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§2. BSolvability

Solvability is a more tractable property than nilpotence ginee it is
recoverable: i1if A/B and B are solvable so 13 A, Even more tractsble is
Jordan solvability, which 18 equivalant to solvability in characteriatic # 2
sltuations. In genaral Jordan solwability doesn't imply solvability and

solvability doesn't imply nilpotence.

Solvability

The derived algebra. of a nonassocilative algebra A is the subalgebra

(actually ideal) apenned by =ll products,
(2.1) DAY = A = A4,
The olerived S@ri@s 15 the chaln of subalgebras
A=D(A)D DA DR D
defined recurasively by
(2.2)  D°(A) = 4, DLea) = p), ¥ = pBea)) = Do,

(Although D(A) iz alwayz an ideal in A, the higher ﬁkf&} need not be). We say
Aids gplvable if Dn{é.} = {} for some n; the smallest such n is the index
of A.

Tha derilvation operators ]]k obey
(2.3) D (om(a)) = D¥MP(ay

gince the recuraive definition makes clear Hk(ﬁj = D{**+**(DA)}. Purther, the

Foa
derived series is preserved by any homomorphiem: for any A = A

(2.4) F(D™(A )) = D"(FCA 1)3
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Indeed, we need only cbeerve F(D(A)) = F(A®) = F(&)* = n(F(A)).

A subalgebra B im golvable 1f it ia golvable as an algebra on ita own,
ﬁn{B} = (], Notice that if B is &n ideal and ¥f products of ideals are ideals
{even: 1f aquarea of ldeals are ideals) then the recursive definition (2.2)

shows all derived algebras ﬁktﬂ) will also ba ldeals.

2.5 Proposition. If B iz &n ideal in an alternative alpebra then so are

all derived algebras pk (B8}. B

2,6 (Wesk Radical Property of Solvability). If a nonassocistive algebra A
is solvable go la any subalpabra or homomarphic image, and if B is a solvable
ideal with solvable quotient A/B then A 1a solvable. Any finite sum of

golvahle ideals 15 selvablas,

Proof. If B is a subalgebra of A it is clear inductively that
Dk{B}ﬂ: Dk{AJ. s0 solvability Dn(A) = 0 of A forees snlvabili;y Dn(B] =0 of
B. Further, (2.4) shows that if D'(A) = 0 then any homombrphic image F(A) has
D7(E(A)) = F(D"(4)) = 0.

Mow supposs B and A = A/B are solvable of degrees n and m respectively,
D*(E) = D"(A) = 0. Then (applying (2.4) to the projection A EEJ

p™(A) = D™(E) = 0 implies D(AYC B, Therefore by (2.3) D°T™(A)

= DM (0" (A))C DV (B) = 0, and A itself is solvable of degrea mim.
It suffices to prove a sum B+C of two solvable ideals is solvabla. But B4C/C
= B/BA C is solvable as a homomorphic imape of B, and C is salvable, sa by

recoverahility B4C ie solvable, @

2.7 Remark, It is a general principle that to prove all finite sums
BI+"'+Bn of ideals B, having a given property inharit that property, it

gufficans to prova 5 gum of two ideals Inherits the property and then induect.
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For the induction step from n to n+l summands, write Bl+'**+Bn+l

= (31+--'*ﬂn) + En+1 as the sum of two ideals Byte+ 4B and Bﬂ+ having the

1
property (by induction and hypothesis respectively).

A a conseduence you will frequently see a theorem stated for all finite

sums but proven only for sums of two objects; it le understeed that the

induction is left to the reader. B

It is this recoverabllity of solvability that makes it more manzpeable than
nilpotence. As with nilpotence, golvebility need nobt be rebalned by an
infinite sum of ideals,

It 1= essy to see by Induction that

k
(2.8) *wc A

so thet nllpotence of A implies solvabillity., 1In gensrvel it ls easler to be
solvable than to be nilpotent (recall the situation for Lie algebras), though
we will gea thay ars aquivalant for alternative algebras in the presence of
gsuiteble finiteness c¢ondltions, Solvabllity has te do with vanishing of
monomials having a particular sesoclation; for D(A), DE(A}, DBCA], ete. we

are concernad only with
X Eq Exlxijfxaxah. {{xlxzj(xaxé}}{(xsxﬁjtx?xs}}. ate.

and not such monomials a=s xl{{xZKS}xﬁ}' (xlxzj{{xjxh}[{xﬁxﬁ}{x?xajl}, ate.

Example of an alternative algebra which is
golvable but mot ailpotent

As we mentionad, it is more difficult to find an alternative example

whera solvability doesn’'t imply nilpotence, If E is solvable of index 1,

D(E} = E2 =0, It 15 avtomwaticelly nilpotent, so the flrst likely index 4a 2,
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The easlest way to construct an algebra solvable of index 2 is to form a

split null exteneion of a trivial algebra,
=A@ (A = =0, NIE),

Indead, D(E) = AZ 4 AM + MA + 1 w A + MA = NC M so D*(E) € DC) = 0,

Tn order thaet E not be nllpotent we must choose M so A does not act
nilpotently on M, 1,e., the miltiplication algebra M(A|M) 18 not nilpotent,
In terms of the birepresentation, the subalgebra T of End M generated by the

Lx’Ry migt not be nilpotent.

2.9 Theorem, If[ A = *:.uld'xi ig an infinite-dimensicnal trivial algebra and
M = by MhNe mzf\ a 2-dimensional free right module over the extarior alpebra

A =A(A), then A does not act nilpotently on the A-bimodule M given by

a'tnll = mz(a AL mll'a = —mlian Ay
a'mzl = mlfa AL mzi.'a = —m._l[a. o) l)+m2{a. ALY

or equivalently by the bilreprasentatien

L(a) = ‘gg r(a) = {'g H:) ;

The split null extension E = A ® M is a solvable alternative algebra of index

2 which is not nilpotent: IJZ(E) = 0 but E* 4 0.

Proof. Since M is a free right module aver fl. the birepresentation
(L,r) is completely determined by the matrix of each £(a} and r(a). The
birepresentation condltions I.7.3a,b i(azj = E-{a]z, r{az} = r(a)z,
0{ab) - 2(a)e(b) = [r(a),i{b)] = r(ba)-x(a)r(b) reduces for a trivial algebra to

pa)? = 0, -ga)ulb) = [r(a).e(b)] = —r(a)r(b)
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(note these imply --1:'{#3.}2 - -EC&JE = 0), But

LORRY % [ R vV R

wior - EIEY- (2
TOPTOIEN it s I (AL
r{a) ilb)-2(bdr(a) = g'_a {g TJ, c-awn)

i (—a.ﬁ‘b -a.h.‘l:-} ( -hha)
asb whaa -baa
& {—anb —ahb—bha) —anb 0
am b+ba a BAr -asb
since in the exterior algebra M(A) we have aAz = 0 and aAbtbAa =0

for a,b @ A,

Thus {2,r) 1s a birepresentation and M a bimndule, A does not act
nilpotently on M since for the basiz aslements Xyttt my of A we have

Xy A TN AX ¥ 0 in M CA) s0
ME ] A X i
1 2 2n-1 Zn
iy ) alxg) veeplx, o)l [x )[x )
In=-1 211 0 AR ] Xy 1A %,

T
0 xlh"'hxz

i1}

for any ., -

This exemple alse showe nilpotence is not a recoverable property in general,

2,10 Theorem. If E fa a molvable alternative algabra of index 2 which is not

nilpotent then E/D(E) and D(E) are trivial algebras (in particular, nilpotant)

but E ia not nilpatent.
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It also shows a nilpotent algebra need not have a nilpotent multipli-

cation algebra HE(M (since ﬂE{MH) {a not nilpotent),

2,11 Theorem, If A is an infinite-dimenaional trivial algebra, then A has

multiplication algebras !{EI:A.} which are not nilpotent. .

Jordan Solwvability

L=I'EI

Solvability D"(A) = 0, nilpotence A" = 0, and left nilpotence A"’
of an alternstive algebre A have been defined in termm of the venishing of
various "powers" of the amlgebra., It is sometimes convenilent to comstruct

powars using the Jordan multiplications. The Jerdas-derved algebra

of a aubalgebra B C is the Jordan cube

(2,12) J(B) = U_B,

B

and the Penica- derived a.lgg.l;m afF B n A is the Jordan square
(2.13) P(B) = U A

Note that J{B) depends only on the algebra B, whareas P({B) depends omn the
enveloping algebra A as well. (We could write P A{B} to indieste thia
depandence). If B is an ideal in A so are the Jordan and Penleco derived
algebras by III.1.5. We can iterate these constructicns to obtain higher
Jordan or Penico derived algebras J'(B) or PU(B), which ngain are ideals f
B ia. We gay B is Jerdan=selvable if some J(B) = 0, and
Penico=solvable  if some F"(B) = 0.

Actually, these two notions of solvability using Jordan multiplications

are equivalent to each other (and nearly equivalent to oxdinary solwvability).
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2,14 (Jordan Solvebility Criterion). An ideal B in an alternative algebra
A 1is Jordan solvable, JH(H} = (0 for some n, iff it ie Penico-solvable, Pm{B] e
for gome m. If 2 s injective or surjective on B then B is Jordan-solvable

1ff it is solvable in the ordinary semse, Moreover, for all n we have
Sy 2R m) o e PREIc 1t ).

Proof, 1In general, if El and E2 are methods of -:cmatruﬁl:ing new A-ldeals

out of old ones which are monotone in the gense that the bipger the idaal you
start with the bigger the ideal you end up with (B b #Gi{B} = Giﬁ}:’" and

if €. builds bipger 1deals than {]1 (Gl{ﬂ} = '32(3:': which we write suggestively

2

as €; € €,), then the iterated construction o

2
o {C“C c“}. Thus by iteration we need only establish the first step
1 "1 2

also bullds higgar ideals than

wre e iere .

We have JC P by comparing (2.12) and (2.13), and P D since
P(B) = UACB(AE) © B = D(B) 1f DedA, By the Tvasquares-and-a-cube Temma
IT1,1.6 20°C P (e 40°c P?) and PPC 1.

From this Jordan-solwability .J'n{E} = ] 15 equivalent to Penico solvabiliky
PU(R) = 0 (P7(B) = O J°(B) = 0 and J°(B) = O P "(B) = 0).

Solvable alwaye implies Jordan-solyable: conversely; 1f B is Jordan-solvable
then some Jn{B} = (1, B8O ﬂn‘Dénl'_B} = 0. If 2 18 injective we can cancel 4" to pet

D¥8(B) = 0, while if 2 ia surjestive D7(B) = D'P(2B) = 220" (B) = 0 (note

k
un] e Azn{a} g0 nk_(:l.H] = {{{_1?}1—--}2131‘{3} = 11 Dkiﬂ}), g6 in either caae

Dﬁh{B} =0 and B 18 solvable :Lnlthe ordinary asense. B

Thus Jorden-solvebility can be defined in termes of the J or P, Am usual,
the exlstence of Jordan—sclvable ideals 1s eguivalent to the existence of Jordan—

euba~tredvial 1deals B and to the existence of Jordan—sguars-trivial ddeals C,
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~
A=0,

B=w 0 and P(C) = UC

J(B) = Uy

aince J°(B) = J{J“-liﬂﬁ} = ( implies Jnﬂl(B] ig Jordan=cube=trivinl and

#(c) = P{P“"l(E}) w (] implies Pnhltcj is Jordan=-square=trivial.

2.15 (Examole of a Jordan-solvable slgebra which is not solvable). Beth

notions of Jordan-solwvability coincide with ordinary solvability in character=
istic # 2 situatioms, but not in characteristic 2: i1f A 1= commutative
apedclative aver a field af characcerdiacie 2 with xl = 0 far &ll x {e.g.,

any exterior algebra A(V) on a vector space V over a fiesld of characteristic
2), then J(A) = P(A) = 0, but A need not be salvable (e.g., 1f V is infinice-
dimenalonal with basis 25X
of D'(A)). B

gute? then xl.n.,xzn--- M Izn iz a nonzero alement

In characterlstic 2 Jordan-solvability of B doea not imply B lcself ia
solvable, but something is solvable: an algebra contains Jordan solvable ideals
iff it contains solvable ideals. In the next section wa study the semiprima
algebras, those free of solvable {equivti&nlly.af Jordan eclveble or of

nilpotent) 1deals.
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:Exarciaea 1v.2

If A 19 an infinite-dimensionsl trivial algebras; show Mu(A) is not
nilpotent (see Problem Set I.7,1),

let 4 be any nonassoefative algebra in which the squere of an ldeal is

apain sn ideal. Show A contalne nilpotent ideals 1ff it contains solwvsble
1deals 1ff it containe ceiviel ideslsa.

Tuprove oo the Jordan Solvability Theorem to show 2o —(B) (. J°(A).

n
F(A

and any homomsrphiem 4 E . Show that Jorden-golvabilicy is a recoverable

Show F(I"(B)) = J F(B)) and F{FE(B]] = Fo sy (F(B)) for any ideal Bed A
property, and conclude that a finite sum of Jordam-sclvable ldeals i=s
Jardan-egalvable.

I1f A ig B-semiprime (in the sense that no trivial ideals of A are contained
in B) ghow UBE m 0 implies the ideal B = 0,

Show directly that if UEB = ) for B=d A then U 0.

ueyAt =
Show II{UAE] C J(A) directly.
Uae inductign and the fact that a trivisl one—sided ideal peneratea a

trivial two-gided ideal (III1.2.9) to prova the One-sidednems Theorem for

Solvahility: 1If a one-sided ideal in an alternative algebra is solvable,

80 ig the qwn—sidad ldezl it generatss,

Prove (ma-gidednass by showing that 1f B ls a solwvable left ideal with
kernal E(B)} then E(B} and I(B)/K(B) are solwable. (When EK{(B) = ( show

all D"(B) are left ideals and I(D"(B}) = D" (I(B))).

Show that a semiprime alternative algebra contains no trivial or solvable
ane—uiqed idesls. Show that an alternative algebra without nilput&nt idaals

containg no nilpotent cne-sgided ideals.
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IV.2.1 Problem Set on Solvable-but-not-nilpotent alpebras

We gilve another construction of a trivial algebra haying a non-nilpotent

action on a bimoduls,

2,1 If A is trivial and M any A-bimodule, show M(A|M) is spanned by operators
M
Pk, 4*"* 2 ) = L **L_ a&nd F{x,,* "X, ,X%. ) = L 'L R for
* n Xy x, 1 n—1""n x, X -1 Fp
:ciE A, Show F ia sn altemating functiom of X" Ey and "f'r of
Hyg*t*aX o+ Show that on N = AM+MA one has Ux = 0, so in M(A|N)
L L&Rx = () and LxR? = —LFEI ; conclude on N that F is alternating in all

its varisblee. Show in H{AlH) we have the multiplicatinn rules

F{xlp_" : rxn}F{Y]_:' Ly p}"m:l - F{xlr" ¥ I.xni}?ll"' er) 3

Flag e x IEGy ety ) = ﬂi"{xl.'“,;rm}J

Flxgar o @ DP(y ot eeay) = cIPGR e,y Yo mF ey oo e,y )

ﬂf{xi g .xn_)ﬂf{:fl, ks .ym} _ﬁ{m}F{xl gt t.?m}'t'ﬁ {mjﬂﬁ{xlt i :?u]

for o(m) = (-1}", e(m) = Z?;li—l}i, dlm) = ::i{—l}i. Show £ = %{p-l},
1
g = -2-(-:1'4'1}-

2.2 VWhat are the multiplication rules in HlfAIH}? They are zlightly more
complicated than those in E(A|'H},

2.3 In 2.1 show M(A|W) is also generated by the F(x;,***,x ) and
Glxyyene,m ) = Flxy,ore,x ) + rf[:cl,"',:u:n] (note G(x) = V). What are
their multiplication rulea?

2.4 Generalizing the multiplication algebra of 2,1, show that we can construct

an agscclative algebra by the following recipe:
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(Twisting Lemma) If A = a:-a‘a‘n 1s a graded associative slgebra then

T(A) = A & ¥ with products

a*b = ab for b e An

a.'% " E og(b) = {—l)n

o s 1. .

u.-T;r = £ (b)ab+ax (b) ab E{b) = E[cr(b)-].}

HeB w0 w (b)abs (b) 2D 5(b) w o (b)HL} = &(b)-0(b)

is sn associative algebra containing A, .

In tarms of the decomposition T(A) = A8 & find the matrix of L} (use
8,E,D defined by S(a) = o(a)a, E(a) = o(a)a, D(a) = §(a)a). Prove T(A)

le associative by showing I.xLY = LHY'

Show that amy nultiplication algebra H{h[ﬂ} ag in 2,1 1is a homomorphic
Image of T(A(A)) = A(A) ﬁm ( A(A) = exterior algebra of A) under
XA AR F Y A A Y = PO, x ) 4 f{y'l."' W)

If A is teivial show A(x) = x, p(x) = ¥ defines & bispecialization (A,p)
of A in T(A(A)}, such that ACA) generatem M{A) and p(A) genarateam
modula A(A)., Conclude that if An(!;] # 0 for all n (e.gs, Lf A is trivial

onr an infinite-~dimensional free module ﬁm

i_lﬁxi} then the bispeclalizatiom

A 18 not nillpotent,

= ﬂi—lhi ie an infinite-dimensional trivial

algebra and M = T(A(A)) the A-bimodule induced via the regular repre-

Deduce the Theorem. If A

gantetlon from Che bilspeclallzatiom Adx) = %, plx) = ¥ thea the eplit null
extension E = A @ ¥ is a solvable glternative glgebra of index 2 which is
not nilpatent: DE{E} = 0 but E" 0,

If A= ﬁ:-i}a'n. 18 a graded nlge’aﬁ show the twisted algebra T(A) = 4 & X

of 2,4 1ip isomorphic to Aft] = 4 & At (with Telations ta, = a, t,
2

a T fort = -1-t, t™+t+l = 0) under avl%" + atbt. Prove directly

Sontl ~ Banel
that Aft] 18 asaociative.

t
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If A= Gn_ﬂéh'is graded, write A B & C for B = Enﬁzn and C = ih52n+l'
Show bée + blée] = ﬁ ;‘j fmbeds A in BIHCIC M,(A). Show t = (_g _]1“)
patiafles tz+t+1 a0, t(b1) = (b1)t, tci) = (eddt. Conelude

TA) m A AuBaCo&Y o ¢ ia inbedded in M, (A) via b e e

T, ot -
E“—E :TEE_E, {(giving an alternate proof T(4) is

+ b 'l+c! {4bt+cd L.
associative).

Shaw that the bispecialization (A,p) of & trivial & in TCA(A)) given
by 2.7 ia carried by the imbedding in 2,10 into the hiagacializatiun

(L,r) of A in MEU"} given in Theorem 2.10.



