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§1, HNilpotence

The mpescclative concept of nilpotence splita into geveral different
concepts for nonassociative algebras. In thie section we study the concept
of nonassociative nilpotence, and relate it wvia Etherington's Theorem to
ordinary nilpotence of the associative multiplication algebra. We alase relate

nilpotence to the aimpler mnotionsa of left and ripht nilpotence.

A nonessociative algebra A is nilpotent if for some n every product
of n or more factors (no matter how associated) is zero. The smalleast such
integer n iz the inde& i of nilpotence. The nilpotency comdition is that
any monomial f{xl,---.:n:m} of degree » n in the free nonassoclative algebra F
vauishﬂﬂ whan Evﬂluﬂted at al""iame J-ﬂl:} fl:ﬂ- .‘..'aﬂl) = 0,

Actually, 1f all products with exactly n factors vanlsh so do thosa with
more then n factors: in general, a product of o + 1 factors al-"{aiaiﬂ}-“
a_, °an be written as a pmd‘m:t_ﬂl'"a'““n+1 of n factors by taking the first
product I:aiai +1.} ag a single factor a,

th A"
We can define the W power to be the aspace apanned by all

monomials of degree > m (by the sbove remark we could get by with those of depree

exactly n). Thus we have a decreasing serles of powers
A=alo223D... DD

where each term is clearly an ideal in A, An algebra is nilpotent 1ff some
power A" = 0,
A subslgebra (in particular, an ideal) B is called ﬂilpn*tﬂ‘l‘ if it is

nilpotent in ita own right as an algebra: % w ), If B is an ideal in A it is



not brie that the powers B" are again ideals in a genaral nonasscclative
algebra. However, consider the following mon-elementwise definition of the

powers of B

(1.1) glptt (o > 2).

B Eliiin—l

This can be established by induction, the result Bz = BB for n = 2 being
pretty clear. For general n, clearly everything om the right side is & sum
of monomials with > 1 + (n-1i) = n factors from B, Conversely, every monomial
with n factors from B belongs to some Biﬁn_i, since in any bl---hn (with soma
distribution of parentheses) there 1 & last multiplication which take= place,
(bli-'bi}(biﬁl"'hn} for 1 < 1 < n (with some distribution af parentheses
ingide each factor), end by induction bl'--biE ot b:H_l-"‘bnE L

This way of building the nth power out of lewer powers shows by induction
that B® 43 an ideal 1f B is whenever a product of ideals is again an ideal
(aums always are). In particular, by the Praduct Theorem III.1.1, this holds

in the alternative case.

1.2 (Power Propoeition) In an alternative algebra the powers of an ldeal are

again tdeals: B <dA implics B"=<3a, M

The most important general result about nilpotence is that it ie equivalent
to nilpotence of the multiplication algebra; this reduces nllpotence of a nom-

associative algebra A to nilpotence of an amacciative algebra M(A).

1.3 (Etherington's Theorem) A mnonassociative algebra A is nilpotent LIF ite

multiplication algebra M(A) is nilpotent.

Proof. Clearly if A is nilpotent so is its multiplication algebra M{A)
since M(AY" ﬂCﬁ“+1 (recall frem I.7 that M{A) is built out of Lx'a and E?'s

without thrpwing in the identity operatar).



i
Conversely, nllpotence Az = ) of & will follow from nilpotence

M(A}n = ) of M(A) if we can establish a general relation
44 n
(1.4 AT T M{AY " A (A arbitrary nonassociative),

This 1ls certainly true for n = 1 since ﬁz - AAI:LA A, If true for n then
g+l 1,1 nl n n
by (1.1) & = ) A"A) where 1+j = & -, 80 elther 1 > 2" or { > 27, But
- :
1f 1 > 2" then atad = R, Ale R, e R, (A" A by induction, and if § > 27
then A4l € L, M(A)" A, Tn either case atad e wemea)™ A = )™ A and the

Induction is complete, =

1,5 Remark, The idea of the proof is that in any monomial xR nd (with

some distribution of parentheses) thers is s last multiplication whiech is per—
formad, say (xl---xi}(xi+l---x2n+1] (with some distribution of parentheses inside
each of the two factors). One of these two factors must have degree > 2" and hence
by induction be analyzable into n oultiplications acting on A, o the product

of both factors can be analyzed into ndl multiplicatioms.

These results are best possible; in the free nonassoclative algebra
2
2 2 3
{:tlxz} (331:&} Lxlxztx;ﬂ €4 helongs to M(4)“ A bub not ta M(A)™ A,
o 3
: 2
(= (=20} {lxx )= x )} =L L L, x_ &£ A belongs to
s Gt 5%/ V7' (%) (%%, ) “m X, % B

3

M(AY™ A but not to E{{A}i’ &, ate. =2

1.6 BRemark. If we were willing to content ourselves with the alternative casa,
Etherington's Theorem could ke proved much more simply. The Generation Theorem
1.7.6 shows

(1.7) M(AT) S HM(A" (A alternative)
for an alternative alpgebra, since any left or right multiplication HP(xl’""xm}

by a monocmizl p(xl.-“,xm} of degree n can ba expressed as a sum of monomials of




degree n in the generators L_ ,-=* 'Lx s R "“’Rx

m 1 m
Thia leade immediately to the formulas (compare (1.4))

(1.8} At = M(A}n i, Am = HtA}nAm (A alternative).

Indeed, the second follows from the firat since H(ﬁ}nﬂ' :T. e H(A)E{M(A)m L},
and in the first M(A)" 1L C A" 1s clear by degree considerations, while by
1.7y A" = m¢A™ 1 C M) 1.

n+l

From this Etherington follows: A" ~ = 0 <=> M(A)' A= 0 <=> M@A)" =0 . B

We could define other notions of powers snd corresponding notilans of
nilpotence by choosing particular associations in (1.1). In the next sectlon
wa will discuss solvability end the derived series. TFor another exampla, we
can define the lef+ pewers i inductively by

1,L ntl, L

= B, B e

B

and IEF‘I‘. nilpﬂ'l'EHCﬂ by B“‘“L = 0 for some n. There is a completely smalogous

notdon of 'ﬂﬂht ﬂilp&'l'lﬁﬂ!. Again, whenever products of ideals In a ndan-
associative alpgebra are ideals these En'L and En'R will be ldeals when B is.
Because the associatlon 1s fixed in left powers An'L these are sometimes

technically easier to deal with than the ordinary unrestricted powers A", For

example, the left powers can be described explicitly..

(1.9) Pk LE 1= LE_]' 4 (A nonassoclative).

From this it is clear that A 1s left nilpotent 1ff the subapace Lﬂ of laft
multiplications or the subalgebra L{A} it generates is nilpotent (in the assoclative

algebras of linear transformations), a sort of "Left Etherington Theorem”,

1.10 PFPropesitlen. A nenasscclative algebra A i1s lefc nilpotemt 1FEF L(A)

ie nilpotent. R

In fact, we could stick to left or right nilpotence if we wished, because



of the following result.

1.11 {(Left Wilpotence Theotrem) An alternative algebra is nilpotemt iff it

1a left nilpotent.

Proof, If A is nilpotent it is sutomatically left, right, and every-

which-way nilpotent,

Conversely, assume A ls left nilpotent: Pt by

2
Form Theorem far Elements I.7.10 we know A" dis spaoned by second-order monomlals

Bv the Left Normal

v = y‘l(yzf‘“yr” of degree > rl2 where each ¥y is a first-order momomial

xl(xzi"'xﬂ}} {in some fixed sat of gE‘I‘IEI’&l‘-DI’E. {::r.i} for A). Such a flrat-
order monomial Lx "*Lx 1 belonga to ﬁE'L
1: B

y vanishes unlesa all ¥ have degrees Elyi < n, in which case 1-:.2 % 3y

and hence vanishes 1f 8 * n., Therefore

- J oy <« So=onrimpliesn <r. But then y=i_:1_ 1€A™t a oy,
1% 9 ST
f nz
so v vanishes in any event. This shows the monomlals spanning &  all vanish,

2
so A" = 0 and A ie nilpotent. W
This type of combinatorisl argument is very common., Roughly, it says
that a large enough object is either compased of some very big pleces or alse
is composed of a very large number of small pleces. Typieally the pleces vanish
if they are of size > n, and a product of > m pleces vanishes, therefore any

obfect of size > mn vanishes, (In the above case we have n = m).

We can also reduce the condltion that an alpgebra act anillpetently on a
bimodule to the cemditlon that 1t act both left and right nilpotently on the

bimadule. (Here the algebra itself need not be nilpotent).




1,12 (Left-Right Nilpotence Theorem) An alternative algebra A acts nilpotently
on a bimodule M, {H{ﬂ}[}‘l}k = (), 1ff it acta left and right nilpotently on

M, TL(A)] 1" = (R(A) |17 = 0.

Proof. We veally should write L (A) |H’ REM'}'H’ M (4) lrl o ME'E& M) to
indicate the multiplications are taking place in the split null extension
E = A#& M, but we abbreviate by leaving out the E. Sinee {L{AHM}k and

{R{A) |H}k' are contained in {M(A) lM}k, nilpotence implies one-sided nilpotence.

Convereely, if L{A}“’ = R(A}m =0 on M we clalm H{M“h = Jon M. In

fact, we claim
1) M WTE WL AT+ I R "
Since M is A-invariant, restrietion T -+ T|I~! iz a homomorphism ?'[E(A} e ME{AJ 1!-!’

so restricting (1.13) to M and using J{L(ﬁ:lﬂ}[l‘1 = {L{A) lﬂ}n = 0,

(R(™, = (R() [, = 0 ve will have {}L(a}]H}“*"“ i g

Ta estsblish (1.13), note that H(A)nm 18 spanned by monomials

T = Ty;ee»T  for r > ném where each multiplication T, 1s an L _or an R}' for x or

v in A. Since there are > ntm factors there must be > n L's or > m R'a. 1In

case there are > m factors Lx we can move them bo the right across RFIB by meand
of L'HRF = Ry-Lx -+ LxF—LxL}r (recall - [x,m,¥] = + [x,¥,m])}: this does not decrease
the number of L's, so by repeated application we can rewrite the original monomial
a9 a combination of monomiala of the form § = E'Lxl- --!’.xn with n L'a lumped
togethar at tha right: SE& il{A}L{ﬁ}u. Similarly 1f T has > m R's it belongs to

MCAYR(A)®,  This finishes (1.13) and the theorem. [

The example of right modules (where L(A) IH = (1) ghowe left nllpotence on a
bimodule does not imply two-sided nilpotence, though by (1.11) this daes hold

for the regular bimodule M = 4,



Az In the associative case, an Infinite sum of nilpotent ideaals need not
be nilpotent, sc nilpotence iz not a radical property in the seanse of Amitaur
{see Section 10}. But it is not even wesk radiecal property: it 1as not
recoverable ! That 1s, because of nonasscciativity we cannot conclude from
tha fact that B and A/B are nilpotent that A itself is nilpotent. This leads
us to look for something which (i) coincidea with nilﬁotence in the associative

case, (1i) the absence of which coincides with the absence of nilpotence, and

(1i41) which does form a true weask radical property. The notion we seek is that

of solvability.
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1IV.1l Exercilses

If B 18 a nilpotent ideal in A &nd b & B, show bz = z Implies z = B

i1f A is alternative, show c(bz) = z implies z = ).

1€ B m ¢x, C = 0y axe trivial ideals show B+C 1ls a nilpotent ideal.

IfI ={Te M{A}|TB:LI::. Bi+1 for all i} show I contains HA{H} and IkBic: ]31
for all 1,k. Show I(C,D) = [T& M(A)|T(C){= D} 1s an ideal in M(A)

1f C and D are idesls in A, and conclude T ={7} I{Ri,si+l

) =g M{4)

contalng M{B:1A) 1if all Hi «=JA. Deduce 1,9,

Generalize 1,11 to show that any nonassociative algebra, in which products
of ideals are ideals, is nilpotent iff it is both left and right wilpotent.
Show that 1f B is a left-nilpotent ideal of index n in a nonassociative

algebra where products of ideals are ideals, then C = B“-]"L

is a {(two=-
gide )} nilpotent ideal. Conclude that A 1s free of nilpotent ideals iff
it 18 free of left-nilpotent ideals. Conclude that the smallest ideals
R, E.L. E‘R such that A/R, MILL, AKR" are free respectively of nilpotent,
laft nilpotent, right nilpotent ideals all coincide.

Show that an alternative algebra ia nilpotent iff it is left nilpotent by

o
ghowing 1'-:.3 G A.n"L directly from (1.1).
9= n
The estimate 4~ Ly 1 for alternative algebras is unduly peassimistic.

If %’*E ¢ show ASnC 1.: 1 (using the fact that 2 x {y(zw)] and 2(xy) (zw)
are sums of Jordan praduckts Ua b).
Prove that if an alternative algebra has no nilpotent ldeala, it has no

nilpotent one-sided ideals.

+He



1,9 TIf B€JA for alternarive A, show M (8") ¢ 1-1&(3}“ , 3t HA{B}“ A,
pr M, (B)"5™, Repeat for M(B3A).

1.10 Deduze 1,11 from 1,12 by showing L{A}“ = D#R{ﬂ}f{n] = (] for

gy = REE) | grne: show RS C MHLANA) + RAY) and
2(8) T ™A L) A by induction, noting E(ntl) = f£(n)4n+2).

1.11 If A is any nonassociative algebra in which LAR.A': ﬂ{ﬁ]Lﬁ show the
Left-Right Nilpatence Theorem 1.12 still holds,

1.12 TProve Etherington's Ideal Theorem: An ideal B in & linear algebra A

iz nilpotent 1ff 1its multiplication algebra Hﬁ(E} acts nilpotently om
A, If all powers B" are ideals then B ia nilpotent 1ff its multipli-
cation ideal M(BsA) is nilpotent., In particular, an ideal B in an
alternative alpgebra A 1= nilpotent iff M(B;A) is nilpotent.

1,13 Show that if A 1a nilpotent go 18 any subalgebra and any homomorphic
image. If powers of ideals are ideals, mhov any finite sum of nilpotent
ideals in A is mgain a nilpotent ideal. (Hint: use exercise 1.12),

1.14 TIf A is 4-dimenaional over ¢ with basis b,c,z,w such that cz = w, bw = g,
and all ather products of basis elements are zerp, show A = B4C where

B = fbtbz+dw and C = Jetdz+dw are nilpotent ideals - yet A ltgelf is

not nilpetent, Show A/B and B are nilpotent yet A is not nilpotent.

Thia example is not alternative, and indeed we will gee A/B and B
nilpotent implies A nilpotent when A is alternative with finitemess

conditions (because these guarantee nilpotence equals solvahiliry).



