since
W.f 0/ W W.R0/ ! W.S 0/ is an isomorphism, there exists a unique homomor-
phism  making the diagram

H
inc //

res Š

��

W.R/

W.R0/
Š

W.f 0/

// W.S 0/

 

OO

commutative, from which the assertions follow easily.
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Proposition 4.4. Let f W .R;X/ ! .S; Y / be a morphism of reflection systems
with f .R/ D S . We use the notation of Lemma 4.1.

(a) Let B � S be a vector space basis of Y and let SB � S be the subsystem of S
generated by B as in (2.14). Then there exists a partial section g W .SB ; Y /!
.R;X/ of f over SB .

(b) Let S 0 � S be a subsystem spanning Y and let g W .S 0; Y /! .R;X/ be a par-
tial section of f . Suppose in addition that K��\.S 0/re ¤ ; for every � 2 S re.
Then W.S/ D W.S 0/ and the group monomorphism  W W.S/ ! W1.R/

constructed in Lemma 4.3 splits the exact sequence (4.2), hence W1.R/ D
 .W.S// Ë V . For x 2 S and z 2 Z define endomorphisms v�;z of X by

v�;z.x/ D x � hf .x/; �
_
iz:

Then the kernel V of �1 is generated by the maps

vf .w˛/; ˛�.gıf /.˛/; w 2 W1.R/ and ˛ 2 R1: (4.3)

The Weyl group W.R/ acts on V by

w v�;z w
�1
D v�.w/.�/;w.z/ .w 2 W.R//: (4.4)

Proof. (a) Choose a pre-image ˇ 2 R for every � 2 B , and define g W Y ! X

to be the K-linear map sending � to ˇ, for all � 2 B . Since B is a vector space
basis of Y , we have f ı g D IdY . We show that g.SB/ � R. From (2.14) it
follows that for every 0 ¤ � 2 SB there exist �0; : : : ; �n 2 B such that � D
s�n � � � s�1.�0/. Put ˇi WD g.�i / and ˛ WD sˇn � � � sˇ1.ˇ0/. Then ˛ 2 R because
R is a reflection system, and f .˛/ D � because f is a morphism of reflection
systems. Moreover, ˛ 2 Span¹ˇ0; : : : ; ˇnº � g.Y /. Now f W g.Y / ! Y

is a vector space isomorphism, and f
�
˛ � g.�/

�
D � � � D 0, which implies

˛ D g.�/ 2 R, as asserted. To prove that g is a morphism of reflection systems,
note that sg.�/

�
g.�/

�
is a linear combination of g.�/ and g.�/ and hence contained

in g.Y /. Since f W g.Y /! Y is a vector space isomorphism, it suffices to show
that f

�
g
�
s�.�/

��
D f

�
sg.�/

�
g.�/

��
. But this follows from f ı g D IdY and the

fact that f is a morphism of reflection systems.
(b) By assumption and (ReS3) we have s� 2 W.S 0/ for every � 2 S re. Hence

W.S/ D W.S 0/, and then �1 ı  D IdW.S/ by Lemma 4.3. Thus  splits the
exact sequence (4.2), and W1.R/ is the semidirect product as indicated.

We prove formula (4.4). Note that v�;z D Id for � 2 S im because �_ D 0. Since
then also �.w/.�/ 2 S im, it follows that (4.4) holds for � 2 S im. Let now � 2 S re,
say � D f .˛/ for some ˛ 2 Rre

1 . It is sufficient to verify (4.4) forw D sˇ , ˇ 2 Rre.
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Note that sˇ˛ 2 R1 and hence � D f .sˇ˛/ D �.sˇ /� 2 S re. Using (2.8) several
times, we get hf .x/; �_i D hx; ˛_i D hsˇx; .sˇ˛/_i D hf .sˇx/; �_i and thus

sˇ v�;z.x/ D sˇ .x/ � hf .x/; �
_
isˇ .z/ D sˇ .x/ � hf sˇ .x/; �

_
isˇ .z/

D v�;sˇ.z/ sˇ .x/:

This establishes (4.4).
Let now ˛ 2 Rre

1 and put � D f .˛/. By assumption, there exists ˇ 2 g.S 0/
such that � D df .ˇ/ for some d 2 K�. Note that ˛�.gıf /.˛/ D ˛�dˇ 2 Kerf
and ˇ 2 Rre

1 , whence also s˛ˇ 2 R1. Using again (2.8), we get

hs˛.x/; ˇ
_
i D hx; .s˛ˇ/

_
i D hf .x/;

�
f .s˛ˇ/

�_
i D hf .x/;

�
s�f .ˇ/

�_
i

D �hf .x/; f .ˇ/_i D �hf .x/; .d�1�/_i D �hf .x/; �_id; (4.5)

and therefore

sˇ s˛.x/ D x � hx; ˛
_
i � hx; .s˛ˇ/

_
iˇ

D x � hf .x/; �_i˛ C hf .x/; �_idˇ

D v�;˛�.gıf /.˛/.x/: (4.6)

Note that �.s˛/ D sf .˛/ D sf .ˇ/ D �.sˇ / implies v�; ˛�.gıf /.˛/ 2 V (where
� D f .˛/ as above). Since V is a normal subgroup, we also have

w vf .˛/; ˛�.gıf /.a/w
�1
D vf .w˛/; ˛�.gıf /.˛/ 2 V

for any w 2 W1.R/. Finally, let w 2 W1.R/ be an arbitrary element, say w D
s˛1 � � � s˛n with ˛i 2 Rre

1 . Choose ˇi 2 g.S 0/ as in the proof above, so that
sˇi s˛i D vi 2 V . Put xi D sˇ1 � � � sˇi�1 2 W1.R/. Then

w D .sˇn � � � sˇ1/ .xnvnx
�1
n / � � � .xivix

�1
i / � � � .x2v2x

�1
2 / v1:

Since sˇn � � � sˇ1 2  .W.S// and all factors xivix�1i 2 V are of type (4.3), it
follows that V is generated by these maps.

Remark. Let S be an integral reflection system. Observe that Sind satisfies the
condition by (c), and hence the structure of W.R/ is described in (c) whenever
f W R! S has a partial section over Sind. By (a), this is so if there exists a vector
space basis B � S with Sind � SB . Such a basis B exists in the following cases:

(i) S is a locally finite root system (Lemma 5.1),

(ii) S is the set of roots associated to an integral root basis in the sense of Hée
(2.10),

(iii) S is the set of roots associated with root data in the sense of Moody–Pianzola
(§2.12 (c)), for example S is the set of roots of a Kac–Moody algebra.
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4.1 Separated morphisms and extensions

We call a morphism f W R! S of pre-reflection systems separated if it keeps re-
flective and imaginary roots separate, i.e., if it maps reflective (imaginary) roots of
R to reflective (imaginary) roots of S . As f .Rim/ � S im and f .Rre/ � S re [ ¹0º

always holds by (2.5), we see that

f is separated ” f .Rre/ � S re

” f .˛/ ¤ 0 for all ˛ 2 Rre. (4.7)

We list three more equivalent conditions for f to be separated:

hx; ˛_i D hf .x/; f .˛/_i for all x 2 X , ˛ 2 R, (4.8)

f �1
� \
�2f .R/

Ker.�_/
�
D

\
˛2R

Ker.˛_/; (4.9)

and, if S is nondegenerate and f .R/ D S ,

Ker.f / D
\
˛2R

Ker.˛_/: (4.10)

Indeed, let f be separated. Then (4.8) holds trivially for ˛ 2 Rim, and it holds for
˛ 2 Rre by (2.8). Now suppose we have (4.8). Then hf .x/; �_i D 0 for all � 2
f .R/ if and only if hx; ˛_i D 0 for all ˛ 2 R, showing that (4.9) holds. Suppose
that (4.9) holds, and assume, aiming for a contradiction, that there exists ˇ 2 Rre

with f .ˇ/ D 0. Then f .ˇ/ is annihilated by all �_, whence ˇ 2
T
˛2R Ker.˛_/

by (4.9), which is impossible because hˇ; ˇ_i D 2. Finally, (4.10) is immediate
from (4.9) because

T
�2S Ker.�_/ D ¹0º by non-degeneracy.

A morphism f W .R;X/! .S; Y / of pre-reflection systems is called an exten-
sion if it is separated and satisfies f .R/ D S . (Strictly speaking, this should be
called a separated extension, but since non-separated morphisms with f .R/ D S

play no role in this paper, we will stay with the simpler terminology.) Thus

f is an extension ” f .Rre/ D S re and f .Rim/ D S im. (4.11)

By the usual abuse of terminology, we will say that R is an extension of S if there
exists an extension map f W R! S .

Let us point out that, if R is an extension of a nondegenerate S then S is unique
up to a unique isomorphism. Indeed, let f W R ! S and Qf W R ! QS be
extensions of R of nondegenerate reflection systems S and QS respectively. Then
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Ker.f / D Ker. Qf / by (4.10). From f .R/ D S and Qf .R/ D QS it follows that
f W X ! Y and Qf W X ! QY are surjective. Hence there exists a unique vector
space isomorphism h W Y ! QY such that h ı f D Qf , and it is easily checked
that h is in fact an isomorphism of pre-reflection systems. Therefore, if R is an
extension of a nondegenerate pre-reflection system S , we are justified in calling S
the quotient pre-reflection system and the extension map f W R! S the canonical
projection.

Remark. IfR is nondegenerate it follows from condition (4.9) that every extension
f W R! S is injective, hence an isomorphism. In particular, a locally finite root
system R does not arise as a non-trivial extension of a pre-reflection system S . On
the other hand, a locally finite root system S does have many interesting extensions
R, which we will study in the next section.

Lemma 4.5. Let f W .R;X/! .S; Y / be an extension of pre-reflection systems.

(a) R is integral or coherent if and only if S is, respectively, integral or coherent.

(b) If S is saturated then so is R.

(c) f maps a root string S.ˇ; ˛/, ˇ 2 R, ˛ 2 Rre, injectively to S
�
f .ˇ/; f .˛/

�
.

(d) Suppose R or, equivalently, S is coherent.

(i) The map C 7! f .C / is a bijection between the set of connected compo-
nents of Re.R/ and of Re.S/.

(ii) If in addition S is nondegenerate then

Re.R/ is connected ” Re.S/ is connected

” Re.S/ is indecomposable: (4.12)

(e) Let S be a partial root system. Then R is integral and satisfies the axioms
(PRS1) and (PRS3) of a partial root system. Moreover, all root strings S.ˇ; ˛/
(ˇ 2 R, ˛ 2 Rre) are finite, soR is a partial root system if and only if all these
root strings are unbroken.

Proof. (a) is immediate from (4.8) and f .Rre/ D S re, f .Rim/ D S im. For (b)
assume that ˛ 2 Rre, c 2 K� and c˛ 2 R. Then � D f .˛/ 2 S re, and f .c˛/ D
c� 2 S . Since S is saturated we see c� 2 S re, whence c˛ 2 Rre. For (c) we
obviously have f

�
S.ˇ; ˛/

�
� S

�
f .ˇ/; f .˛/

�
, and f .˛/ 2 S re. If f .ˇ C i˛/ D

f .ˇ C j˛/ then .i � j /f .˛/ D 0 which forces i D j .
(d) By f .Rre/ D S re and (4.8) the image of any chain connecting ˛ and ˇ in

Rre is a chain in S re connecting f .˛/ and f .ˇ/ in S re, and conversely any chain
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connecting f .˛/ and f .ˇ/ in S re can be lifted to a chain connecting ˛ and ˇ in
Rre. This proves (d.i). The first equivalence in (4.12) follows from (i) and the
second from Lemma 2.1.

For the proof of (e), we know already from (a) thatR is integral and from (c) that
all root strings S.ˇ; ˛/, ˛ 2 Rre, are finite. Thus it remains to show that (PRS1)
and (PRS3) hold in R. To do so, let ˛; ˇ 2 Rre and put � D f .˛/, � D f .ˇ/.
Then hˇ; ˛_i D h�; �_i by (4.8), and since �; � 2 S re and (PRS1) holds in S , it
also holds in R. For (PRS3), assume ˛C ˇ 2 R and hˇ; ˛_i � 0. If ˛C ˇ 2 Rim

then � C � D f .˛ C ˇ/ 2 S im, contradicting (PRS3) for S .

4.2 Extension data

Let .S; Y / be a pre-reflection system, let S 0 be a subsystem of S with Span.S 0/ D
Y and let Z be a K-vector space. A family L D .ƒ�/�2S of nonempty subsets of
Z is called an extension datum of type .S; S 0; Z/ if

(ED1) for all �; � 2 S and all � 2 ƒ� , � 2 ƒ� we have � � h�; �_i� 2 ƒs�.�/,

(ED2) 0 2 ƒ�0 for all � 0 2 S 0, and

(ED3) Z is spanned by the union of all ƒ� , � 2 S .

Let L be an extension datum. We will derive some immediate consequences
of the axioms (ED1)–(ED3). For � D � 2 S re and � 2 ƒ� , (ED1) implies
�� D � � 2� 2 ƒ�� , hence

ƒ�� D �ƒ� for all � 2 S re: (4.13)

Again from (ED1) for � D � 2 S re we then get ƒ� � 2ƒ� WD ¹� � 2� W �; � 2
ƒ�º � ƒ�� D �ƒ� , and therefore

2ƒ� �ƒ� � ƒ� for all � 2 S re: (4.14)

Also, from (ED1) and (ED2) we obtain ƒ� � ƒs�0 .�/ for all � 2 S and � 0 2 S 0,
whence ƒ� D ƒs�0 .�/ and then

ƒ� D ƒw 0.�/ for all � 2 S and w0 2 WS 0 ; (4.15)

where WS 0 WD WS 0.S/ � W.S/ is the subgroup generated by all s� , � 2 S 0,
cf. §2.5. Finally, (ED1) and (4.15) for w0 D s�0 yield

ƒ� � h�; �
0_
iƒ�0 � ƒ� and (4.16)

ƒ�0 D ƒ��0 for � 0 2 S 0; � 2 S: (4.17)



Reflection systems and partial root systems 397

The condition (ED3) only serves to determine Z and can always be achieved by
replacing Z with the span of the ƒ� , � 2 S . It will sometimes be convenient
to leave Z unspecified, in which case we will employ the terminology extension
datum of type .S; S 0/ for a family .ƒ�/�2S of subsets of a some vector space
satisfying (ED1) and (ED2).

The only condition on ƒ0 is

0 2 ƒ0: (4.18)

Moreover, ƒ0 is related to the other ƒ� , � ¤ 0, only by axiom (ED3). It follows
that it is always possible to modify a given extension datum L D .ƒ�/�2S of type
.S; S 0/ by replacing ƒ0 by any other set containing 0. The modified extension
datum will again be of type .S; S 0/ but, because of (ED3), not necessarily of type
.S; S 0; Z/ if L was of this type. In particular, ƒ0 D ¹0º is always a possible
choice. An extension datum L with ƒ0 D ¹0º will be called of minimal type.
For the purpose of classification, it is natural to assume L of minimal type. This
is in fact how extension data have appeared in the literature, see §4.3. On the
other hand, the choice of ƒ0 influences in an essential way the properties of the
associated reflection system E.S; S 0; Z/, see for example Corollary 5.2 for the
case of affine reflection systems.

4.3 Examples

(a) Extension data occur in the theory of algebraic groups over local fields.
Namely, let S be a finite root system and let � D .��/�2S� be a special valuation
of a root datum, as defined in [15, (6.2)]. Then, in the notation of [15, (6.2.2)], the
family ƒ� D � 0

�
� R for � 2 S� and ƒ0 D ¹0º, is an extension datum of type

.S; Sind;R/. Indeed, condition (ED1) follows from [15, (6.2.14.1)] and � 0
�
� ��

in the notation of [15], while (ED2) holds by definition of a special valuation in
[15, (6.2.13)].

(b) Let S be an integral reflection system. Then our definition of an extension
datum makes sense for any abelian group Z instead of a vector space. Since in
this paper we have no use of this generality, we have restricted ourselves to the
case of a vector space Z. But we wish to point out that for S a finite irreducible
root system and Z an abelian group, extension data of minimal type .S; Sind; Z/

were defined by Yoshii in [48], as “root systems of type S extended by Z”. The
paper [48] contains a classification of extension data for finite irreducible root
systems [48, Theorem 2.4]. It is an easy exercise, which we will leave to the
reader, to extend this to the case of an irreducible locally finite root system. For a
detailed study of extension data of minimal type .S; Sind;Rn/, where S is a finite
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irreducible root system and all ƒ� are contained in a lattice of Rn, the reader is
referred to [1, Chapter II] and [5].

Theorem 4.6. Let .S; Y / be a pre-reflection system.

(a) Let L D .ƒ�/�2S be an extension datum of type .S; S 0; Z/. PutX WD Y ˚Z,
denote by � W X ! Y the projection with kernel Z, and define

R WD
[
�2S

� ˚ƒ� � X; and (4.19)

s˛.x/ WD s�.y/˚
�
z � hy; �_i�

�
; (4.20)

for all ˛ D � ˚ � 2 � ˚ƒ� � R and all x D y ˚ z 2 X . Then R is a pre-
reflection system in X , denoted E D E.S; S 0;L/. Moreover, � W .R;X/ !
.S; Y / is an extension of pre-reflection systems, and the canonical injection
� W Y ! X is a partial section of � over S 0.

(b) Conversely, let f W .R;X/ ! .S; Y / be an extension and let g W S 0 ! R be
a partial section of f , cf. Definition 4.2 . For every � 2 S define R� � R and
ƒ� � Z WD Ker.f / by

R� D R \ f
�1.�/ D g.�/˚ƒ� : (4.21)

Then L D .ƒ�/�2S is an extension datum of type .S; S 0; Z/, and the vec-
tor space isomorphism � W Y ˚ Z Š X sending y ˚ z to g.y/ ˚ z is an
isomorphism E.S; S 0;L/ Š R of pre-reflection systems making the following
diagram commutative:

S 0

�

||

g

""
E

�
//

� ""

R

f||
S

: (4.22)

(c) In the setting of (b), the following are equivalent for g0 2 HomK.Y;X/:

(i) g0 W S 0 ! R is another section of f ,

(ii) there exists � 2 HomK.Y;Z/ such that g0 D gC � and �.� 0/ 2 ƒ�0 for
all � 0 2 S 0.
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Proof. (a) We have 0 2 R by (ED2). To show that R spans X let x D y˚ z 2 X
with y 2 Y and z 2 Z. Because of (ED3) there exist �i 2 S , �i 2 ƒ�i and ti 2 K
such that z D

P
i ti�i . Also, since Span.S 0/ D Y there exist � 0j 2 S

0 and t 0j 2 K
such that y �

P
i ti�i D

P
j t
0
j �
0
j . Then y ˚ z D

P
i ti .�i ˚ �i / C

P
j t
0
j �
0
j 2

Span.R/ by (ED2) and the definition of R.
We now prove that R is a pre-reflection system, by verifying the axioms listed

in §2.3. For ˛ D � ˚ � 2 � ˚ƒ� define ˛_ 2 X� by

hx; ˛_i WD hy; �_i D h�.x/; �.˛/_i; (4.23)

for all x D y ˚ z 2 X . Then (4.20) can be rewritten in the familiar form s˛.x/ D

x � hx; ˛_i˛. We have ˛_ ¤ 0 if and only if � 2 S re, in which case h˛; ˛_i D
h�; �_i D 2 and .�˛/_ ¤ 0 proving (ReS1)_. From (4.20) and (ED1) we see that
s˛.ˇ/ 2 R and .s˛ˇ/_ D 0 ” ˇ_ D 0 for all ˛; ˇ 2 R, whence (ReS2)_

also holds. Thus, R is a pre-reflection system. From (4.20) and �.R/ D S it is
now evident that � W R ! S is a morphism of pre-reflection systems, and (4.23)
shows that condition (4.8) holds, so � is separated. Thus � is an extension of S .
The canonical injection � maps S 0 into R because of (ED2) and is a morphism of
reflection systems by (4.20). Since S 0 spans Y , � is a partial section of � over S 0.

(b) Because f .R/ D S we haveR� ¤ ; and hence ; ¤ ƒ� � Z for all � 2 S .
Let �; � 2 S and � 2 ƒ� , � 2 ƒ�. Then ˛ D g.�/˚ � and ˇ D g.�/˚� belong
to R and f .˛/ D �, f .ˇ/ D �. We compute

s˛.ˇ/ D ˇ � hˇ; ˛
_
i˛ D ˇ � h�; �_i˛ .by (4.8)/

D
�
g.�/ � h�; �_ig.�/

�
˚
�
� � h�; �_i�

�
D g.s�.�//˚

�
� � h�; �_i�

�
: (4.24)

On the other hand, f .s˛.ˇ// D s�.�/ because f is a morphism of pre-reflection
systems, which shows that s˛.ˇ/ 2 Rs�.�/ and hence that � � h�; �_i� 2 ƒs�.�/.
This establishes axiom (ED1) of §4.2. Next, (ED2) follows from g.S 0/ � R.
Finally, (ED3) holds because R spans X . Thus L is an extension datum of type
.S; S 0; Z/. That � is an isomorphism and that the diagram (4.22) commutes, is
clear by construction.

(c) It is obvious that (ii) is equivalent to f ı g0 D IdY and g0.S 0/ � R. It
therefore suffices to prove that g0 D gC� is a morphism of pre-reflection systems
if (ii) holds. Because of (2.8) it is enough to show hy; � 0_i D hg0.y/; g0.� 0/_i for
y 2 Y and � 0 2 S 0. But this follows from (4.8) for the extension f and x D g0.y/:

hg0.y/; .g0.� 0//_i D h.f ı g0/.y/; .f ı g0/.� 0/_i D hy; � 0
_
i:
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Corollary 4.7. Let .S; Y / be a pre-reflection system and let L D .ƒ�/�2S be an
extension datum of type .S; S 0; Z/. Let R D E.S; S 0; Z/ be the pre-reflection
system defined in Theorem 4.6 (a).

(a) R is reduced if and only if, for all � 2 S ,

�; c� 2 S� for c 2 K� n ¹˙1º H) ƒc� \ cƒ� D ;: (4.25)

(b) R is symmetric if and only if S is symmetric andƒ�� D �ƒ� for all � 2 S im.

(c) R is a reflection system if and only if S is a reflection system.

(d) Suppose S is a partial root system. Then R is a partial root system if and
only if

� 2 S; � 2 S re and h�; �_i � 2 H) ƒ� �ƒ� � ƒ��� : (4.26)

Proof. (a) and (b) are immediate from the definitions. In (c) it is obvious from
(4.23) that axiom (ReS3)_ of §2.3 holds in R if and only if it holds in S . Also, if
(ReS4)_ holds in R, then it also holds in S because of (2.8). That the converse is
also true follows from the following calculation

hx; s˛.ˇ/
_
i D hy; s�.�/

_
i D

˝
y; �_ � h�; �_i�_

˛
D
˝
x; ˇ_ � h˛; ˇ_i˛_

˛
for x D y˚z 2 X , ˛ D �˚� and ˇ D �˚�. For (d) it suffices by Lemma 4.5 (e)
to evaluate the condition that all root strings S.ˇ; ˛/ for ˇ 2 R and ˛ 2 Rre are
unbroken. Because of Lemma 3.1 (c) and �˛_ D .�˛/_, this holds if and only if
ˇ � ˛ 2 R whenever ˛; ˇ as above satisfy hˇ; ˛_i > 0. Write ˛ D � ˚ � and
ˇ D �˚ � as usual, and suppose hˇ; ˛_i D h�; �_i > 0. Then � � � 2 S since
S has unbroken root strings, and hence ˇ � ˛ 2 R if and only if � � � 2 ƒ��� ,
i.e., ƒ� �ƒ� � ƒ��� . By (ED1) this always holds for h�; �_i D 1. Thus all root
strings of R are unbroken if and only if (4.26) is satisfied.

5 Affine reflection systems

Lemma 5.1. Let .S; Y / be a locally finite root system with Weyl group W.S/.
Then there exists an integral basis B of S such that S�ind D W.S/ �B and W.S/ is
generated by all s˛, ˛ 2 B; hence, the reflection subsystem of S generated by B
is Sind.

Recall [26, 6.1] that, by definition, B � S is an integral basis if B is linearly
independent over K and every � 2 S is a Z-linear combination of B . Hence B is
in particular a basis of the K-vector space Y .
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Proof. Let .S; Y / D
`
i2I .Si ; Yi / be the decomposition of .S; Y / into its irre-

ducible components, cf. §2.12 (a). Then W.S/ D
L
i2I W.Si / is the restricted

direct product of the Weyl groups W.Si / of the irreducible locally finite root sys-
tem .Si ; Yi /, see [26, 5.2.2] or Lemma 2.1, §2.4. We may therefore assume that
.S; Y / is irreducible. If S is finite, we may take for B a root basis, see e.g. [14, VI,
§1.5, Theorem 2 and Proposition 15]. If S is infinite, root bases need not exist [26,
p. 49], so we revert to a case-by-case proof. By [26, Theorem 8.4], S is isomorphic
to PAI , DI , BI , CI or BCI where I is an infinite set. It suffices to find an integral
basis B with the following property: Denoting the subgroup of W.S/ D W.Sind/

generated by all sˇ , ˇ 2 B by W 0, every ˛ 2 S�ind is of the form

˛ D w.ˇ/ 2 W 0 � B (�)

for some w 2 W 0 and some ˇ 2 B . Indeed, then s˛ D wsˇw
�1 2 W 0 which

implies W.S/ D W 0. Furthermore, since ˛ D w.ˇ/ implies �˛ D wsˇ .ˇ/ 2

W 0 �B , it is enough to prove (�) for ˛ in a subset P of S�ind with P [ .�P / D S�ind.
Also note that, if (�) holds for ˛, it will hold for all s˛./,  2 B , as well, because
s˛./ D wsˇw

�1./ 2 W 0 � B .
We now fix an element of I , denoted by 0, and put J WD I n ¹0º for simplicity.
Case PAI . Let B D ¹"0 � "j W j 2 J º. Evidently, B is an integral basis. For

distinct i; j 2 J we have "i � "j D s"0�"i ."0 � "j /, cf. formula [26, 9.5.4]. Thus
(�) holds for P D B [ ¹"i � "j W i; j 2 J; i ¤ j º.

Case DI . Here we fix another element 1 2 J and put B D ¹"0 C "j W j 2 J º[
¹"0 � "1º. Again, it is easy to see that B is an integral basis. For distinct i; j 2 J
we have s"0C"i ."0 C "j / D �"i C "j , cf. [26, 9.5.5], and furthermore "0 � "i D
s"1�"i ."0�"1/ D s"0C"i s"0C"1s"0C"i ."0�"1/ as well as "iC"j D s"0�"i ."0C"j /,
which proves (�) for all ˛ in

P D ¹"i ˙ "j W i; j 2 J; i ¤ j º [ ¹"0 � "j W j 2 J º:

Cases BI , CI and BCI . Let m D 1 if S D BI or S D BCI (in these cases,
Sind D BI ), and m D 2 if S D Sind D CI . Then Sind D DI [ ¹˙m"i W i 2 I º
in all cases. We put B D ¹m"0º [ ¹"0 C "j W j 2 J º. It is easily checked that
B is an integral basis of S . Fix again an element 1 2 J and note that "0 � "1
satisfies (�), because sm"0s"0C"1."0 C "1/ D "0 � "1. By what we proved in case
DI , we therefore know that (�) holds for all ˛ 2 DI � Sind, and hence also for all
˛ D m"j D s"0�"j .m"0/, where j 2 J .

Remark. It is possible to give a classification-free proof using the theory of grid
bases [32] in 3-graded root systems.
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5.1 Affine reflection systems

A reflection system .R;X/ is called affine if it is an extension of a locally finite
root system S , say, f W .R;X/ ! .S; Y /. A morphism between affine reflection
systems is a morphism of the underlying reflection systems.

For the convenience of the reader we explicitly state the implications of some of
our results for affine reflection systems. We have not defined “affine pre-reflection
systems” since by Theorem 4.6 and Corollary 4.7 (c) every extension of a locally
finite root system is a reflection system.

In the following let .R;X/ be an affine reflection system and f W .R;X/ !
.S; Y / an extension where .S; Y / is a locally finite root system. Since locally finite
root systems are nondegenerate (Proposition 2.2 and (2.18)), we have Ker.f / DT
˛2R ˛

_ by (4.10). Also, as explained in §4.1, non-degeneracy implies that S is
unique up to unique isomorphism. We will call it the quotient root system of R in
this context and refer to f as the canonical projection. We put Z D Ker.f / and
then have Y Š X=Z.

(a) By Lemma 5.1 and Proposition 4.4 (a), f has a partial section g over Sind.
Let L D .ƒ�/�2S be the extension datum of type .S; Sind; Z/ associated to f and
g in Theorem 4.6 (b). Then R is isomorphic to the extension E.S; Sind; Z/. Thus,
up to an isomorphism which depends on the choice of g, we may assume that

R D
[
�2S

.� ˚ƒ�/ � X D Y ˚Z: (5.1)

(b) Since S� � K�Sind, the condition in Proposition 4.4 (b) is fulfilled and
hence this result together with Lemma 4.1 describes the structure of the Weyl
group W.R/. Realizing R as in (a), we have

W.R/ D WS Ë V (5.2)

where

(i) WS is the subgroup of W.R/ generated by the reflections s˛, ˛ 2 Sind � R;
the restriction map WS ! W.S/, w 7! w

ˇ̌
Y , is an isomorphism of WS

onto the Weyl group of W.S/ of S ; each w 2 WS fixes Z pointwise (Lem-
ma 4.1 (b)).

(ii) V is an abelian normal subgroup of W.R/ generated by the transformations
v�;�, � 2 S and � 2 ƒ� ; the action of v�;� is x D y ˚ z 7! x � hy; �_i�.
Indeed, by Proposition 4.4 (b), V is generated by the maps vw�;� for w 2
W.S/ and � 2 ƒ� , but ƒ� D ƒw� by (4.15).
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(iii) For w 2 W.R/ we have w v�;�w�1 D vw.�/;w.�/, and hence in particular
w v�;�w

�1 D vw.�/;� for w 2 WS .

It is a straightforward task which we leave to the reader to write down a presenta-
tion of W.R/ based on (i)–(iii), cf. [26, 5.12].

(c) By (4.12) and §2.12 (a), Re.R/ is connected if and only if S is an irreducible
root system. Also, we point out that if Y is finite-dimensional then S is a finite
root system as defined in [14, VI].

(d) Extension data of locally finite root systems have some special properties,
beyond the ones established in §4.2. Namely, let S be a locally finite root system
and let L D .ƒ�/�2S be an extension datum of type .S; Sind; Z/. Since the Weyl
group W.S/ is generated by all reflections s� , � 2 Sind, (4.15) implies

ƒ� D ƒw.�/ for all � 2 S and w 2 W.S/: (5.3)

Putting here w D s� and using (4.13) yields

ƒ� D ƒ�� D �ƒ� for all � 2 S�: (5.4)

Also, (5.3) for w D s� and (ED1) imply

ƒ� � h�; �
_
iƒ� � ƒ� for all �; � 2 S . (5.5)

In particular, putting here � D � 2 S� we have h�; �_i D 2, so (5.4) and (5.5)
imply

ƒ� C 2ƒ� � ƒ� for all � 2 S�: (5.6)

If � D 2� 2 S� then h�; �_i D 1 and � 2 Sind. Hence (5.5) shows ƒ� � ƒ2� �
ƒ�, and by (ED2) and (5.4) we have

ƒ2� � ƒ� whenever �; 2� 2 S , (5.7)

since in case � D 0 this obviously holds as well.

Corollary 5.2. Let R be an affine reflection system with quotient root system S ,
and let L D .ƒ�/�2S be the extension datum of type .S; Sind/ associated to R in
Theorem 4.6 (b). Note R0 D R \ Ker.f / D ƒ0. Define

ƒdiff WD
[
�2S�

�
ƒ� �ƒ�

�
: (5.8)

Then
Zƒdiff D ƒdiff (5.9)
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and we have:

(a) R is symmetric if and only if R0 D �R0.

(b) R is a partial root system if and only if all root strings S.ˇ; ˛/ (ˇ 2 R,
˛ 2 Rre) are unbroken if and only if ƒdiff � R0.

(c) R is tame in the sense that R0 � Rre �Rre if and only if R0 � ƒdiff.

Proof. For � 2 S� we have .2ZC 1/ƒ� � ƒ� . Indeed, let � 2 ƒ� and assume
m� 2 ƒ� for somem 2 Z. Then �m� 2 ƒ� by (5.4) and .mC2/� D m�C2� 2
ƒ� by (5.6), so .2Z C 1/ƒ� � ƒ� follows by induction. Moreover, if � 2 S�ind
then 0 2 ƒ� by (ED2), so 2Zƒ� � ƒ� follows again by induction, whence

Zƒ� D ƒ� for � 2 S�ind. (5.10)

Now (5.9) is a straightforward consequence of (5.7) and (5.10).
(a) follows from Corollary 4.7 (b).
(b) We evaluate the condition (4.26) in our setting. Thus let �; � 2 S� with

h�; �_i � 2. If h�; �_i D 1 then � � � D s�.�/ 2 S
� and (4.26) follows from

(ED1) and (4.13). If both h�; �_i > 1 and h�; �_i > 1 then by known properties
of locally finite root systems [26, A.2], we have � D �. Thus, (4.26) is equivalent
to ƒdiff � ƒ0 D R0.

(c) Let � 2 R0 and let ˛ D � ˚ � and ˇ D � ˚ � be in Rre. Then we have
� D ˛�ˇ D .���/˚.���/ 2 R0 if and only if � D � and � D ��� 2 ƒ��ƒ� .
Hence R0 � Rre �Rre if and only if R0 � ƒdiff.

5.2 Affine forms

Our definition of affine reflection systems follows the practice of [14] in defining
root systems without reference to a bilinear form. In the literature, it is customary
to define affine root systems and their generalizations, the extended affine root sys-
tems (EARS), in real vector spaces using semidefinite forms. In Proposition 5.4 we
will give a characterization of affine reflections systems in terms of affine invariant
forms where, by definition, an affine form for a pre-reflection system .R;X/ over
K is an invariant form b satisfying Rim D R \ Rad b. In particular, affine forms
are strictly invariant in the sense of §2.7. For example, the forms used in the theory
of EARS are affine forms in our sense.

Lemma 5.3. Let .R;X/ be pre-reflection system admitting an affine form b.

(a) .R;X/ is of the type considered in §2.9 with respect to the form b D . j /. In
particular, R is a reflection system.
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(b) If Re.R/ is connected, b is unique up to a nonzero scalar.

(c) Let Y D X=Rad b, let f W X ! Y be the canonical map and put S D f .R/.
Then there exists a unique reflection map s W S ! Ref.Y / such that .S; Y; s/
is a reflection system and f is a morphism of reflection systems. Moreover, S
and f have the following properties:

(i) f is an extension.

(ii) The form bY W Y � Y ! K, defined by bY .f .x/; f .x0// D b.x; x0/ for
x; x0 2 X , is a nondegenerate invariant form for .S; Y; s/.

Proof. (a) By (2.18) and the definition of an affine form, Rre D ¹˛ 2 R W

b.˛; ˛/ ¤ 0º. Then (a) is immediate from (2.16) and §2.9.

(b) Let b0 be another affine form. Since b.X;Rim/ D 0 D b0.X;Rim/ it is
sufficient to prove the existence of c 2 K� such that b0.x; ˛/ D cb.x; ˛/ holds
for all ˛ 2 Rre. In view of (2.16) this is in turn equivalent to

b0.˛; ˛/ D cb.˛; ˛/ for all ˛ 2 Rre. (5.11)

There obviously exists c 2 K� such that (5.11) holds for some ˛0 2 Rre. Con-
nectedness of Re.R/ then implies that (5.11) holds for all ˛ 2 Rre.

(c) The form bY is obviously well-defined. Also, for ˛ 2 Rre we havef .˛/¤ 0
and b.˛; ˛/ ¤ 0 whence hx; ˛_i D 2b.x; ˛/=b.˛; ˛/ for all x 2 X . If s W S !
Ref.Y / exists as claimed, then necessarily

hf .x/; f .˛/_i D hx; ˛_i D 2
b.x; ˛/

b.˛; ˛/
D 2

bY .f .x/; f .˛//

bY .f .˛/; f .˛//
(5.12)

for x 2 X . Conversely, let s be the reflection map defined in (2.22) for ˆ D
f .Rre/ D S� and . j / D bY , i.e., f .˛/_ is given by (5.12). Then it follows from
(2.8) that f ı s˛ D sf .˛/ ı f holds for all ˛ 2 R, which proves that .S; Y; s/
is a reflection system and at the same time that f is a morphism. The remaining
assertions are now clear.

Proposition 5.4. Let .R;X/ be a pre-reflection system. Then .R;X/ is an affine
reflection system if and and only if it satisfies the following conditions:

(i) .R;X/ is integral,

(ii) .R;X/ has an affine form, and

(iii) hR; ˛_i is bounded, for every ˛ 2 Rre.
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In this case:

(a) Let b be an affine form for .R;X/ and let f W X ! X=Rad b be the canonical
map. Then .S; Y / D .f .R/;X=Rad b/ is the quotient root system of R and
f its canonical projection. Moreover, Re.R/ is connected if and only if S is
irreducible.

(b) There exists a unique affine form . j /a that is normalized in the sense of
(2.20), i.e., for every connected component C of Re.R/ we have

2 2 ¹.˛j˛/a W ˛ 2 C
�
º � ¹2; 3; 4; 6; 8º: (5.13)

The normalized form . j /a satisfies

¹.˛j˛/a W ˛ 2 C
�
º 2

®
¹2º; ¹2; 4º; ¹2; 6º; ¹2; 8º; ¹2; 4; 8º

¯
: (5.14)

Its radical is Rad . j /a D Kerf . If K D R then . j /a is positive semidefi-
nite.

Proof. Let .R;X/ be an affine reflection system with quotient root system S and
canonical projection f . Then (i) and (iii) follow from Lemma 4.5 (a), (4.8) and
the corresponding properties of S . By Proposition 2.2 the root system S has a
unique normalized invariant form . j /. Let . j /a be the pull back of . j / to an
invariant form on X as defined in Lemma 4.1 (e). Since . j / is nondegenerate, we
have R \ Rad. j /a D R \ Ker.f / D R0 � Rim by (4.7). On the other hand,
f .Rim/ D S im D ¹0º, whence Rim � R0 and so . j /a is an affine form.

Conversely, suppose (i)–(iii) hold. By Lemma 5.3 (a), .R;X/ is a reflection
system. Let .S; Y / and f W X ! Y be the reflection system and extension
constructed in Lemma 5.3 (c). Note that S is integral by Lemma 4.5 (a). Also
hS; �_i is bounded for every � 2 S . Hence, by Proposition 2.2, S is a locally finite
root system, and consequently R is an affine reflection system with quotient root
system S and canonical projection f . The last part of (a) follows from (4.12).

(b) The form . j /a constructed above is normalized since . j / is normal-
ized and f maps connected components onto connected components of S , see
Lemma 4.5 (d.i). Uniqueness of . j /a follows from uniqueness of . j / on S . The
remaining statements all follow from Proposition 2.2.

Remark. Since the reflective roots of an affine reflection system R are given by
Rre D ¹˛ 2 R W .˛j˛/a ¤ 0º, they are also called the anisotropic roots.

Corollary 5.5. A pre-reflection system over the reals is affine if and only if it is
integral and has a positive semidefinite affine form.
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Proof. If R is a real affine reflection system, its normalized affine form . j /a
is positive semidefinite by Proposition 5.4. For the converse, let b be a posi-
tive semidefinite affine form for R. We follow the proof of Proposition 5.4 and
consider Y D X=Rad b, f W X ! Y the canonical map and S D f .R/.
It then remains to show that S is a locally finite root system. But this follows
from [26, Theorem 4.2 (b)].

5.3 Examples and Remarks

(a) As usual, the rank of a reflection system .R;X/ is defined as rank.R;X/ D
dimX .

Let R be an affine reflection system over K D R of finite rank. We will say
that R is discrete if R is a discrete subset of X . In case R has finite rank, Re.R/ is
connected and R0 � ƒdiff, it is easily seen that R is discrete if and only if ZŒR� is
a lattice in X .

(b) Let .R;X/ be an affine reflection system over K D R with the following
properties: R has finite rank, Re.R/ is connected, R D �R and R is discrete.
Then R is called

� an EARS, an abbreviation of “extended affine root system”, if R is reduced,
tame (see Corollary 5.2 (c)), and all root strings are unbroken;

� a SEARS, an abbreviation of “Saito’s extended affine root system”, if R D
Re.R/.

That our definition of an EARS is equivalent to the one given by Azam, Alli-
son, Berman, Gao and Pianzola in [1, II, Definition 2.1] is a consequence of
Lemma 4.5 (e). In particular, by Corollary 5.2 (b), every EARS is a partial root
system. That our definition of a SEARS is equivalent to Saito’s definition of an
“extended affine root system” in [37] follows from Corollary 5.5.

It was shown in [6, Theorem 18] that every reduced SEARS can be uniquely
extended to an EARS and, conversely, the reflective roots of an EARS are the
non-zero roots of a SEARS. This is now immediate from our results. Indeed, by
Corollary 5.2 an affine reflection system is tame and has unbroken root strings if
and only R0 D ƒdiff.

Weyl groups of extended affine root systems are studied in [7, 10, 19].

(c) In [29], Morita and Yoshii define a LEARS, an abbreviation of a “locally ex-
tended affine root system”. In our terminology, this is a symmetric affine reflection
system R over K D R such that R D Re.R/ is connected. The equivalence of this
definition with the one in [29] follows from Corollary 5.5.
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(d) In [8], Azam defines a GRRS, an abbreviation of a “generalized reductive
root system”. In our terminology, this is a symmetric real reduced, discrete affine
reflection system R which has finite rank and unbroken root strings.

We point out that our description of affine reflection systems in §5.1 applies
to EARS, SEARS, LEARS and GRRS. In particular, it generalizes the structure
theorem of extended affine root systems proven in [1, II, Theorem 2.37] and [29,
Proposition 4.2].

(e) Lie algebras whose root systems (in the appropriate sense) are EARS have been
studied in [1, 2, 3, 4, 46, 47, 45]. For SEARS see [38, 44], for LEARS see [29] and
for GRRS see [9, 8]. In particular, it is shown in [1, I, Theorem 2.16] that the root
system of an extended affine Lie algebra is an EARS. A special case of an EARS is
the root system of an affine Kac–Moody algebra. We also mention that the notion
of tameness comes in fact from the theory of extended affine Lie algebras, where
tameness of the Lie algebra is expressed by tameness of the corresponding root
system [2, Lemma 3.62].

Lie algebras whose root system is a symmetric reduced affine reflection system
over an arbitrary K appear in [35] and [34].

Lie superalgebras with a grading by an affine reflection system of arbitrary rank
but with a 3-graded quotient root system are described in [17].

Acknowledgments. During a large part of the preparation of this paper, the first-
named author was a guest of the Department of Mathematics and Statistics of
the University of Ottawa. The hospitality of this institution is gratefully acknow-
ledged.

The authors thank Karl-Hermann Neeb for useful comments on a previous ver-
sion of this paper.

Bibliography

[1] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie alge-
bras and their root systems, Mem. Amer. Math. Soc. 126 (1997), no. 603, x+122.

[2] B. Allison, S. Berman and A. Pianzola, Covering algebras I. Extended affine Lie
algebras, J. Algebra 250 (2002), no. 2, 485–516.

[3] , Covering algebras II. Isomorphism of loop algebras, J. Reine Angew. Math.
571 (2004), 39–71.

[4] B. Allison and Y. Gao, The root system and the core of an extended affine Lie alge-
bra, Selecta Math. (N.S.) 7 (2001), no. 2, 149–212.

[5] S. Azam, Nonreduced extended affine root systems of nullity 3, Comm. Algebra 25
(1997), no. 11, 3617–3654.



Reflection systems and partial root systems 409

[6] , Extended affine root systems, J. Lie Theory 12 (2002), 515–527.

[7] , Nonreduced extended affine Weyl groups, J. Algebra 269 (2003), no. 2,
508–527.

[8] , Generalized reductive Lie algebras: connections with extended affine Lie
algebras and Lie tori, Canad. J. Math. 58 (2006), no. 2, 225–248.

[9] S. Azam, S. Berman and M. Yousofzadeh, Fixed point subalgebras of extended affine
Lie algebras, J. Algebra 287 (2005), no. 2, 351–380.

[10] S. Azam and V. Shahsanaei, Presentation by conjugation for A1-type extended affine
Weyl groups, J. Algebra 319 (2008), no. 5, 1932–1953.

[11] N. Bardy, Systèmes de racines infinis, Mém. Soc. Math. Fr. (N. S.) 65 (1996), 1–188.

[12] , Définition abstraite d’un système de racines dans le cas symétrisable, J. Al-
gebra 271 (2004), no. 1, 108–178.

[13] N. Bourbaki, Algèbre, chapitres 4 à 7, Masson, Paris, 1981.

[14] , Groupes et algèbres de Lie, chapitres 4–6, Masson, Paris, 1981.

[15] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci.
Publ. Math. 41 (1972), 5–251.

[16] V. V. Deodhar, On the root system of a Coxeter group, Comm. Algebra 10 (1982),
611–630.

[17] E. García and E. Neher, Tits-Kantor-Koecher superalgebras of Jordan superpairs
covered by grids, Comm. Algebra 31 (2003), no. 7, 3335–3375.

[18] J-Y. Hée, Systèmes de racines sur un anneau commutatif totalement ordonné, Geom.
Dedicata 37 (1991), no. 1, 65–102.

[19] G. Hofmann, Weyl Groups with Coxeter Presentation and Presentation by Conjuga-
tion, J. Lie Theory 17 (2007), no. 2, 337–355.

[20] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Ad-
vanced Mathematics 29, Cambridge University Press, Cambridge, 1990.

[21] N. Jacobson, Basic Algebra, Volume 1, W. H. Freeman and Co., 1974.

[22] V. Kac, Lie superalgebras, Adv. in Math. 26 (1977), no. 1, 8–96.

[23] , Infinite Dimensional Lie Algebras, Third Edition, Cambridge University
Press, 1990.

[24] S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory,
Progress in Mathematics 204, Birkhäuser Boston Inc., Boston, MA, 2002.

[25] B. Kürner and K.-H. Neeb, Invariant symmetric bilinear forms for reflection groups,
J. Geom. 71 (2001), no. 1–2, 99–127.



410 O. Loos and E. Neher

[26] O. Loos and E. Neher, Locally finite root systems, Mem. Amer. Math. Soc. 171
(2004), no. 811, x+214.

[27] É. Lucas, Théorie des nombres, Volume 1, Albert Blanchard, Paris, 1961 (reprint of
the original 1891 edition).

[28] R. V. Moody and A. Pianzola, Lie Algebras with Triangular Decompositions, Canad.
Math. Soc. series of monographs and advanced texts, John Wiley, 1995.

[29] J. Morita and Y. Yoshii, Locally extended affine Lie algebras, J. Algebra 301 (2006),
no. 1, 59–81.

[30] K.-H. Neeb, Holomorphic highest weight representations of infinite dimensional
complex classical groups, J. Reine Angew. Math. 497 (1998), 171–222.

[31] K.-H. Neeb and N. Stumme, The classification of locally finite split simple Lie alge-
bras, J. Reine Angew. Math. 533 (2001), 25–53.

[32] E. Neher, Systèmes de racines 3-gradués, C. R. Acad. Sci. Paris Sér. I 310 (1990),
687–690.

[33] , Lie algebras graded by 3-graded root systems and Jordan pairs covered by
a grid, Amer. J. Math. 118 (1996), 439–491.

[34] , Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Canada 26
(2004), no. 3, 90–96.

[35] , Lie tori, C. R. Math. Acad. Sci. Soc. R. Canada 26 (2004), no. 3, 84–89.

[36] B. Rémy, Groupes de Kac-Moody déployés et presque déployés, Astérisque 277,
Soc. Math. France, Montrouge, 2002, viii+348.

[37] K. Saito, Extended affine root systems. I. Coxeter transformations, Publ. Res. Inst.
Math. Sci. 21 (1985), no. 1, 75–179.

[38] K. Saito and D. Yoshii, Extended affine root system. IV. Simply-laced elliptic Lie
algebras, Publ. Res. Inst. Math. Sci. 36 (2000), no. 3, 385–421.

[39] V. Serganova, On generalizations of root systems, Comm. Algebra 24 (1996), no. 13,
4281–4299.

[40] R. Steinberg, Lectures on Chevalley Groups, Yale University Lecture Notes, New
Haven, Conn., 1967.

[41] N. Stumme, The structure of locally finite split Lie algebras, J. Algebra 220 (1999),
664–693.

[42] J. Tits, Moufang octagons and the Ree groups of type 2F4, Amer. J. Math. 105 (1983),
no. 2, 539–594.

[43] , Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra
105 (1987), 542–573.



Reflection systems and partial root systems 411

[44] H. Yamane, A Serre-type theorem for the elliptic Lie algebras with rank � 2, Publ.
Res. Inst. Math. Sci. 40 (2004), no. 2, 441–469.

[45] Y. Yoshii, Coordinate algebras of extended affine Lie algebras of type A1, J. Algebra
234 (2000), no. 1, 128–168.

[46] , Root-graded Lie algebras with compatible grading, Comm. Algebra 29
(2001), no. 8, 3365–3391.

[47] , Classification of division Zn-graded alternative algebras, J. Algebra 256
(2002), no. 1, 28–50.

[48] , Root systems extended by an abelian group and their Lie algebras, J. Lie
Theory 14 (2004), no. 2, 371–394.

Received May 18, 2009; revised May 28, 2009.

Author information

Ottmar Loos, Fakultät für Mathematik und Informatik, FernUniversität in Hagen,
58097 Hagen, Germany.
E-mail: Ottmar.Loos@FernUni-Hagen.de

Erhard Neher, Department of Mathematics and Statistics, University of Ottawa,
Ottawa, Ontario K1N 6N5, Canada.
E-mail: neher@uottawa.ca

mailto:Ottmar.Loos@FernUni-Hagen.de
mailto:neher@uottawa.ca

