§7. Lifting theorems

If N is a nil ideal we can lift families of orthogonal (resp. connected, interconnected, Cayley-connected) idempotents, families of associative matrix units, and families of Cayley matrix units from the algebra A/N into A. From this we deduce that an associative matrix algebra or Cayley matrix algebra can be lifted from A/N to A.

Because they are essentially exercises in Peirce relations, we will include at this point a series of lifting theorems which are the core of the Wedderburn Splitting Theorem discussed in Chapter VIII.

A structure or collection of elements in A/B can be lifted. to A if there is a preimage in A having the same form. We say an ideal B in an alternative algebra A is a lifting ideal if idempotents mod B can be lifted: whenever $\tilde{e} \in A = A/B$ is an idempotent we can lift it back to an idempotent $e \in A$ with $\pi(e) = \tilde{e}(A \to A)$ the canonical projection). If we can lift \tilde{e} to an idempotent e which is a polynomial e = p(x) for any preimage e of \tilde{e} , we say B is a Strong lifting ideal. The important example is

7.1 (Idempotent Lifting Theorem) Any nil ideal N in A is a strong lifting ideal: if $\pi(x) = \bar{c}$ is an idempotent in

 $\bar{A} = A/N$ there is an idempotent e = p(x) in Λ with $\pi(e) = \bar{e}$.

Proof. $B = \frac{\pi}{2}[x]$ is an associative subalgebra of A, $M = B \cap N$ a nil ideal in B, and $\overline{B} = B/M = \pi(B)$ contains \overline{e} . By the associative Lifting Theorem (see Ex. 1, 2) there is a polynomials p(x) = e with zero constant term which is an idempotent covering \overline{e} , $\pi(e) = \overline{e}$.

Once we know how to lift one idempotent we can lift a whole string of them.

7.2 (Orthogonal Idempotent Lifting Theorem) If N is a strong lifting ideal then any countable family c

1, c

2, ... of orthogonal idempotents in A = A/N may be lifted to an orthogonal idempotents in A. If N is quasi-invertible, when the c

1 are connected (resp. interconnected or Cayley-connected) in A then so are the c

1 in A, indeed strongly connecting (resp. Cayley-connecting) elements in A can be lifted to strongly connecting (resp. Cayley-connecting) elements in A.

Proof. We proceed by induction. The induction gets off the ground with the lifting of \tilde{e}_1 to e_1 , due to the hypothesis N is a lifting ideal. Suppose we have lifted $\tilde{e}_1, \cdots, \tilde{e}_n$ to e_1, \cdots, e_n in A and set $e = e_1 + \cdots + e_n$. Since $\tilde{e}_{n+1} = e_n$

 $(1-\bar{e})\,\bar{e}_{n+1}\,(1-\bar{e})\,\, \in \,\, (\bar{1}-\bar{e})\,\bar{A}(\bar{1}-\bar{e})\,\, =\,\, (\bar{1}-\bar{e})\,\bar{A}(1-\bar{e})\,\, \text{ we can find a premissage x for \bar{e}_{n+1} lying in $A_0(e)=(1-e)\,A(1-e)$. By the strong lifting hypothesis, there is a polynomial $e_{n+1}=p(x)$ without constant term which is an idempotent covering \bar{e}_{n+1}. Since $x\in A_{00}$ and the latter is a subalgebra, $e_{n+1}=p(x)$ also belongs to A_{00}. Since all e_i belong to $A_{11}=eAe$, Peirce orthogonality automatically gives orthogonality $e_{i}e_{n+1}=e_{n+1}e_i=0\ (1\leq i\leq n)$. Thus e_1,\cdots,e_{n+1} is an orthogonal family, and the induction is complete.$

Now assume N is q.i. If \bar{e}_i , \bar{e}_j are interconnected, so \bar{e}_i lies in $\overline{A_{ij}}$ $\overline{A_{ji}} = \overline{A_{ij}A_{ji}}$, then there is a preimage f_{ii} of \bar{e}_i in $A_{ij}A_{ji}$. Since e_i is also a preimage of \bar{e}_i , the difference $z_{ii} = e_i - f_{ii}$ has $\bar{z}_{ii} = 0$ and therefore lies in N: $z_{ii} \in A_{ii} \cap N$. Then $f_{ii} = e_i - z_{ii} = e_i(1-z_{ii}) = (1-z_{ii})e_i$ is invertible in A_{ii} with inverse $f_{ii}^{-1} = e_i(1-z_{ii})^{-1} = (1-z_{ii})^{-1}e_i$ (remember $z_{ii} \in N$ is q.i.). Since $A_{ij}A_{ji}$ is an ideal in A_{ii} (by 4.1) containing the invertible element f_{ii} , it contains all of A_{ii} , and consequently e_i and e_i are interconnected.

If \vec{e}_i , \vec{e}_j are (strongly) connected, $\vec{e}_{ij}\vec{e}_{ji} = \vec{e}_i$ for $\vec{e}_{ij} \in \vec{A}_{ij}$, $\vec{e}_{ji} \in \vec{A}_{ji}$, we can choose preimages $f_{ij} \in A_{ij}$, $f_{ji} \in A_{ji}$ of \vec{e}_{ij} , \vec{e}_{ji} . Then $f_{ii} = f_{ij}f_{ji}$ has $\pi(f_{ii}) = \vec{e}_{ij}\vec{e}_{ji} = \vec{e}_i$, $f_{ii} = e_i - z_{ii}$ for $z_{ii} \in A_{ii} \cap N$, so f_{ii} is invertible in A_{ii} if N is q,i, and e_i , e_j are connected in A. Once e_i , e_j are connected by f_{ij} , f_{ji} we know they are strongly connected by

 $e_{ij} = f_{ii}^{-1} f_{ij}$, $e_{ji} = f_{ji}$ by the Strong Connection Lemma. Here the connecting elements e_{ij} cover the \bar{e}_{ij} since $\pi(e_{ji}) = \pi(f_{ji})$ $= \bar{e}_{ji}$, $\pi(e_{ij}) = \pi(f_{ii})^{-1}\pi(f_{ij}) = \bar{e}_{i}^{-1} \bar{e}_{ij} = \bar{e}_{ij}$.

Finally, suppose \bar{e}_1 , \bar{e}_2 are (strongly) Cayley-connected: $\bar{e}_{12}^{(1)}(\bar{e}_{12}^{(2)}\bar{e}_{12}^{(3)}) = \bar{e}_1$, $(\bar{e}_{12}^{(2)}\bar{e}_{12}^{(3)})\bar{e}_{12}^{(1)} = \bar{e}_2$ for $\bar{e}_{12}^{(k)} \in \bar{A}_{12}$. Choose preimages $f_{12}^{(k)} \in A_{12}$ of the $\bar{e}_{12}^{(k)}$. Note $\bar{f}_{12}^{(1)}\{f_{12}^{(2)}f_{12}^{(3)}\} = f_{11}$ covers $\bar{e}_{12}^{(1)}\{\bar{e}_{12}^{(2)}\bar{e}_{12}^{(3)}\} = \bar{e}_1$ and $\{f_{12}^{(2)}f_{12}^{(3)}\} f_{12}^{(1)} = f_{22}$ covers $\{\bar{e}_{12}^{(2)}\bar{e}_{12}^{(3)}\}\bar{e}_{12}^{(1)} = \bar{e}_2$; once more $f_{11} = e_1 - z_{11}$ where z_{11} lies in N \cap A_{11} . Since N is q.i., the elements $f_{11} = e_1 - z_{11}$ are again invertible in A_{11} . By the strong Cayley-connection Lemma 6.2 the elements $e_{12}^{(1)} = f_{11}^{-1}f_{12}^{(1)}$, $e_{12}^{(2)} = f_{12}^{(2)}$, $e_{12}^{(3)} = f_{12}^{(3)}$ strongly Cayley-connect e_1 and e_2 . Here $\pi(e_{12}^{(k)}) = \pi(f_{12}^{(k)}) = e_{12}^{(k)}$ for k = 2, 3, and $\pi(e_{12}^{(1)}) = \pi(f_{11})^{-1}\pi(f_{12}^{(1)}) = \bar{e}_1^{-1}\bar{e}_1^{(1)} = \bar{e}_1^{(1)}$, so the $e_{12}^{(k)}$ cover the $\bar{e}_{12}^{(k)}$.

The theorem is actually true when N is only weak lifting (see Problem Set).

7.3 (Matrix Units Lifting Theorem) If N is a q.i. strong lifting ideal in an alternative algebra A, then any family of associative matrix units for A/N can be lifted to one for A. If A is unital and the original matrix units in A/N are supplementary, so automatically are those in A.

Proof. If $\{\bar{e}_{ij}\}$ are matrix units for $\bar{\lambda}$ then \bar{e}_{1i} , \bar{e}_{i1} strongly connect \bar{e}_{11} to \bar{e}_{ii} , so by Orthogonal Idempotent Lifting 7.2 we can lift to orthogonal idempotents e_{1i} , e_{ii} in $\bar{\lambda}$ strongly connected by elements e_{1i} , e_{i1} in \bar{A}_{1i} , \bar{A}_{i1} . By the Corollary 5.3 to the Transitivity Lemma, the elements e_{ij} = $e_{i1}e_{1j}$, e_{ji} = $e_{j1}e_{1i}$ strongly connect e_{ii} to e_{jj} and satisfy $e_{ij}e_{jk}$ = e_{ik} for i, j, $k \neq (since\ e_{ij}e_{jk} = (e_{i1}e_{1j})e_{jk} = e_{i1}(e_{1j}e_{jk})$ = $e_{i1}\{e_{1j}e_{j1}\}e_{ik}\}$ = $e_{i1}e_{1k}$ = e_{ik} , where associativity follows from the fact that three e_{mn} , e_{pq} , e_{rs} either belong to distinct Peirce spaces or else two of them coincide). That is, the $\{e_{ij}\}$ form a family of matrix units, which cover the original \bar{e}_{ij} since $\pi(e_{ij})$ = $\pi(e_{i1}e_{1j})$ = $\pi(e_{i1})\pi(e_{1j})$ = $\pi(e_{1i})\pi(e_{1j})$ = $\pi(e_{1i})\pi(e_{1i})$ = $\pi(e_{1i})\pi(e_{1i})$

If A is unital and $\overline{l} = \Sigma$ $\overline{e_{ii}}$, then $e = 1 - \Sigma$ e_{ii} has $\overline{e} = 0$ and consequently $e \in N$. Yet e is idempotent since Σ e_{ii} is by orthogonality of the e_{ii} . The only idempotent which is q.i. is e = 0, so $1 = \Sigma$ e_{ii} .

We could have lifted the $\bar{e}_{i,j}$ directly to elements $e_{i,j}$ strongly connecting $e_{i,j}$, but unless we are careful there is no reason why $e_{i,j}e_{j,k} = e_{i,k}$ for $i,j,k \neq i$.

Having a family of associative matrix units $\{e_{ij}\}$ is the same as having a matrix subalgebra $\Sigma \Phi e_{ij} \stackrel{?}{=} M_n(\Phi)$, so

We can do the same thing for Cayley matrix units.

7.5 (Cayley Units Lifting Theorem) If N is a q.i. lifting ideal in an alternative algebra A, then any family of Cayley units for A/N can be lifted to one for A. If A is unital and the original family is supplementary in A/N, so automatically is the family in A.

Proof. Suppose \bar{e}_{ii} , $\bar{e}_{ij}^{(k)}$ (1 \leq i,j \leq 2, 1 \leq k \leq 3) are Cayley units in $\bar{\Lambda}$. Then by the Orthogonal Idempotent Lifting Theorem 7.2 the strongly Cayley-connecting elements $\bar{c}_{12}^{(1)}$, $\bar{e}_{12}^{(2)}$, $\bar{e}_{12}^{(3)}$ can be lifted to strongly Cayley-connecting elements $e_{12}^{(1)}$, $e_{12}^{(2)}$, $e_{12}^{(3)}$. By the Cayley Units Construction 6.3 the elements $e_{12}^{(1)}$, $e_{12}^{(2)}$, $e_{12}^{(3)}$ and $e_{21}^{(1)} = e_{12}^{(2)}e_{12}^{(3)}$, $e_{21}^{(2)} = e_{12}^{(3)}e_{12}^{(1)}$, $e_{12}^{(3)} = e_{12}^{(1)}e_{12}^{(1)}$ form a set of Cayley matrix units for A. Since the $e_{12}^{(k)}$ cover $\bar{e}_{12}^{(k)}$ we see $\pi(e_{21}^{(k)}) = \pi(e_{12}^{(k+1)})\pi(e_{12}^{(k+2)}) = \bar{e}_{12}^{(k+1)}e_{12}^{(k+2)} = \bar{e}_{21}^{(k)}$ and all $e_{1j}^{(k)}$ cover $\bar{e}_{1j}^{(k)}$.

The supplementary case follows as in 7.3.

Since having a family of Cayley units $\{e_{ij}^{(k)}\}$ is the same as having a subalgebra $\mathbb{E}^{(k)} \stackrel{\circ}{=} \mathbb{C}^{(k)}$,

7.6 (Cayley Algebra Lifting Theorem). If N is a nil ideal in an alternative algebra A then any split Cayley subalgebra $\tilde{C} \stackrel{\sim}{=} \mathbb{C}(\psi)$ of $\tilde{A} = A/N$ can be lifted to a split Cayley subalgebra $C \stackrel{\sim}{=} \mathbb{C}(\psi)$ of A.

VI. 7 Exercises

7.1 Show that if $x^2 - x = z$ is nilpotent then there is an idempotent $e = x + \sum_{i=1}^{n} \alpha_i z^i + x \sum_{i=1}^{n} \beta_i z^i$ where α_i , β_i are defined recursively by

$$\alpha_{k} = 2\beta_{k-1} + \Sigma_{i+j=k-1} \beta_{i}\beta_{j} + \Sigma_{i+j=k} \alpha_{i}\alpha_{j}$$

$$\beta_{k} = -2\alpha_{k} - \Sigma_{i+j=k} (\alpha_{i}\beta_{j} + \alpha_{j}\beta_{i} + \beta_{i}\beta_{j}).$$

- 7.2 Alternately, if $x^2 x = z$ is nilpotent show inductively there are x_n with $x_n^2 x_n \in z^n \phi[z]$ and $x_n \in x + z \phi[z]$, so if $z \in \mathbb{N}$ has $z^m = 0$ then $e = x_m$ is idempotent with $\bar{e} = \bar{x}$.
- 7.3 Show that any ideal N which is a direct summand of A is a lifting ideal, but give an example to see it need not be strongly lifting. Show N is a lifting ideal if it is merely a semidirect summand of A.

VI. 7.1 Problem Set on Lifting Ideals

- If N is a strong lifting ideal in A and e is an idempotent, show eNe is a strong lifting ideal in eAe.
- If N is a q.i. lifting ideal in an associative algebra A, show eNe is a lifting ideal in eAe. (It is important that N be q.i.).
- If N is a q.i. lifting ideal in an alternative algebra A, show eNe is a lifting ideal in eAe.
- 4. Prove the Orthogonal Lifting Theorem. If N is a q.i. lifting ideal then any countable family e

 orthogonal idempotents in A = A/N may be lifted to an orthogonal family e

 orthogonal family e