35 Splitting theorems

In this section we investigate how a general alternative algebra is built up out of its radical Rad(A) and its semisimple part A/Rad A. We hope to show that A is a semidirect product of its semisimple and radical parts, A = B @ Rad A where B is a subalgebra (necessarily isomorphic under the canonical projection to A/Rad A).

We will need to make an assumption on each of the two pieces. Concerning the radical we will need to assume Rad A is solvable, which is weaker than assuming A is Artinian (by VI.0.0 an artinian algebra always has solvable radical). For the semisimple part we will have to make a stronger assumption than being artinian namely that φ is a field and A/Rad A is separable over φ . As in the associative case, the difficulty in lifting an $M_{n}(\Delta)$ or $\mathfrak{C}(\Delta)$ is not in lifting the matrix units, but rather in lifting A . Separability over a field φ allows us to make a scalar extension which reduces us to the case when φ is algebraically closed; but then the only choice for Δ is φ itself, which lifts automatically. Thus by means of scalar extensions we can avoid explicitly trying to lift Δ .

5.1 (Wedderburn Splitting Theorem) If A is an alternative algebra over a field & whose radical R is solvable and whose semisimple part A/R is separable, then A is a semidirect product of its radical and its semisimple part: we have a Wedderburn splitting

$A = B \oplus R = A/R \oplus R$

for some separable subalgebra B = A/R.

Proof. The easy case is when \$\phi\$ is algebraically closed. Then by 2.3 $\tilde{A} = {}^{A}/R$ is a direct sum $\tilde{A}_{1} \oplus \cdots \oplus \tilde{A}_{r}$ of simple algebras which are either associative matrix algebras $M_n(\Phi)$ or split Cayley algebras $\mathbb{C}(\emptyset)$. By Idempotent Lifting VII. 7.2, since R is a nil ideal the units $\overline{\mathbf{e}_i}$ of $\overline{\lambda_i}$ can be lifted to orthogonal idempotents $e_i \in A$; applying the Matrix Algebra Lifting Theorem VII.7.4 or the Cayley Algebra Lifting Theorem VII.7.6 to e_i Ae_i (with $e_i Ae_i / e_i Ae_i \cap R = \overline{e_i} \overline{A} \overline{e_i}$) we can lift the matrix or Cayley algebra $\overline{\Lambda_{f i}}=\overline{e_{f i}}$ \overline{A} $\overline{e_{f i}}$.back to a subalgebra $\mathbf{B}_{\underline{i}} \subset \mathbf{e}_{\underline{i}} \mathbf{A} \mathbf{e}_{\underline{i}}$ such that the restriction of the projection e_i $Ae_i \xrightarrow{i} \overline{a_i}$ \overline{A} $\overline{e_i}$ to B_i is an isomorphism $B_i \to \overline{A_i}$. Then $\mathbf{B} = \mathbf{B}_1 \quad \mathbf{H} \cdot \mathbf{m} \cdot \mathbf{B}_r$ is a subalgebra (by the automatic orthogonality of the B_i , $B_i B_j \subset (e_i A e_i) (e_j A e_j) = A_{ii} A_{jj} = 0$ for $i \neq j$) such that the restriction of the projection A $\stackrel{\sim}{\longrightarrow}$ $\bar{\text{A}}$ to B is an isomorphism $B = \bigoplus B_{\underline{i}} \rightarrow \bigoplus \overline{A_{\underline{i}}} = \overline{A}$. Thus $A = B \oplus \ker \pi = B \oplus R$ and we have our Wedderburn splitting.

So far R needed only to be nil. When we turn to the case of a non-algebraically-closed Φ we will assume R is solvable and prove the existence of a splitting by induction on the index of R. The case of index 0 is trivial: if $R = D^O(R) = 0$ we may take B = A. The hard part is the case of index 1,

 $R^2 = D^1(R) = 0 \text{ . Suppose we have established the result for index 1 and all indices less than n . To establish the case of index n, <math display="block">D^n(R) = 0 \text{ , we first use our inductive hypothesis}$ to split $A = A/D^{n-1}(R) = 0 \text{ , we first use our inductive hypothesis}$ to split $A = A/D^{n-1}(R) = 0 \text{ . since } A/R = (A/D^{n-1}(R))/(R/D^{n-1}(R))$ $A/R \text{ is separable and } R \text{ solvable of index } n-1, D^{n-1}(R)$ $= D^{n-1}(R) = 0 \text{ , we have a splitting } A = B \oplus R \text{ . Let } C = R^{-1}(B)$ be the preimage of $B \text{ in } A \text{ . Then } C \text{ is a subalgebra with radical } C \cap R = D^{n-1}(R) \text{ of index 1: certainly } D(D^{n-1}(R)) = D^n(R) = 0 \text{ , where } B \cap R = 0 \text{ implies } C \cap R = D^{n-1}(R) \text{ by taking preimages, and this must be precisely the radical of C since it is solvable yet the quotient <math display="block">C/D^{n-1}(R) = B = A/R \text{ is separable. By the index 1 case we have a splitting <math display="block">C = B \oplus D^{n-1}(R) \text{ for } B = B = A/R \text{ .}$ Taking preimages of $A = B + R \text{ gives } A = C + R \text{ , hence } A = B + D^{n-1}(R) + R = B + R \text{ , so by separability of } B \text{ we have } B \cap R = 0 \text{ and } A = B \oplus R \text{ is a Wedderburn splitting for } A.$

Thus everything is routine after we get by the hurdle of index 1. Assume now R has index 1, $R^2=0$. We first note that if Ω is the algebraic closure of Φ then $A_\Omega/R_\Omega \stackrel{>}{=} (A/R)_\Omega$ is still finite-dimensional semisimple if A/R is separable (since separability coincides with strict semisimplicity by VIII.0.00), where R_Ω is the radical of A_Ω since it is still trivial $(R_\Omega^2=0)$ yet has semisimple quotient. Therefore by the algebraically closed case A_Ω has a splitting $A_\Omega=C_\Omega\oplus R_\Omega$.Under the isomorphism $C_\Omega\longrightarrow A_\Omega/R_\Omega=(A/R)_\Omega$ let C be the subalgebra of C_Ω mapping onto the subalgebra A/R of $(A/R)_\Omega$, $C\longrightarrow A/R$. If C were contained

in A we'd be done, but unfortunately all we know is that it is contained in $^{\rm A}_{\Omega}$. Nevertheless we can make use of it to obtain a splitting for A . Choose a bases $[\omega_{\dot{\bf i}}]$ for Ω/Φ with $\omega_{\dot{\bf o}}=1$. This determines a decomposition ${\bf A}_{\Omega}=\Lambda\otimes_{\bar{\Phi}}(\Phi\Phi\omega_{\dot{\bf i}})=\Phi({\bf A}\otimes_{\bar{\Phi}}\Phi\omega_{\dot{\bf i}})$ = Φ Aw and R_{\Omega}=\Phi R \warphi_{\bar{\omega}} . Let \Pi_{\bar{\omega}} be the projection of A_\Omega on Aw a determined by this decomposition, and let B = \Pi_{\omega}(C) . Since \Pi_{\omega} is not a homomorphism of algebras it is not at first clear B is a subalgebra. However, the Aw are invariant under multiplication by A and \Pi_{\omega} is at least a homomorphism of A-bimodules,}

 $(5.2) \quad \pi_{_{\mathbf{O}}}(\mathtt{ax}) = \mathtt{a}\pi_{_{\mathbf{O}}}(\mathtt{x}), \ \pi_{_{\mathbf{O}}}(\mathtt{xa}) = \pi_{_{\mathbf{O}}}(\mathtt{x})\mathtt{a} \quad (\mathtt{a} \in \mathtt{A}, \ \mathtt{x} \in \mathtt{A}_{\Omega}) \ .$ To prove $\pi_{_{\mathbf{O}}}$ is a homomorphism of algebras when restricted to C , consider any two elements c,c' = C . Under the isomorphism C $\div \mathtt{A}/\mathtt{R} = \overline{\mathtt{A}}$ let c $\div \overline{\mathtt{a}}$, c' $\div \overline{\mathtt{a}}^{\mathsf{T}}$; then c $\in \mathtt{A}_{\Omega}$ and a $\in \mathtt{A}$ project to the same element, so they differ by an element of the kernel \mathtt{R}_{Ω} , and c = a + r, c' = a' + r' for r,r' $\in \mathtt{R}_{\Omega}$. Thus

$$\begin{split} \pi_{o}(cc') &= \pi_{o}(\{a+r\}\{a'+r'\}) \\ &= \pi_{o}(aa'+ar'+ra') & (R_{\Omega}^{2} = 0) \\ &= aa' + a\pi_{o}(r') + \pi_{o}(r)a' & (by (5.2)) \\ &= \{a + \pi_{o}(r)\}\{a' + \pi_{o}(r')\} & (\pi_{o}(R_{\Omega}) = R, R^{2} = 0) \\ &= \pi_{o}(a+r) \pi_{o}(a'+r') & (\pi_{o}(a) = \pi_{o}(a\omega_{o}) = a) \\ &= \pi_{o}(c) \pi_{o}(c') & \end{split}$$

and $\pi_{_{\rm O}}:$ C $^+$ B is an epiomorphism of algebras. It is an isomorphism because $\pi_{_{\rm O}}(c)=\pi_{_{\rm O}}(a+r)=a+\pi_{_{\rm O}}(r)=0$ would imply $a=-\pi_{_{\rm O}}(r)\in \mathbb{R}$, $c=a+r\in \mathbb{R}+\mathbb{R}_{_{\rm O}}=\mathbb{R}_{_{\rm O}}$, and $C\cap \mathbb{R}_{_{\rm O}}\subset C_{_{\rm O}}\cap \mathbb{R}_{_{\rm O}}=0$.

Therefore B is a subalgebra of A isomorphic to A/R, B = C = A/R, and we have a Wedderburn splitting for the index 1 case.

5.3 (Corollary) If A is a finite-dimensional alternative algebra over a perfect field (e.g. a finite field or a field of characteristic zero) then A has a Wedderburn splitting A = A/R \oplus R . We have already seen in the associative case that if A/R is not separable there need not be a Wedderburn splitting.

Problem Set: Alternate Approach

A ϕ -algebra S is <u>liftable</u> if it is a semidirect summand every time it is a quotient by a solvable ideal, ie. if S = A/R for R solvable then $A = B \oplus R$ for SOMO Subalgebra B of A (automatically isomorphic to S). In terms of short exact sequeness, every short exact sequence

$$0 \longrightarrow R \xrightarrow{\underline{i}} A \xrightarrow{\overline{n}} S \longrightarrow 0$$

for solvable R splits: there is a homomorphism $S \xrightarrow{\sigma} A$ with $\pi \circ \sigma = 1_S$ (σ "lifts" S into A).

1. Show an associative matrix algebra $M_n(\delta)$ or a Cayley matrix algebra $C(\delta)$ is liftable.

It is essential here that Φ is the ring of scalars; in general $M_n(\Omega)$ or $C(\Omega)$ are not liftable in the category of Φ -algebras.

- 2. Show a direct sum $\boxplus_i S_i$ of liftable unital alternative algebras is liftable. What about direct product? Conversely, show that if S_1 \boxplus S_2 is liftable so is each S_i .
- Conclude that over an algebraically closed field Φ any finitedimensional semisimple alternative algebra S is liftable.
- 4. If S is unital alternative, show S is liftable iff all $0 \to R \to A \to S \to 0$ split when A is unital.
- 5. If S is a nonassociative algebra over a field Φ such that some extension S_Ω is liftable as an $\Omega\text{-algebra}$ (in a category of

algebras where R^2 is an ideal whenever R is), show S itself is liftable as Φ -algebra. [Hint: given $A \longrightarrow S$ with solvable kernel, construct a lift $S \xrightarrow{q} A$ by successive approximations, finding linear liftings $S \longrightarrow A$ with $\pi \circ q_n = 1_S$ and $\sigma_n(xy) \ni \sigma_n(x)\sigma_n(y) \mod D^n(R)$.]

- 5. Alternately, prove #5 using elements instead of lifts. If $\{s_i\}$ is a bases for S/\bar{p} with $s_is_j=\Sigma$ γ_{ijk} k show there is a subalgebra of A isomorphic to S iff there are elements $\{x_i\}$ in A with $x_ix_j=\Sigma$ γ_{ijk} x_k . Construct these by successive approximations, ie. finding $\{x_i^{(n)}\}$ with $x_i^{(n)}x_j^{(n)}\equiv\Sigma$ γ_{ijk} $x_k^{(n)}$ mod $D^n(R)$.
- 7. Conclude that any separable alternative algebra S over a field of is liftable, and deduce the Wedderburn Splitting Theorem.

Problem Set on the Liberal

Let A be a finite-dimensional alternative algebra over a field Φ . If A/R is separable we know A has a Wedderburn decomposition $A = A/R \oplus R$. We want to obtain some sort of decomposition even if A/R is not separable.

- 1. Show that if L is any ideal of A such that A/L is separable (L need not be solvable!) then there is a subalgebra C of A such that A is the semi-direct product $A = C \oplus B$.
- 2. The <u>liberal</u> of A is the minimal ideal L(A) such that A/L is separable. Show the liberal contains the radical, L ⊃ R; if A → A/R is the projection on the semisimple algebra A/R show L is the inverse image of the inseparable summands. Conclude the liberal of a semisimple algebra is just the direct sum of all inseparable summands, that L(A) = R iff A/R is separable, L(A) = 0 iff A is separable and L(A) = R(A) when Φ is algebraically closed. Conclude we always have a decomposition A = C ⊕ L(A) for separable C.
- 3. Show $L(A) \supset A \bigcap R(A_{\Omega})$ if Ω is the algebraic closure of Φ . Show $A/A \bigcap R(A_{\Omega})$ is isomorphic to a Φ -subalgebra \overline{B} of $\overline{A} = {}^{A}\!\Omega/R(A_{\Omega})$ with $\Omega\overline{B} = \overline{A}$; conclude $A/A \bigcap R(A_{\Omega})$ is semisimple. Give examples where $L(A) > A \bigcap R(A_{\Omega})$ and $L(A)_{\Omega} > L(A_{\Omega})$.