EZ. Teircs ceconpositions

We can dccompose an algebra relative to a family of ertho-
genal idempotents [ei} into = direct sum of Peirce subspaces
eihaj. An important special vase of such a Peirce decomposi-
tien is the Peirce decomposition relative o a single ldempo-
tant . Tf & is a sum of orthogonal idempotents Gi. the Peircsa

spaces relative to o can be cxpressed in terms of those rela-

tive to the e by the Collsction Farmula.

As with asscciative alyebras, a decomposition of Lhe unit
of an allernativs algebra into supplemsntary orthogonzl idem-
potents lcads to a decomsesition of ths aloebra into Pelirce
spaces. The way these spaces multiply (trealed in the next

seclion) gives wvery specific information about the structure

of an alternative algebkra.
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fe = 0 of two idempotents implies orthogonalily of the

eperators L_, L because L Lo + L.L = L o . ~ 0 (by linearized
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left alternativity) and LaLfLe Lefe {left Moufang), so aertho

gonality is a conseguence of the general



2,1 [(Jordan Criterion for Orthogonality) If E, F are idem-

potent cperators with EF + FPE = EFE = 0, then E and F
are orthogonal.
Proof. EF = EEF = R[EF + FE) - EFE = 0, hence FE =

(El' + FE) - EF = (0. i

The convarse holds oven in non-unital algebkras: if Lp’ L
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orthogoenal so are e, I since ef = ¢ (£} = 0 and

fe = IJ.ETI'.'J {C} = 0.

Sincc L1 =1 in the unital case, supplencntary orthogonal

idempotents 1 = re; give risc to supplementary orthogonal pro-
jections T = ELe  Where we have just seen the L are orlho-
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gonzal idempotenkt operators. We have exactly the same situation

for the right multiplications RF : L = FR_ is a decomposition

i i

of I inte supplemsrntary orthogonal projections.  Then

I = (& LF TE R& Yy = & Le R_ . If we knew Lhe LE and Rc
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commutoed then the E,. = T.. R = R L would be supplementary
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orthogonal projections: El* = [LE Re }{Lc B .1 = Le Re =
d i = s [ i ™
L. B = F.. and E..F L. L. B K = 0 if i £ % or j # L.
= Lj iy 1] k& e e 25 =
In the associalive case LR, = R L for any %, ¥ {(Lhis is just
% F I

a restatoment of the associabtive law): in Lthe allkernative casce

LYRY = E“hx doesn't hold for all x,y, but it does in the par-

Licular gases when x = vy = 2 (by Slexibhility) or when x = &,



v = f are orthogonal (by [Rth]z = [e,2,f] = - [2,;8/2] =

{Lch = Lef}z = 0 from ocrthogonality <f = LeLf = 0},

My tine the identity operator I = IF_decomposes lnto
supplcementary orthogonal projections Em we get a decomposition

A = 8 A, of the spacc on which the operators act into @ direct

sum of subsvaces A = L (&),
- (B o
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2,2 (Unital Peirce Deccnposition) T8 1 =X ey iz 3 decom-
i=1
position of 1 inle supplementary orthogonal idempotents
11
then I =X i, .4z a decomposition of 1 inbko supplcemen-
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tary crthogonal projections Eij = Le Re r Oiving risc to

a (twe-gided | unitel Pelrco t_ir:.cc;npadﬂii'iun
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of the alternative algebra L into Peiree Epnmﬁali;; whers

Hij = {x & ﬂ|eix = xmj = u, Ekx = HEE =0 for k+# i, L F i}.
T s WL . o= b ®. L e B o .. & A... B
Thus kaLJ Sy 4 Rl]‘ Kljei ﬁ]i x1] for xlj Llj

Thesa resnlts gensralize Lo Lha non=supplementary cass

{in particular, to ths case when A i1s not unital) . Lel &y be

arthegonal idempotents in A.  They remain so in the unital hull

-~
A; the orthogonal sum e = a4 e C. iz also an idempotent
in A and A so ey = 1-e iz an idempotent in A. Further, ¢4 is
orihcgonal to all the original g, f ee, = e, = @0 50



e e, =0=@e.e8 . Thus 1= [(l-e) + & = e, + 2, ++«-++2_ 15 a
0=i 10 ! a 1 1n
decomposition of 1 into supplementary ovthogonal idempotents
~ - n - - -
in A, giving rise to a decomposition I = & RE B- = Eﬂi;
i, 3=0 i % f
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of the identity operator on A; since each Eij is composed of
el

mulliplications, it lecaves the ideal A <] A invariant, and by

restriction we chtain a deccmposiltion I = RE;j of the identity
*u
operator on A lHere the reskbriclion Eii of Eij retains the
form E,. = L, RF in terms of multiplications in A, where
o N |
for i = 0 oxr 7 = 0 the idempotent ey = l-e is a "virtual"
Lt
idempotent: it exists enly in A, nol in the original A, In

turn, the decompositicon of T leads to one ©f A:

2.3 [Peirecs Decomposition) Orthogonal idempobents o

R =

1 n
in an alternative algebra glve rise Lo a {twa—-ﬁdeij Feirce

decompositisn
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where for 1 < i, 4 < n
Ay momehe. = TH€ Ble S %o, = %, &.%|= x&, = D oy k ¥ i, & # 21
i7 T | 1 ] k [

- Y == = - i = = — a -- L~ .-r all .E--.
Biq e, A(l-e) ‘v B H;Hlx X, % xeg 0 for kX # i, & 1
= — — T = i = = 3 =]

Doy = (-edhe, = ix € A|xnj x, xe, = e,x = 0 for & # j, all Ik}
RGD = (i=c)nil-g) = {x € A|ejx = xej = g ‘for all i,3}-



Phivs eoxy: = 0 o Mgy ong pes = 8 o oo ¢ For s €
E N 1]

It is important that you remember these multiplicalion
rules, since in the future we will use them without comment.
The indices ssrve as a mhamonic device: for Hij wilh left index 1
and right index j, on the lefL it is the idempotenl e, that acts
as the idenlily while all otheor e, acl as =ero, on the right

"+

ey is the identity and all other &, are zZero,

The most important case is thar of a single idempotent

=] = 2.

2.4 [Single Pelirce Degomposilion) If ¢ iz an idempolent in

an alternative algebra A we have a Peirce decomposition

11 "1 0l oo
Far hll = ghs, RID = ghA({l=-e), nﬁl = {l-c}ﬂe, A5 =
(1-2)A(l-e). Here exy; = X;;@ = X i @Xpg = Xqp2 < 0;
exyy T Hypge Hig® < 1 Gy T 0, Hp1® = Fg1- i

On occasion we will be concerned with Peilrce decampositions
relative to several idempotents at once; in tLhis case we donote

the Peirce i, 7 space relative to e by
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to indicate ils dependence on ¢. Also, we will constantly

write % 3 to denote an elemaent of the FPelrce space Aijr

It will also be useful to have an expression for the Feirce
spacces of an idempotent 2 = Eei formed hy collcecting tagethar

several idempotents e -

2.5 (Collection Fermula) If e,,-++,e_are ocrthogonal idem-

l.'

potents then for any sukscet JC {1l,+++,n; the clement

e=e; =L 2. is an idempotent with Peilrce spaces
Jed
h1l[e} = Ei'j 5 i Eij
nlu[e} ) Fi &€ J,L & K Elﬁ
Roats) T K,5 € J k3
Agyle) = i B 2

where % consists of the indesx 0 as well as all indices boelbweoon
1 and n not in J. Ths Pelrce spacss Aij can bo recovered [oom

the Peirce spaces for the individual idempotents e, by
ik



Proof. The projeclion operators for ¢ are Euﬁ = L{ﬂ}Riﬁi
where L{lﬁ =L, = TJ LU ~ L{U} = D™ EK Lﬂk, RE1J = RE =
5 Feyr Broy T Free T by Ra, W8 By = By e Fgp ™
Brxx Bigr Bor = Ixeg Byge Foo T T Bka

If Ji= {ei} then All{ei} = I{i} ﬁij = AL, and ﬂlﬂie )} =

b : .I"-q.| 5_‘ ~' 3 r ; = ¥ w e o %
Lei Bin imillarly ﬂDl{e]) W o that

. " =) = - . ... b .} = A.. whe
ﬁlU{El}ﬁnGl(E]) {E'.E.?J_ ﬂl}} ﬂ [ Kt k:]} Fil:l; wWien
i # J. E§
Bgain, Lhese are nol hard to remember; Lor exemple,
), = 15 ] ; 1 thoss spaces A, sa left
ﬁlﬂ{ej hlﬂ[DJ} iz built up from thoss spaces Hll whose 1o
index i is part of J (e, acts like 1 on EL} and whoso right

index L is not {eJ acks like 0 on DE}.
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FExercisss

If »A = 0 and & is an idempotcnt with ez = 0, show

e SE 3 ; 2 .
» = etx salisfies T 5 L}K But 27 # x. Show converscly
thal any x wilh Li = L“ but xg # x haz the Torm x = o+z
whela L? = 0, o2 = 0,
If 1 = Zei is a decompositicon of 1 into supplementary
orthogonal idempotents €, thenn T = ELE gives rise Lo

' i

the puital left Pelrce decomposivion A=A, ® -0 B A

for A; = e;A = [z & hleix = Xy 8% = 0 for § # 4}. [(This
is usuzlly called the wvight Peirce decomposition, since

in ths assoccialive case at least the A; are right ideals.)
State thé analogous unital right Peirce decompositilon.
State and prove the analogous non—unilbal deocompasitions,
What do these amgunt toy For a single idempotsnt a7

If &, F are orthogonal idempotents, show e+f is again
idempotent. Is the converse true? Generallize to arbitrary
finite sums of orthogonal idempolenbs.

; 1= - A oo . ) . e |
Show ﬁijil o) hjltc] for D £ i, 3 %21 T 1 Cl e =

' i +e 7y el ; = ! +e, 0 : :
find ﬂll{cl 03}, Plﬂ{ellejj, gﬂl{bl+e3}, ﬁﬂﬂlel 63} Prave
wh S5 ; by oy ; el 51 L = 2 =
A; - Aiqle )Y Aypley) in general using A, [x|e x
ﬁkix. Mey = ﬁji w}.
Eclative to o, ,vrr, e show .. = 1l and BE.., + E., = U o
1 I 1L ei by J1 Ei’ej



