80, (oincidence of radicals

Tn this section we want to gee what our varlous radicals reduce to in
the presence of suitable finiteness conditions. The most important result

1g that for algebras with d.c.e, on quadratic ideals, all the radicala coineide.
Furthermore, in this situation semisimplicity, semiprimeness, and strong semi-
primeness are all equivalent to regularity. We also establish Amitsur's result

that for algebras over large fields the radical colncides with the nil radical.

Racall from (7.6) our general relaktilons

(9.1) $(A)C TCAYC L(A)C N11(A)CZ Rad(4).

In Chapter VIII we will develop & structure theory for alternative
algebras with descending chain condition {d.c.c,) on imner idesls. It
is important that for such algebras it doesn't matter what radical we use:

all radicals coinclde in the presence of the d.c.c.

9,2 (Badical Gquality Thecrem} If A is an aslternative algebra with d.c.c.
on ¢ inner ideals, then all radicals

S(A) = T(A) = L{A) = Nil(a) = Rad(A)

coincide with the maximal nilpotent ideal of A.

Proof. We first show Rad(A) 1s Jordan-solvable. The preof willl be analogous
to that used in the associstive case with asscclative products veplaced by
Jordan products. Thus d.c.c. on right idesls becomes d.c.c. on - inner
ideals, nilpotent becomes Jordan-~solvable, (Rad AJ“ becomes Jn(Hﬂd A), ete.

Recall that the assvclative proof proceeded in 5 stages: (1) the powers

atabtlive ar B w b = §7T1 w e yith B = By {2) Af B %0 there is a minimal
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right ideal xB # 0 (mininal Tn L ); (3) some x6B # 0 4f xB° = 4 4 0, 80

InL, = InL by mnimality; (4) xb& In L, InL, implies xb = xbe for

b
gome ¢€ B; (5) xb(l-c) = 0 {8 imposaible for xb 4 0 and c€ B R q.1.

[See Jacohson p. 38-30 71,

The alternmative case is formally analogous, (1) If R = Rad A then
R DI(R) DI*(R) D +» terminates at B = IR = SFLR) = .an with
J(B) = TJBB = B by d.c.c. on ideals. If R is not Jordan solvable then B ¥ 0;

we show this leads to a contradietion.

(2} 1Invoke the d.c.c. to choge &n inmner ldeal minimsl among those of
the form Im L = L{B) for L = L:-: ---T.-}c {n >0, :-:iE B; in the associative caae
1 n

L=l for x=x c=+x) where U(B) # 0 for Us U «s«sl , (Such exiet: take
x 1 T xl X

ne0, L=0U=71),

(3} U{UBB} = U(B) # 0 implies uw, B # 0 for some b & B; then L' = LL, =

L resl Ly has U' = UU, # O on B yet Im L' ¢ Im L, so by minimaliley we nmust
Xy x b
have Im L' = Im L.

(4) Thus L(b) € ImL = Im L' = Im LL, implies L(b) = L(bc) for some c &£ B,

and L'(l~c) = L{b(l-c)) = 0,

(5) Since c € B R 1isg quasi-invertihle, l-c is invertible and (1-c)B = n;
therefore U'(B) = U'§1-c)B) = L'(1-¢)R'(B) = 0 (uzing Middle Moufang Uxfyz}

= (L_v)(R z) repeatedly to get U «++T {vz) = (L «eeL ¥)(R +esR z)), contrary
i - N
to our choice of U' # 0 on B.
implies
Thus Rad A ig Jordan solvable which/Rad(A)¢C S(A). so in view of (9.1)
all the radicals coincide, By Zhevlakov-Slater Nilpotence 3.14 we know BA)

is the maximal nilpotent ideal when A merely hes d,c.c. on two-sided ideals., Ji\
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An even more useful condition for semisimplicity in the presence of the

d.e.c, 1s regularity.

9.3 (Regularity Theorem) The following are equivalent for an alternative

algebra A with d.c.c. on principal {nper ideals:

(1) A is semisimple
(11) A is stromgly geniprime

(411) A is semiprime.
(1v) A is regular.
Proof, Always semisimple =S strongly semiprime =Sseniprime by 7.6 and

regular =pdemisimple by 7.17, while semiprime = gemisimple in the presence of

the d,c.c. by Radical Equality 9.2 Thus (i)<=b (ii)d=> (11i) and (iv) =>(1).

To show that A is regular 1if 1t is strongly semiprime with d.c.c., Buppnse
there are irvegular elements; then among the principsal inmer ldesls B = U, A
for b not regular we can choose s minimal one. For this b we mugt have all
elementy ¢ = Uba of B repular, for if c were lrrepular then UEA @ Ubl!anAC Ubﬁ
would imply UA = U 4 by minimality of U A, hence c = haé& Uyd = U A, whereas
we assumed ¢ was not regular.

Now EY SBTRONG SEMIPRIMENESS b # 0 is not trivial: some o = hab # 0, We
just saw ¢ is regular, so by Regular Pairing 111,3,12 ¢ is regularly pairad
with some d: ¢ = cde, d = ded. Then e = od 1s 3 NONZEERD idempotent with ec = g,
de = d; note ¢ = (bab)d = b{a(bd)} has the form e = bz, so in particular
a= ez = bzbz = (eblez iwplies eb # 0. Since eb = bzb & U4 but b EUbA by
irregularity, the element b' = (I-2)b = h-gb = b-bzb doean't belong to Ubﬁ either.
But b' doeg belong to Q(b) = "-"?b+UhA, so by IIT.3.11 U.b.ACUhA and therefore
b' & I.Th}A, so b' toe is irregular. By minimality of U A we must hava U A = 1. A

b b b’
= Uil_ejbﬂ.c_‘{lua)ﬂbﬁ by Left Fundamental, But then eh = eleb) Ee{EhAJ
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e{il-a]'UBA} - {e{l—n}}llba m (), a contradiction. Thiug thare can be no

irregular elementg b, [

Since ldempotents are ragular, by 7.17 the radleal contains no idempotents,

Now if 2 & Rad A is algebraic over a field ® 1t 1s well known Ehat the
associlative subalgebra ¢[z](” Rad A contains an ldempotent unlesa z is nilpotenc:

therefore an alpebraic element of the radical must be nllpotent,

9.4 Proposition, If A 13 an algebra over a field, the elemsnts of Rad(A) are

either transcendental or nilpotent. B

9.5 Corollary. If 4 1s algebraic cver a fileld, Rad A = Nil A 4= pil. | |

As in the assoclative case, if ¥ i= large enough the radical must be nil

ANYWAY,

9.6 (Amitsur's Theorem) If A is an algebra over a field @ with encugh elaments,

8] > 2 + dim A, then Rad A = N1l A 1s nil.

Proof. If z& Rad A, let B be 8 maximal associative subalgebra containing =z,
By the Quasi-inverse Closure Theorem IT,3.16 B is quasi-inverse closed, Claarly
|€'i Bl dimﬁB. Also, z belongs te the radical Rad B by the elemepntwise
characterization: all bz for bg B are g.1. in B since they are g.1. in A

(1f z belongs to the radical) and B is guasi-inverse closed by construction,

First we show z 1a algehraic, For A # 0 the element A Lz € Rad B is q.i.,
B0 M-z = Ml—}'l.-lz) iz invertible. There are [#]-1 different elements
{ll—:]_l in B for A # 0 in ¢, and |2/-1 = 1+dim B 1dim¢ﬁ, so they cannot all be

indepandent: we muat have E;”t.(}*i‘ﬂ_l = [ for some oy # 0 and distinct J'Li # 0.
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n - -
Multiplying through by 1:1.'31'33 gives p(z) = fﬂlﬂiﬂl“z)"'-{li_z)'“-U'n_z) = ()

(where ™ denstes deletion), Here p(A) = E’f‘r%-‘”"'“{”"“-”‘n'” is a

polynomial of degree n-1 which is nonzero since p{lj} = E.‘j Cll—i'n.j) sea(h=A) e

4

Utn_-lj} $ 0 1f 4 # 0 and the A; are distinct,

Thid each z & Rad A is algsbraic, so by 9.5 z is nilpotent, [

9.7 Cerellary., If A is finitely (or even coumtably) generated ovar an

uncountable fiald ¢ then Rad A = Wil A,

Froof., 1If A 4s countably generated by {x } it is countably spanned by
7 E i ¥y 5P

the monomizls in the X, hence has countable dimension over an uncountable fizld. M
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Exercises IV.9

Use the Minimal Quadratic Ideal Theorem III.3.14 to show T(A) = Nil(A) =
Rad (A} whenever A has d.c.e, on quadratic ideals.

If A has a.c.c. on all aubspaces of the form Ker L for L = Lx "'Lx * 0
1 n

on N = Nil1(A), =show NHADDR{N} #0if ¥ ¢ 0. HoLe Kar L, is an inner
idesl, but L;l(B) dqea not seem to bhe for general dmmer | B, so

Ker Lxl-"L doesn't seem to be. If A has a.c.c. on all Ker [k‘s for

X €N show any maximal Ker Lx (x % 0) has x trivial. Conclude that if

A is strongly semiprime with a.,c.c. on - idner ideals then T(A) = Nil(A),
If A has d,c.c, on principal . inner ideals then smy alement x iz

either nilpotent or the principal dmder ' idegl U A contains an idempotent,
P mp

Conclude Rad{A) = HNil(A) for such A.
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IV.9.1 Problem Set on Chain Conditions

Conalder the chain conditiona

(I} d.c.c. on all chalne In L 2 In sz:: .y

(1) a.e,c. on all chains Ker LI & Ker szc e

Note all Im LT and Ker L? are  iamef ' ideals.

Show any right ideal B or Peirce space eie {Ez = g) inherits I or II from
Al

Show that 4if =M = M whera M is a3 subspace of an algebra A satisfying II,
then ¥xm = Ompm = §. Conclude xm = Jr...-.-.'!,'uu2 = m,

Bhow that if 4 gatisfies I and II then A is a Zorn algebea.
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IV.9.2 Problem Set on Weskly Artinisn Algsbras

Say A 1s weakly(resp. very weakly ) Artinianif it -has d.c.c. on

principal dnmera: i fdeglg UI A ::Ux

. A :Ux A+ (resp. on T.lxﬁ ::FTJREA -

2 3
U A2 eee )

Lis Show that an element x in a wvery weakly Artinian A has a regular power x .
Conclude A 1s Zorn. Conclude Ni1(A) = {z(z is p.n.} = {z|z 1s p.q.1i.} =
Rad (A}.

2, If A is weakly or very weakly Artinian, so 1s any ede or A = AfB,

3. If A is strongly semiprime, very weakly Artinian, and all dnner ideals
contain minimal ones, show A is semisimple. Conclude such an A is stromgly
gemiprime 1ff it is semisimple, and T(A) = Rad(A).

&4, Show 1f A has d.c.c. on all chains xA ':‘.lxzﬁ =+ and on all
ij:'ixg:} **+ then it 1s very weakly Artinian., Try the same for d,c.c,

on all :v:lA :":-:2.% = #== gnd Axljﬁxz::? ves
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1V.9.3 Problem Set on Invariance of Radicals Under Derivatioms

Let D be a derivation of an arbitrary nonassociative algebra A, Given

elements X0t a%y A and some product P(zl’“":;n} =Xy TTUE (with
goma distribution of parentheses) prove
k L i

I"EI';-P"“':":I"" : ’xn} = Ei]_""" '“H-nsk (11..“1:1‘] p(D lxl'-" 'Dknxn]
If B 15 an ideal show B4+D(B) is too,
If B is the maximal nil ideal of 4, and A is Z-torsion-free (character-
istie zero) conclude N(R)C R for every derivation D.
If R 45 a maximal nilpotent ideal of A and A is Z-torsion-free, show
D{Ejnc: Rif B® = 0. If A/R 1m free of nilpotent ideals, conclude
D(R) C R.
1f A 15 again EZ-torsion—free and Bqaﬁaz-ﬂa, g0 we can define
aolvebility, show D(R}Z R for any maximal solvable ideal R. Conelude

D(R)C R for the locally nilpotent radical R.



