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2 Derivations

Derivation are "infinitesimal autemorphisms", and as such
have a theory formally analogous to thal of antomorphisms..
Again derivations are difficull to construct. The inner
derivations are built up from commukbator and associator naps
in 2uch a way that the indicator ]J]jieg in the nucleus. The hasiz
inner derivations are the standard inner derivatiaons D and

o ” for nuclear ® and arhiftrary =,v, althouwgh these are in-
Hpl

sullficient in characteristic 3 situations. We show that
standard inner derivations ars infinitesimal generators of the

standard inner automorphisms.

Eecall that a derivatien in any linear algabra is an
endomorphism D of & which satislies the "product rule™ for
derivatives
(2.1 Df{x=v) = Dl=)*y + =-D(y).

The fact that one applies D to & product by applwing 1t to the

tfactors ane at a fime and summing has, as consequences rules

auch asg
(2 .2) pix,y] = [D=.,¥y] + [x,D¥v]
{2.3) Dl=x,y,2] = [ox,v.,z] + [=,Dy,2z] +. [x,y,D=]
; i
(Z,4) Dix"] = xab{=x)
3.8 =: w4 H
{2:58) u{uxy] LHD; Ux;ny
Nerivations kKill units
(2.8) B{l) = O
because by (2.4) L(1l) = D{IE} = lepfly = Z2D{1). The rule for

GLfferentiating an inwverse in an alternative algsbra

e -t -1 p(x)
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generalizes the "guotient rule" (Z)' =- Tz for darivatives.
N

e -1 -1 =1
Simply note 0 = D(1) = DB(xx )} = Dixlx t xDlx 7)), s©

=1 “ _=1
¥Dix ) = -Di{x)x and [(by the Inwvarss Condition Lx-l = L, ]
ﬁ(xrl] = —x_lD[x}x_l.

A5 an application of (2.2) and (2.3), note that & deriva-

tion preserves nucleus and center in any linear algebra.
NIWM{AY I H{R), c{cl{al ) L&)

because for nEN(A) and a,ben we have by (2.3)
ibn,a,b] = o[n,a,k] - [n,Da,b] - [n,a,Db] = 0, gimilarly for
middle and right nuclearity of Dn, and if in additien ng C(A)
then [Mn.,a] = Bin,a] - [n,Dal] = 0 by (2.2,

5till in the general case, the szt of derivations forms
a2 Lie suhalgebra of End(a) : from the linearity of (2.1) in
the variable D it is clear that oD and D, + D, are derivations

1 2
3 F t‘.-.Dl.D2 are, while for the Lie bracket ox commutataor
[DI'DE] = DlD2 = DEDl we interchange 1 and 2 and subtract in

Dlnzuﬂ = '!LDEU-:J}'+:<:D2EF}} =D thx}v-l-ﬂl

1 (ijlfyﬂ+Dl{X}32{y}rxDluzﬁyj

1 2

ta get {Dl.DE]{xy} = [Dl,Dzjlx}y + x{Dl,Dzl{y}. This Lie

algebra is called the derivatian njﬂghrq Der{A) of the algenra A.
The lie multiplhication mlﬂthm LM{A) of any linear algebra

4 is5 the Liec algebra of linear transformations on & generated

by all left and right multiplications Lx.RY for ., vk {the smallest

subspace of Endwn containing the 1-'_._x and B and closed under the

Lie bracket). A derivation of A which belongs to LM(A) (i.e.

can be built out of the Lx and R:‘F hy means of Lie brackets) is

zalled an pner dgrimm*lhn, and the spacc af all sucn is dencted

Inder(n) = Ger{AJMITM(A) .
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In operatery terms the derivation condition (2.1) hecomes

{(2.7) [u,LK] LD(X)

O.,R R

EpsRgd Diy)

which shows the generatozs (and hence all of LM(A]}) are invariant
under bracketing by deriwvations, Thus the inner deriwvations

form a Lie ideal,

Inder(A)=] Der(d).

-1

he inner derivations are those which result from the
interaction of multiplication operators. We are especially
interested in inner derivatioens of fres algsbras in a variety;
by (2.7) thasa correspand to certain operator indentitias in
the varietv. Ws now Lurn to the guestion of descriking these

inner deriwvations more concretely in the alternative casea.

Criteria Ior Inner Deriwvations

From how on we consgider only alternative algebhras. The
most important derivalticns in an associative algehra are Lhe
adjuint or Commutater maps
(@ H) Dz:x + [=,%] (b = L_-E I,
In an alternative algebra these maps DZ need not be derivations;
indead, recall the associator-commutatbtor formula IT.2.10,
which wa write as
(2.9) [z,xv] = [z.x]ly + =[z.¥] - 3[z.x,7]
Thus Dz{x?} - Dz{x}y - xuz(y} = =3[z,%,v] measurms haow fax Dz is
from keing a deriwvation. This iz an esasy way to remembar the
formula, so we call it the commutater deriuﬂ.'t'fan 'Fﬂ"mﬂlﬂ'-

The condition that DZ bEe a derivation is preciszely that
the associator vanishes for a1l % and v, 1.e. the ﬁudicn+ar 3=

iz nuclear,
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{Commutator Derivation Condition) The map Dz = Lz - Rz

ig@ a derivation vf an alternalive algebra A iff the indigator
3z lies in the nucleus N(a). [l

In particular, if 34 = 0 or A = H(A) is associative then all

D are derivations.

z
Another pondidate for a derivation is the nsgntfn+dr marp
2.1 o - I - = = % 4
( } K,y {errz] {Eix, y ny I.'.'-CL}-' ELxr r"}"]
=1l = --‘[' = E |Z = [:! R ]Z.
whars Ax,v:z} l,2,v] Hyhx Lx = 7P

The relewvant formula here is the assocciator-commutator formula

I1.2.12, written
(2,123 lx,v,zw] = [x.v,zlw + zlx,v,w]l - [lx,vl,z,wl.

Again, A (zw) = A lz)w - =& (w) = = [[x,f].z,w] measures
X,V ®,V X, ¥

r I

hew far A o iz from being a derivatien. Again wa call lx,v!
)

the jndicater of the asscciator map, since it indicates whether

& iz a derivation.
Y

{assogiator Deriwvation Condition) The map Ax 5 = [Lx'ﬁy]
f

is a deriwvation of an alternative algebra n iff the indicator fav]

lies in kthe nucleus HN{A]. A sum Ehx of assocoliator maps 1S

1
I

i i
& dsrivation 1ICE E[xi,yi]EN{M . R

Tf x and ¥y commute t[x,v] = 0 ar if & = H{a) is asscciatiwve
then Ax.' is & deriveaetion.

Although it is a 1ittle hard to rememkezr, formula (2.13)
can sometimas be as useful as our basic formunlas in Secticon 1.3.
Again, the best way to remember it is as a measure of dewviation
from being a dersivation; we call it the ussacfn+¢r- dcrwua+foh
fFarmula. The hava part is remembering the error term ~[lx,v1,2z,w]

{the coefficient -1 is not #o0o he confused with the =3 af the com-

mutator deriwvaticn formula).
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Ewven more useful than the commutator and associator derivation
form:las (because there are no errar terms}l arse the facts that

DZ and Az i gact as derivations an all Jorden products, even
I

1f not on all alternative products (see the Jordan Derivation
Formulas T.3.7-H) .

Example. In a Cavley algebra & = @(B,p) we have the
following expreszions far the acticn of the commutater and

associator maps (X, vE&EB):

b, (a + bé) [%,a] + {B(x-%)}L
D,y (a + bE) = uibx - %o} + [xlz - a)i&

.S (a + bf) = {b[x.,¥v]}£L

A gg (2 + 2D pIby.x] + {y[=x.a]}l

{a + bf)

By o plyx,a] + pibyx - xybre. MR
xf,vm
Thus far we have been able to construct inner deriwvatlions

anly from very special kinds of slenmenls. Once moare the best

way to discowver the form inner deriwvations tTake is to find

20

general conditions under which an elemenl of the Lie multiplication

algehra is a devivation, We hegin by finding a nermal form for

the elaments of the Lie multiplication algebra.

{Hormal Form Theorem) Any element of the Lie multiplication algebra

of an alternative aigehra may be written in tha form
W =L + K + IL[L P S|
g the Lie multiplication algebra reduces to
LM(lA) = Ly t B, # [Lﬂrﬂ.ﬂ].

Froof. To see this we only need show the subspace on the
right, which manifestly cvontains all Lx and Ry, iz zlaosed under
Lie brackets. This follows because [Lx'Ly] and [Rx,Hy] can be
zxpressed in terms of [Lx,Rv]



2.1lo

W L ]-L = =2[n , R = [r ,2 1+R
[Ty ?] [xy] (L y] Lo, ¥ [av]
and because the [Lx'Ry] 's arge closed under hracketing wizth

“he generators LZ,R

L
¥ L .rR = -L + L ,.R

[Lz [ = ‘r']] [xvEe] ! [ xv] z]

[Rzr[RfoY]] < SRregs] © [R[xy]'Lz]'
Par the first equation: x{ya)-vi{xal+(yx-xyla = -[x,v,al+[y,x,al
= 42[x,a,¥] = la,¥,x] - la,x,v] = (ay)x-(ax)y+a(xy-yx]. For
the second: zh {a)-A (za) = =i {m)at[I=xy] .z,a] (by 2.12)}

P Y = ]

= -L[xyz]{a} i ﬂ[xy].zia)' The third follcocws by dualily -

in the oposite algebra R and L get switched, [x,¥] and Exapiezl

become [y.x] = -[%,v] and -[z,v,x] = +[=,v,=] raspautively..

Once we have a way of representing the elements of the
Lic multiplication algebhra, we scek a critericon for when such
an element is a derivation. The (hdictor indip) of a sum

D= B + In

ju}
Fh

commutator and associator maps is just the sum 3EIx + E[x;;y:y

of the respective indicators. Note the indicatar ies not
intrinsically determined by D, but rather depends on & particular
representation of Dy Zor example, the zero derivaticn can be

written as D =  (with indigator o) oxr as LD = Ul {witclh indigator 3).

(Innexr Derivation Criterion) an element D = TL_ + Rir' a :[L:-: 'Ry ]

the Tie multiplication algehra is a derivabtion of a unital

=

ar

alternative algebra & iff v = =x and the indicator ind(D)

= 3= 4 E[xi'Y1} lie= in the nucleus H{a) . Thus all inngzr
derivations aze built up from commutator and associataor maps,

b= B Fora d
=

" it¥y



Proof. Since & derivation kills 1 by (2.6}, and all
[Lx Wl o A [xi,yi.ll = 0 ®ill 1 automaticaliy, [or D tgo be
i Bk - _
a derivation it is clearly necessary that 0 = D(1) = '.J'.K+F. i 5
= %+y. In this case D = D_ + IA has
4 Kilyi

D(izw) ~D{z)lw-=0{w)

1Dx[zw]-Dx[z}w—sz{w}} - athx (zw]—hx g (B)w-zR

rx

(w)}
gray i $i
= =3[=x,=z,w] - 5:[[xi,yi],z,w] {hy {(2.10), [2.13))

-

= —L3:-1+E[2;1.',’1] ,z.,w] '

which wvanishes for all z,w iff 3:{+Elxi,§'i]EW[-’-"-} i .-

Standard Inner Nerivations
Once we have a criterion for when an element of the mulciplica-
=ian algebra is a derivation, we can construct inner derivations.
Sinwe Il=,v] - [3x,v¥] = 0 we lave as an imnediate zonssqueance
of the Inner Deriwvation Critesrion
(Standard Inner Derivation Theorem! . Far any slements
®,¥ in an alternatiwve algebra A the operator

C = A =

3] - L - K - 3l R
TR [, v] Xy ¥ [=,%] [=x,¥] oy V]

iz an inner derivation with indicator zeroc. .

2 finite sum D = Dz + EDE !r' for nuclear 2 will ke called
el

a ttandaed inner derivation . The standard inner devivations form

-

a2 subspace Etandex (A} of the space of all dirner dearivations.
When the characteristic is 2 the standard inner derivatiocns

reduce to commutataor derivations D? but in

+ a1

characterdisbic # 3 siluations Lhe standard inner devivations ars

precisely all the inner derivations beacause D_ = LA

1 5 o 1 1 L - -
-~ = D(3x + Llx.,¥v.l}=-7 (D -35 )} = = n_ - = LD For =
3 (3% [:'{._1_ }l':l 3 f [x.4v.1 X, ¥ 3 1

1 =4 B d

Ix + E[xi,yi]EN{M £
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= = = - = -— =21 i
(2,18} Indar(a) Stander () when 354? T.‘Jx + I‘injyl .JiD :

Thus in characteristic # 3 we are justified in restricting
our attention to standard derivations.
The operaler conditions (2.9
D,L = b, 2 = R
(03, ). & By r THET & Hpo

for a derivation lead immediately ®o

B T ==
(o, x] LII':-[X:I
B = A +
E -‘-ht-f] Dix)l,¥y 2,D(y)
D ] = 1 + D0
[D Xy J'IDII:-:JI}P ®,.O0y)
+ B = + I + L A
ED'D:-: & F’L:sc_.‘_i,r_] Dl‘:(x} g AIJ{H.:I,‘.?. X, .D{w.)
L 1 1 1 e o I
L, O + D = D + T 0 + £ D
[ Z & x,.y.] o(=) 5 Dix.) ,v. X, Dlw )
i L 1 1 a

whare by (2.8) nuclearity is preserved
ZEN(A)=S D{z)@ N(A)
ix + E[xi,yi]EN:a}ﬁPJD{x} + ElD{xj];}'i] + E[xi.ut-;iJ]E H{x) .

Thasge show Lhat Tnder(i) and Stander(A) are ideals in Ceri{il.

2.1% Example. If & is associative all assccoiaters vanish, A:-: i =0
,
and D = D ¢+ and all elements are nuclear. Thus Inder(a)
E Y [er]
= Stander(d) - Commder(A) consist af all commutator derivations Dz..

2.20 E=xample, If %Eé,and Wia) = C{a) (as in a Cayley algebhra) then

by (2.18) Index(a) = Stander{i) consists of all }_'er S since
[ 3 _'i_
1:-? = 0 foxr all central z.H
Al 2 | Exampla. Tf 32 = 0 then all Dx are derivations, Dx,y raduces to
D and D + rA is a deriwvation iff Fa is an
[x,¥]" X X, s Y, X T
1 1L 1 1
assaciator derivation: Inderi{d) = T}ﬂ + Assoocder{Al D Commdarin)
= D 3 T .
DD Puiay + s 3 stander(a) . I}



Ln inner derivation is called a '!'|‘ri.l:.'t|.:| T dervation
1f ites indicator is striclly nuclear. The reeson such

derivations are "strict" is that they stay derivations in any

cxtension A —A: they are derivations intrinsically, by

their form alone, In contrast, an arbitrary inner derivation
T . - I-LI § ) -
on A need not remain a derivation on A since its indicalor

; . M
naeed not remain nuclear A,

When o0 = D 4+ ID has strictly nuclear jndicaturlz
£ W e '
i"7i
we zall it a §hrietly standard inner derivation. For example,
all o_ y 2re strigtly standard. If we dencte by Inder{d},
[}

strinder (A), Stander [Aa), and SLrander. {A) the apaces

consisling of all inner, strictly inner, standard, and strigtly

standard derivations respectively we have inclusicns

Strinder (&) ‘:}

% Standatr (A -2

Dexr{A) 2D Inder(h) Strander {A]

Derivatiaons 1nte Bimodules

We have praferred to develope the thesory of deriwvatians
scting on an algebra & rather than the more general theory

of derivations of A into a bimcdule H. We can reduce tChe general

case of derivations into bimodules to the gzase of deviwvations

of an algebra by means of the split null extension. A

(2]

derivation of A intc M is a linear map A+ M satisfying

the formal analogue of the condition for a dervivation

o
oL all

aloehra,

Diab) = Dialsh + a+D({k) fa,beh) .

24
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o B

Any derivation A L M extends to a derivation 2 + E aof the
split npull extension E = & &8 M by Bia 8 m) = 0 @ D(a).
Conversely, any derivation O of B which kills M and maps A
into M restricts to a deriwvation A E M. Thus we can identify
the space Der{A,M) of derivations aof A into M with a certain
euhspace of Der{R] .

an inner derivation of A into M is one which can bhe
written in the form

(2.22) o= D + EIA {n,n.=M, x, ch)
1] 1-:__||,.1'11.I 1 i

where the indicater z = 3n =+ E[xi,ni] Belanas to the puc|ews
of the A-bimodule M. (Naturally ancugh, we define this nuclsus
te be N(M} = {nc|[n,a,a] = 0}; because M is a trivial ideal

in E this is the same as the set of slements of M nuclear

in B, N(M) = MAN(E)). D is gtricrly ImRE&r if its indicator

]

\ . : . . o -
ig strictly nuclear (remains nuclear in all extensicons 22 E) .

For examole,

2423 D = D - 3A
t2 ! H,n [%.n] %0
is strictly inner with indicator zero. & Standard inmesr derivation
is one of Lhe form
. ” . R I 1.

(2.24) 7] Dn + Lnx_,n_ (neX (M), nlﬂhl LE!J

i i
it is gtrictly standard if n is strictly nuclear. OCnce more

1 i

21l inner deri va;-_.‘innﬁ ﬂre-.__it_'._andard when E exlists,
p 1 o

= T S = + T el JEH (M
(2.28) bD_ + EA"‘i’“i $ib_ -D“i'ni} (m in [=,,n4]e 1)

In general we have the inclusions

1:5bxinder[A.H};>
Der{a,M} = Inder{a, M) Strander(d M) .

"b Strander{h,m}‘?
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Oovering Derivetions by AuLomorphisms

The standard auvtomorphisms Tx v He introduced eparlier are

LA

intimately conneckted with the standard inner dasvrivations D '

Y

a fact which will be important for the procf of Malcev's
Thecram. Indeed, the D, VIE are "infinitesimal generatars" of
the T -

i, ¥

{Infinitesimal Gensration Lemma) . Let % be an inwvertihle
element and v an element of the form v = 1-2 where =z is
nilpotent. Then

T = I-0 , T = I-D -1
¥ ES X,V H,EX

meduls multiplications invalwing two or more ='s.

Proocf. ARlwavs working moduleo terms of degree * 2 1n oz,

and keeping in mind the distinction between the group ccocmmutator

Ilxy]] and the alyebra commutator [x, 2], we have

b
-

¥ = 14z, Xy = X-XZ, ¥YH I H=ZX,
-1 -1 -1 -1, -1 -1
{xv) = x 4zx O, lty:.-‘:]f-:'L = x 4x 2y [[xv]] = 2-[x,zx 7].
. - - 2 -1 - k
Iindeed =since y 1 = [1-z) 1 = l+z+z£"'+zk = 1I+=z if = =0
= & o - =1 =Y =1
{2 18 nill} we gat (xv) - = ¥ lx = (L) ! and {(vx) =k ¥
=1 -1_ -1 =1
= % T(i+z), hence [[xv]] = (=v) (vx) S (m-%2)(x +x =)

-1 -1 - -1 -1,
= 142 - x=zx {neglecting xzx =2) = l-x(z=x l} + {wx Tyx o= l=[%,En ]
By (1.3)

T =L R -1 = {I-L }[I+ER ) = I-L +B. = L-D .,
¥ ¥ N & & A = =
By (1.15})
-1 3

Txoy L[[xy]]Ri[xy]]{thyl" Xy
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Heo xe
R = R =1 I - R -1
[[=y]] 1-fx,zx 71 [%,2x ]
T I - L =
[[xy]ll [2,2x ]
_1 L o o
T, Lo B = 4T.~1 + © .. =11% [T=5t '}
XY X ¥
= I 4 -1 L - L i - = , L
sz " - (naglecting sz L Lx z}
= 1 = ¥IK -1 - L =1 I }
(zx )= =
= I -3 =1
=M o
= T + =
He2X

In a product cf terms I-I-Mi for Mi a multiplication inwvolwing
z, we hawve E{I+Mi}5 L+EI‘-'I+ modulo terms invoelwving two or more
il Therefore

i)
i b T e e K

&
t

{1 - 1 sy g = @ 1 VR g o 133
lw.e% 7| [®,2z%x 1] X.EX

= I - =1 + R -1 + I4 =1
[=,2x 7] [=,=z=x 1] A

= ¥ . - e =5
(L, 2™ "R, 2 1) 3B, 27

2 L oen B -1.
Xs,24 .

(berivation Covering Theorem) Any standard inner derivation

=D + £D =1l for =. inwverlible, =z, nil, and = nil in
z xirZin 1 €L

the nucleus of an alternative algebra is covared by a standard

inner automoxphism T =7 I Tx - for v = l-u inwvertibkle in
¥ prdy
the nuclsaus and ¥; = 1-zi invertible:
T = 1T Tx ...Tx 2 I—Dz = EDx - K_l = l=I
4%y P¥y m' i yrEg %y

modizle higher terms (multiplications dnvolwing two or morse

2 or 5,05y . @



The reason for describing D as an

of T if ¥

= I+D i= that the exponential

; Dk
expiD) = & —
k!
n=0

af a deriwvation

ig alwavs an auvtomorphism (when it makes sense
for example, if D is nilpotent sc the sum is actually finite,

and the sharagteristic 18 zera 3D we

gan diwvids by %l). Thus
saving T = I+D0 is saving T = ecxp{D} mod higher Lerms, so T
ie "generatad"

in 4 suitabhle ssnse by D,

2a

"infinitesimal generator”
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Exercises IIT.2

Verify (2.2)-2.5) in detail.

2
1[0 L i5 a Lie alygekra (a linsar algebra where x = 0 and
xiyz) + wign) + z{xy] = € for all x,¥.,z) show the inner

derivations are pracisely all inz —Rx].

Yhe Uz for 3z 2 H{A) are called Commutater derivations

forming a space Conmder(AMS LM{A) . Show this space of cammutatar
derivations is an 1deal in Der(lA). Show ths space of Dz

with 32 = 0 is &lso &n ideal in Der{a). Does the sef of ﬁz

for z gstrictly nuclear L[orm an ideal in Der{aA)?

Tha map It = Ehx- ., is called an agseeiator devivation if

Ileav.l g mia}? and is preper if I[x.,y.] = 0. Show Lhe

spane Assacder(A)C LMIA) of asscciator derivations farms an ideal in
Der(hA), ag does the space of proper associator derivations. If
[x,le.N{A} then Ax _is an associator derivation. Does the colleclic

L)

of all f£finitse sums Eﬁx ¢ where all [xi.yi] are nuclear form an ideal
i F
in Dexr(a)?
Prove (I.3.7] and (I.3.8) using the commutatar and associator
derivabtion formulas twice on ny = miw=] .
5 . ; 2 ! :
We noted Artin's Principle shows [z,x] = xe[z,x]: doess it
show Dz 14 a deriwvaticon?
Joing a scalar cxtonsion axgument and the fact that thae cosfficient
- ; = 2 , : .
af A in [(xt Ay is nyrx ey, shaw that 1if D is a linsar map
: . 2 3 . 2 ] .
satisfving D{x”) = xeDx, D{x" ] = Jxﬁ{x}+x e (x) in all extencians,
then D is a derivation of tha Jordan structure. If 2 i5 ilnjective,
2 2 ; -
ugse zuxy = xo(xoy) =x oy to show D(x" ) = xoD{x) is encugh. Prcvg
Dz and AZ w ack as derivation= on sguares and cubes, =zo are

¥

derivations ©f the Jordan structure.
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I£'D = LA + LD whera E[J‘: r'f.] = 0, show D has
H, o Y. oW i i
S BT J 2
indicator zerc. Conversely, show an inner 5x+ LA ,  wWith
o
indicataor zero has such form iff x is a sum of commutators

. : . : T 1 ;
% [zj,w].] . Show alwavs 3x is a sum of commutators, sao when =g
all inner derivations with indicator zere have such a Fform.

Estabklish the alternate descriptions of the standard D :
*®

o = L ;L + 3 R + B = F - L R
v o o (R /R [z .z, (v, vy] L, R,

+ g, + I +
= A - A fox = i = VoY .

o T {fo nx,? [Lx Ryl HK u}_]}l

+
Aan aperator D = IT[V v 1 = LA is called a Jardan
Sy Ay Byrks

inney depnatien ; show it is a derivation of Lhe Jordan
structure, and is an alternative derivation iffE[xi;Yil iz
nuclaar.

We can alse describe the inner derivations in terms of the

oparators ¥ defined by V (=) = U (v} Show
Hp¥ HEi ¥ X.E
W = L L Ao R = L + E R = 3 W - = L + E - A -
e ¥ E ¥ xy X ¥ x ¥ =¥ Y VR X ¥
Find an expression for va § and use it ftao show every element
it

W of the Lie multiplication algebra has Lthe form

W - L + & + IV - SHhow W is a derivation 1ff z+w+i+y = 0
= W Ki'yi

{for = = Exi}'i, y = Eyixi} and x + ZzZ=w iz nuclear. Concluds

W iz a derivaticon 1ff Tx. v, = =hy, x. M{Rk) .
Xoe¥ = i ‘1 1E L)
Show the Jordan assaciator H; - [wv ;VU] may be expressed as
; ="y
W -V = D + A = D - Z2A ¥ Conclude anew
He ¥ VX XY Xy [x,%] XY
tnat A; ig a derivation of Jordan structure, and that va )
. ¥y
is a Jordan deriwvation iff Efxinyi = 0, in which case
. 1 _ +
BIN o E{Ux v, ¥ g ¥ = A '
1743 it FigmByg 0¥y
Define the |ye multiplication n.lﬂc.hr-n.- LM(A,HM) ol A on a
bimodule M to ke the LM{A) -maodule of linear transformations

of A into M gencrated by all left and right multiplications
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L and R for mE M (the smallest subkspace of EnﬁQ{A,m
containing these multiplications and closed under bracketing

with all Ra and r_ for ag2 - note both A and M are

A-bimedules) . Show

M b = + +
LM(A,M) Ly ¥ Ry (L R,
Indexr{a,M) = Der(d, My LM(A,HM)
Show alsa Inder(a,M) = ner[A,H}r\[LH{Ej}|E for @ = A © M.

These jJustify cur definition aof inner deriwvations into M.
2 2
Show [[x,y]" sxa,b] = [[x,¥] ,a,blx. How would vou prove
2 : 2 ) Z N
[[=,¥]";ax,b] = =x[[x,¥] " ,a,bl? Show [[x,¥] ,x,b] = 0.

Conmpute TH - modulo terms of degree 2 In 2 using Lhe exporession
2

for T 5 in terms of the U's instead of the L's. (ge=

r

Problem St II11.1.1 Ex.5).
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LIT w201 Frocbhblem Set on Asscociator Maps

In acdition to A L L. L we introduce B = L =L 1 ...

Xe¥ Xy X ¥ X, ¥ Xy Y %

Shaow (i) & = R = 0, [ii} & = =} . B
WX X, X X ¥ YeX .,V YR

(iii) A_ _+ B = = [L_,L 1, (1w}
x ¥

L ;E “&
X, x,¥ [x,¢]1" "%,y "x

r ¥

L A = A = P E , R A = I = B L+ (w)
X X ¥ X:¥VX X% X X ¥,y XY x,v X

A B = B -1 = 0O wi b Xiv,z] = {=xlwyvw =]t
N N {vi) (=y}[=x.v vixl[x,v, =zl

[z,y.2){xy) = [([x,v,2]lvlix, [x,¥v]lolx,¥v.,2] = 0.
Cbtain analogous results for o = R —Rva in place of Bx

EthRxB =B By LB = B B L = B -

Show (i) A b}

o

L = h
XY [xy] Tu, ¥ %,y [xy]
and (ii) A% = -R A = -F R
Al (1i1) %,y r}__},]“x‘:{ “x’,:. [%v]
X, ¥ X ¥

show that Lf [x,v] = ¢ then 0 = ?—\R , is & deriwvation wikh D
r

. 7 2 .
Show 20D(=) = @ foxr all =. Conclude [x,v.z] = 0 1if =«

. . 3
commutes with &, and for such x alsa [ ,v.z] 0.

Ozz the operators ﬂx = Le prove the laft fundamenbtal formula.

I

Tf &2 = [x,v] show Vv & = I ¥ = 0 (Vv b = aoh). Show
A X,W Z a
z.ﬁ,.‘-c - .ﬂ.zzr}’ = 0. Linearize #1[{vw) and apply to = to show
E A2 = 0. Zhow A a2 = . Conclude L A 2 = 0.
X,y B pa X, ¥ B , & 22 e
2
Show =z[=2" ,a,b] = [zz,a,bjz =
Prowve the 4th Powecy Theorem: the 4th power of any commutator

.
liss in the nucleus, [x,y] & S(&).
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ILr.z2.2 Froblem Set on the Bruck-Eleinfeld f£f-Function

Llhe [ function on an alternative algebra is the é-lins=ar
mapping
t{x,¥,2,w) = [xv,z,w]l~-[y,z,wlx-y[x,z,w].
This almost measures how far & is from being a deriwvation

Za.W

(if xny were replaced bv vx in the first asscciator); nstead,

il measures how far A iz from being an anti-derivation
r
Dixy) = D(y¥l=+vO x). Tha standard method of preving identitias

in alternative algebkras is by using the propertias af the
f~funcvlivn. We indicate this in the following problems.

We could have mentioned this early in Chapter I, but
we have preferred tao kesep the develepment as free from Zormulas
as possible. Thus we have swept the f-function undar the rug
until now-.
1. BShow that in an alternative algebra f is an alternating

function af its arcuments. {Use only alternativity, and

the agsoviator formula TT.2.7, not our basic identitics).
2. Deduce the bumping formulas and then Moufang's identities.
3. Show Flx,v,z,w} = [x,[yz.wll=-[v,[z,w,x]])+[=z,[weix,¥]]=[w,[x,%.2]]
eguals fix,yv,z,wi-fi(y,2,w,x)+Elz,w,x,v). Using eXercise 1
deduce also F = 3f. Alternately, use the first eguality
to prove exercise 1.
d. From exercise 1 show fi{x,v,z,w) = [[=x/.v] .z, w]l+[[2,w] . .x,v].
5. Deduce the Assogialor Derivation Formula.
6. Show flaw,z,x,y) = zf(w,z,x,v)+[z,%x,v][w,z].
7 Anocther way to show £ i=s alternating would be to show
ftlx,v,2,w) = [xy,z,w]~[ve,w,x]+[zw,x,¥] —[wx,v,2] is just the

alternating sum generated by [xy,z,w].
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IIT.2.3 PFrobklem Set on the Structure Algebra

Just as the structure group corresponds to autobopies,

and is ebtained by tacking on multiplications to the auto-

morphism group, so the structure algebra corresponds to

diffecotapiss, and is obtained by adding on multiplications

to the dariwvaticn algebra.

L,

Fa

A dfFﬂ;a+ap3 or lecal avtetepy of & unital alternative
algebra A is a triple (W,W',W") of linsmar transformatians
fnolL neEcessarily invertible) such that
(%} Wixy) = @' {x)vytxW"(v) {x., v EA),
This is a generalization of the deriwvaticon condition (2.1), so
W is a sort of generalized derivation. Just as autoﬁorphismz
ware & special kind of autoctopy, show derivations ars a special
kind o diffeotopy:
b iz a derivation iff (D,D,D) iz a diffeotopy.-
The diffeotopies form a Lie algebra just as the derivalions do:
show the diffeotopies form a Lie subalgebra of Enc(a) = End(A)
% Eng(a) .
ODesides derivations show we alsc have diffeotopiss determined by
multiplications:
th,Vz,-LZ}, fﬁz,—Rz,vz), {vz,Lz,Rzl are diffeotopies.
Show the three entries in a diffectopy aze relasted by

(WeW"', W") = (W,W-E
™

,,,:-I—I,w1} (w' = w' {1} ,w" = W"{1}}
{Mobice that as a consequence Lf W'l = W'l = ¢ then W is a
derivation]). From this show we can permute a2 diffcotonyv.,
if (W, W', W") is a diffeotopv so are {W',w,w"—vw"} and

(W7 W=Vt W) (w' = W'(l),w" = W"(1}}.



The sgtructure algebra Etzrl(A) consists of all lincar

Lransfcrmaticns W on A for which there exist W',W" as in (*),
i.e. 2l1l W which appear as Lhe first entry of a diffectopy.
(Ehow it doesn't matter which entry W anpears inj . Tn opearator
notation, find the defining conditicns for W to appear as a second
ar third entry (i.e. the defining conditions for W' or W' in
(*)).
Show SLzl (a) is a Lie algebra of linear transformetions on A,
Show this Lie" algebra contains all derivations 0, as well as
all multiplicaticns Lx and Rx, hence the whaole Lie
mul tiplication aleehra {generated by Lhe Lx and in

Strl (A TM(A) + Der [i).

In general SLrl (a) doesn't contaln much more than this;

gdtablish the Propositien. If %Eu then every W in the =2tructure
algebra has the form
W o= Lx+R¥+D
for some x,¥yEA and svme derivatlion L. ‘Thus
Strl (A) = L +E_ +Der {a)

The inner Struetyre alqebra.  is

ITnstrl (A) = Scrl (A)MyLuia) = LM{n) .,
If 1/ ¢ deduce

Instzl (A) = L, +R +Inder (a) (1/3& %) .

Ehow that although the first entry doss not determine sxactly
the rest of the diffeotepy, it does up to tramslations from the
nuclens; if (W, W', W"} is a diffectopy then {W,E&',IT?J":I is another
diffeotopy iff W' = WIHE W= W'-L  for ng N(2). Modulo

this uncertainty, show W + W' and W + W" are automorphisms of
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the structure algebra. Make this precise by forming
Strl (&) /W for W the ideal generated by all Ln and Rn
for ne H(A) .

Show W&=strl (A) iz a derivation i1ff W'(l) = n,

W"'"{l} = -n for nuclear n-.

Frove directly from the definitions that if (W,w',w")
is a diffectopy so is {I~I‘,W‘+Rw,,.
Verify Dx,}' = L[x,y]-R[x,v]-E[Lx'Ry] iz a derivation by
shawing (D

o } is a diffesotopy.

v s I
X, ¥ X% Xy

Do the Ux belony to the structure algebrar?

Show that W& Stzxl (&) iz &2 derivation of Jordan structure

iff W1 = 4.
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2.4 Problem Set: Alternate Proofs using Dual Humbars

2
Tet § = ¢[c] (¢ = Q) ke the zing of dual numbezs
z. We will deriwve the properties of diffectopies from

2 aatotopies, estaklished in Braklem Set IITI.l.2 [hersafcer

denocted 83G) .

b

L

If W is any linear transformation an A, show that I+:=W
ig invaertible on Hq with inverse I-gW. Show that (W,w',®W")
is a diffeotopy of & iff (I4eW.Il+eW', I+eW"™) is an

autotopy of A.

e
Use the "sLandazrada" trick with Y = @E;‘,EEI faor EI = =

{25 L |

= 0, ¢ to show that the closure of autotopies of &

-
under products implies closure of diffeotopies of A under
T.ie hrackets: (W W W), (VY V") diffectopies implies
(wv] ,[wW'v'],[@"v"]} is too.

ilee 8G Ex. 3 to show that if (W, W',W"] 1s & diffectopy then
(W, W', 0"}y = {W.W—RS,W~Lr] for r = W'l, 5 = {K'1.

.

] o
Use SG Ex. & to show that if (W,W',W") and (W, W',W"] arc

diffeoctopie= then W o= W'+Hn, W o= W"—-T.n for ngE N{2) .,
Use 8C Ex. 2 to deduce that (L _,V_,-L ), (R_,-E_,V I, (V_,L ,E_ )
are diffectopies for any x. Conclude as before that if

(W, W', W"} is a diffeotopy so is {W‘,ﬁ,w“+vql an i {w”,ﬁ'—vr,WJ

for r = W'l, = = W"l,

Show Lthat D is a derivation of A 1ff I+=D 1is an avtomorphism

af AFF conclude from 3G Ex. 1 that D is a derivation 1iff

[

(b,D,D) is a diffeatopy.
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Use 5G BEx. 7 to show that if 1/3& % and W& Str (&)

then W = LH+Rv+D far D a derivation.

In the next few excrcises we indicate how certain deri-

vations N can be obtained from automorphism T = I+eb.

Estahlish the following expressions for the inner

derivakbion Dx

(& Slu R ]

x,V a L[Kr:flhn[xl‘y]_

[Lx-Ly]+[Lx,Ryj+[ﬁxruyl

L9 e W5 R 1

¥
Show that, in any group, cod commutes with de 1fF
-1 -1
[[2 7a 7]] = [[cd]l] (group commutator). Show that if

[[ed,de]] = 1 for inwvertihle c,d& 2 then T = [[11 -,-:tdl]-
c

=Lk
[[Lr,RI:1 11 is an auntoworohism of 2.
over ¥ = ¢[e. e ] EFE E FZ = 0, g 8. = g) the clomsnts
1’72 g ! Z BT g e ; =2
. -1 _=1
o= l+C1x, d = 1+czy have [[e,d]] = [[c 2 T]] and
ro= [[u_,u 11[[L R, ")] = T+#cD_ .
a find o 4 el

Use arguments similar Lo Ex. 9 to show that if © and 4

gommute then T = [JU0 ,u. 11, T = [ 2. 11, T = [I ,u_.l]
o4 o ol & d:

are autemeorphiswms; that if ¢ = l+e x, 4 = lte_ vy where x,v

1 2

commute then o,d commute; hence that 12 %,v commute then
v v I H L L d theret 4 i BE3 it
[ ot Y]’ [ax; YJI L o EI [an aerafore alsa [ e Y]]

are derivations.
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