\$6 Malcey's theorem

The Wedderburn Splitting Theorem tells us how A is built up from its radical R and its semisimple part $^{A}/R$. In the semi-direct sum A = B \oplus R the radical part R is unique, and B is determined up to isomorphism. The exact extent to which B is unique is described by

6.1 (Malcav's Theorem) If A is a unital alternative algebra over a field of characteristic ≠ 2,3 whose radical R is solvable and whose semisimple part A/R is separable, then any two Wedderburn splittings of A are conjugate: if A = B₁ ⊕ R = B₂ ⊕ R for subalgebras B₁ then B₁ and B₂ are conjugate under an inner automorphism (which is a product of conjugations).

This will follow from a more general conjugacy result

6.2 (Malcey's General Theorem) If A is a unital alternative algebra over a field of characteristic ≠ 2,3 whose radical R is solvable and whose semisimple part A/R is separable, then for any separable unital subalgebra C and Wedderburn splitting A = B ⊕ R there is an inner automorphism (a product of conjugations) of A taking C to a subalgebra of B.

Proof. As in the Wedderburn Splitting Theorem, we prove this by induction on the index n of the solvable ideal R . If n=0 there is nothing to prove, B=A.

Now assume R has index 1, $D(R) = R^2 = 0$. If \emptyset , ρ are the projections of $A = B \oplus R$ on B, R respectively then any $x \in A$ may be written $x = \beta(x) + \rho(x)$. Since B is a subalgebra and R an ideal with $R^2 = 0$ we have $xy = \{\beta(x) + \rho(x)\}\{\beta(y) + \rho(y)\}$ = $\beta(x)\beta(y) + \beta(x)\rho(y) + \rho(x)\beta(y) = \beta(x)\beta(y) \oplus \{x\rho(y) + \rho(x)y\}$, so (6.3) $\beta(xy) = \beta(x)\beta(y)$, $\rho(xy) = x\rho(y) + \rho(x)y$.

Thus β is a homomorphism $A \rightarrow B$ and p a derivation $A \rightarrow R$.

The trouble is that β is not an <u>automorphism</u> of A. What we seek is a conjugation T on all of A which has the same effect on C that β does,

$$T(x) = g(x)$$
 $(x \in C)$

since then $T(C)=\beta(C)\subset B$ as desired. Offhand it might be hard to discover a T extending β , but if we observe $\beta(x)=x-\rho(x)$ we need only extend $I-\rho$, ie find T satisfying

(5.4)
$$T(x) = x - \rho(x)$$
 $(x \in C)$.

The advantage of this formulation is that we know how to find automorphism T \mathbb{Z} I - D infinitesimally generated by a derivation.

The restriction D of p to C is a derivation C \rightarrow R, which because C is separable must be inner by the Derivation Theorem 4, and since the characteristic \neq 2,3 even intrinsically inner: D = Ad_n + \sum D_{x_i,m_i} for x_i \in C , m_i \in R , and n \in e Re C N(A) for e \in C a strongly associative idempotent. Because D_{x,m} is linear in x and C is spanned by invertible elements (see 0,00) we can assume all x_i are invertible. The inner derivation

D = Ad $_{\rm n}$ + χ D $_{\rm x_i,m_i}$ extends to all of A . By IV.3.35 the conjugation

 $T=T\text{ }T\text{ }T\text{ }x_{i},y_{i} \qquad (y=1-n,\;y_{i}=1-m_{i}x_{i})$ on A has $T_{x}\equiv x$ - Dx modulo terms involving two or more factors from R and therefore belonging to $R^{2}=0$,

$$T(x) = x - D(x) = x - \rho(x) \qquad (x \in C) .$$

By (6.4) this is precisely the T we've been looking for.

Assume we have found conjugations whenever the index is less than n , and suppose R has index n: $D^n(R)=0$. In $\overline{A}=A/D^{n-1}(R)$ we have $\overline{C}=C$ separable and $\overline{A}=\overline{B}\oplus\overline{R}$ where \overline{R} now has index n-1, $D^{n-1}(\overline{R})=\overline{D^{n-1}(R)}=\overline{0}$. By the inductive hypothesis there is a conjugation

 $\overline{z}_i \in \overline{R} \ , \ \overline{z} \in \overline{\operatorname{CRe}} \ \text{for} \ \overline{e} \in \overline{\operatorname{C}} \ \text{strongly} \ \text{associative} \ (\text{rel.} \ \overline{\operatorname{C}}) \ \text{with}$ $\overline{\operatorname{T}(\overline{\operatorname{C}})} \subseteq \overline{\operatorname{B}} \ . \ \text{We can identify} \ \overline{e}, \overline{x_i} \ \text{in} \ \overline{\operatorname{C}} \ \text{with} \ e, x_i \ \text{in} \ \operatorname{C} \ \text{and} \ \text{lift}$ $\overline{z} \in \overline{\operatorname{Re}} \ , \ \overline{z_i} \in \overline{\operatorname{R}} \ \text{to} \ z \in \operatorname{eRe} \ , z_i \in \overline{\operatorname{R}} \ . \ \text{Then} \ z, z_i \ \text{are still nil-potent} \ \text{and} \ z \in \operatorname{eRe} \ \subset \operatorname{eAe} \ \subset \operatorname{N(A)} \ \text{is still nuclear by strong}$ associativity of e (rel. C), so

 $T=T_{1-z} \text{ } TT_{X_1}, 1-z_1$ is a conjugation on A which induces \overline{T} on \overline{C} . In particular, $\overline{T(C)}=\overline{T(\overline{C})}\subset \overline{B}$ implies $C_0=T(C)\subset B+D^{n-1}(R)=A_0$. Now the radical $R_0=D^{n-1}(R)$ of A_0 has index 1, $D(R_0)=D(D^{n-1}(R))=D^n(R)=0$. Therefore we can apply the index 1 case to $C_0\subset B+R_0$ to obtain a conjugation

$$T_o = T_{1-w} \prod T_{\chi_i, 1-w_i}$$

Cy i convertible, W & R I W & FR for f & C strongly

associative) of Λ_{o} with $T_{o}(C_{o}) \subset B$. This extends to a conjugation on A since y_{i} are still invertible in A, $w_{i} \in R$, and $w \in fRf \subset fAf \subset N(A)$ for f strongly associative (rel. C_{o}). The composite $T_{o}T$ is a conjugation on A with $T_{o}T(C) = T_{o}(C_{o}) \subset B$ as desired.

This completes the induction, 📓 🔣

Malcev's Theorem can be thought of as the uniqueness theorem corresponding to the Wedderburn Splitting Theorem.

6.5 Corollary. Let A be a finite-dimensional alternative algebra over a field of characteristic ≠ 2,3 with A/R separable. Then any separable subalgebra C of A is contained in a Wedderburn factor of A, C ⊆ B for A = B ⊕ R.

Proof. If $A = \tilde{B} \oplus R$ there is an automorphism T of A with $T(C) \subset \tilde{B}$, is $C \subset T^{-1}(\tilde{B}) = B$ where $A = T^{-1}(A) = T^{-1}(\tilde{B}) \oplus T^{-1}(R) = B \oplus R$.

6.6 Remark. In characteristic 0 , if C is a semisimple subalgebra of $A = B \oplus R$ such that every derivation $C \to M$ is intrinsically inner, then C is conjugate to a subalgebra of B under an automorphism $T = H \exp(D_{\hat{L}})$ for $D_{\hat{L}}$ nilpotent derivations of A . Indeed, in the proof once we know $C \to R$ is inner we can by

hypothesis lift it to a derivation D of A , which is covered by the automorphism $\exp(D) = \sum p^k/k!$ (D is nilpotent and the characteristic is 0 !). Thus in characteristic 0 we can avoid the Infinitesimal Conjugation Lemma and use exponentials of derivations.

Exercises

- Show that Malcey's General Theorem follows if there exist conjugations moving C closer and closer to B , ie, if there exist $T^{(k)}$ with $T^{(k)}$ (C) \square B + $D^k(R)$.
- 2. Reduce the inductive construction of the successive approximations T(k) to the <u>femma</u>: if D is a separable subalgebra of an algebra A = B * S (B separable subalgebra, S a nil ideal) over a field of characteristic ≠ 2,3 then there is a conjugate T(D) lying inside B * D(S).
- 3. Reduce the finding of T in #2 to finding T with T(x) ≡ x σ(x) mod D(S) for x ∈ S (σ : A → S the projection on S). Show there is an intrinsically inner derivation D of A with D(x) ≡ σ(x) mod D(S) for x ∈ D. Show there is a conjugation T of A with T(x) ≡ x σ(x) as desired.