§3 Associativity thecrems

The Rasic Associativity Theorem has many useful consegu cnces.,
In a typical application wé are given an alternative algchbra A
and a cartaﬂn.csllcctiﬁn of elemanis a,b,;.. whose basic asso-
ciators Hi{a,b,;...) all wvanish, and we will coneclude that the

vhalosbra ¢la,h,...] they gencrate is asscoiative, Yor exampla,

it}
b
2

there are no basic associaters of degree 1 or 2 cnly one of

degres 3, so

3.1 {(Dower Associativiiy Theorem). Any slement a @ A generales
b x 4 q

an associative subalgebra ¢[al. G

3.2 (Rriin's Theoram). Any two slements a,b of an alternativs
shra generate an associative subalgebra ¢[a,pl. &

3.3 (Cenersliased Artin Theorsm). If the clements a,h,¢c & A
associate, [a,bsc)] = 0, thsn they gsncrate an asacciative sub-
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I+ is not brue that three elensnhs neccssary Jgenerate an

if la,b,e] = 0 always held

I
l':]'l_

associative subialgebra - indesd,

then all zlternztive algehras weould be associalive, Lo which the

Cavley algebra would strenususly chject.

TL should be noted Lhal Artin's theorem provides an elsgant

charagcterization of alternative aldebras:
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3.4 (Artin's Theors=m). &An algebra is alternative iff every

two clements generate an asscciative subelgebra.

Proof. If each a,b generate an associative subalgebrz then

in particular the assocziators [a,a,b]l and [b,a,al vanish, so

the algebra is laflk and right alternative. £

NLlready at this stage we can prove Wedderburn's Theorem on finite

division algebras oy reduction to the associalive case.

3.5 {Wedderburn's Theorem on Finite Divisian Algebras). A finite
alternative division algshra is & finite (commutative, associaliwve)

Fiald.
This [ollows from the (formally) more gencral

3.6 (Wedderburn's Theorem on Finite bBamainz). A finite alternative

_demain is a finite (commukative, assocliative)] Ziszld.

Procf. We induct en ths number n of generators, n = 0 belng

vacuaus. If the rasult is true for n then any subalgebra @[ﬂl”'Fxn!

(Using a subdomain) is a finite field, hence by ficld theory gen-

crated by a sinogle gencrator x (in facl, consists of zezo and Lhe
b i g

2 ph-1 . . .
powers x, X oy, M = 1) . But then for nd4l generalbors we

o
|

hrawve B lw, o

n’ “n+lj = WlHy &

. ] generatad by Wwo claments,

n+l

henoe asscciative by Artin, and still a finite domain, so a field

by the associative Wedderburn Theorem. L B
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Artin's Theorenm makes ik trivial to check whsther an iden-

tity in 2 variables holds - just see whether it holds in all

1

associative algesbras, i.e. write it down without parentheses
and see if it is formally zsro. For example, any associator
involwving 2 wvariables, like [ixy) ™, ¥, ¥xy] , 18 guarantesd to

vaniszh. We stats Lhi=s as

3.7 (Artin's Principle). If an identdcy £(x,v) = 0 in two
variaoles holds fer all associabtive algebras, it holds for all

et

alternative algelbras. i

2.8 (Throw-in—a-Hucleizer-Theorem). If B is an asscuoialive
subalgebra of A and ngx(B) , the nucleizer of B ; thean fin, EB]

is an associative subslgsbhra.

proof. We apply the Basic Associator Theorem to the ordered

"generating sct {nlWEB . The hasic associators are the [n, b, , Db

iy i2
(==+1. )] and [b. ; by + b: {*-+h, }] . The first wvanishe:s since
i i 3 i. 3:
n 1 2 3 n _
n € H(L) and ihe second becausc B is asssceciacive by hypolthesis. 3

4

3.9 Cornllary. A maximal associative subslyebra B is nucleizer-—
clozed, N(B) =B . I[3

TL is essential in this result that we throw in nucleciezing
clements one at a time (80 Lhe elements we throw in must nueleize
larger and larger subalgebras). We cannot throw in H{B} all at
once - Lthe subalgebra gensrated by U and N(E) need not De asso-

ciative, as ic ecasily scen from the case B = 0 , N(E) = A where
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A is not asscciative. However, we can throw in eloments of

the nusleus . since they nucleize anything.

3.10 (Throw-in—the-¥ucleus Theorem). IL£ B is an associative
subalgebra of A, =o Is the subalgsbra genarated by B oand Lthe

nucleus  MNOA) .

Iroof. We could use lLransfinite indugtieon on the Lhrow-
in-a-Nucleizer Theorsm. Mors elegantly, lat C be a maximal
assosiative subalgebra containing B (Feornify). 1f n & M {A)

then n & N(Q) , 2o by thz Corcllary 3.L1l n & € , and N{A) & E .

This I oand H{AY) are contained in an asscciative subalgebra 0. K

We san extond our previous associativity results te the

cane of invorses,

3.11 (Throw-in-an-lnverse Temma). I L is an assooiative

= B im in—

by

subalgebra of a unif.al zlternative algshra A and
: ]

; 4o " F] . : 3 -
vertible, then B and b ~— generste an assccoiative subalgebra.

PROOF. By the Throw-in-a-noncleizer Lemma 1t suffices 1if
= - Py
b 1¢5N{E} podlen [k j,u,ﬂ] = O for all o4 & Ba Bat (b "eo)d
—_— ._l 4 = -_]'l B e e o - 3 . “J.r L - —]_ 2
= (b ~ey{(a)h "1 (Tnverse Formula) = b “{cidb):b (micddle

Moufang) = h-l{{cd}b}b_l

i

{gince B is asooclative) =

(b {ui}}{hh"l}{mmufang again) = h_ljad} ¢ B

We say o subalgchra © is Inverse-closed in A if whonever

an element of € has an inverse in A that inverse belongs to Co

We can extend 3.11 by throwing in all inverses:
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3,12 (Inverss Ulosurs Thecrem). EBEvery maximal asscciative
subalgebra is inversec-clesed. Conseguenbtly, cvery associative
subalgebra is contained in an inverse-closed associative sub-

algehra.

PROOF. Ict C bc a maximal assocciotive subalgsbra con-
taining the given subalgebra B. IL c€C iz invertible (hen

by 3.11 € and c generate an asscciative subalgsbra; by maxi-

mality this musi be €, so DF1E£C and € is inversse-clesed. B

3.13% EEMARK, Actually we only nced kb = 1 since Lhis

implies R _4 R = T by the One-Sides Inverss Theorom I.4.1, so
i) :

. . R =X 2 i i : g 4

it is erough it b is ecnly a right inverse for b. (Similarly

i€ it dis & lsft inverse). Thus we can throw in coe-sided inversas.

if b odi# righl inwvertible but net invertible, then bz = 0

- s . = . .

for gsome z. If Bz =0 then bbb i) o= 1 @mo b 1+z 1s aslsa
_ ; ; el i . _ P,

a right inverse, so (b "+=) - b = z asscciates with B. Thus

we can throw in any right zero divisor of a right-invercible

2

elemanbk. =

3.14 (Artin's Theorem with lnverses), If a,b are invertible
_ - . : 1
elements of a unital alternzlive algebra, then a,b;a ;b En-=

erate an associalive algebra.

Prool. a;b are contained in an assoclative subalgebra
$fa,b] by the ordinary Artin's Thecrem 3.2. Tf € is a maximal
associative subalgebira containing ¢[a,b] then C is inverss-closed

by the Trnverse Closure Theorcm 3.12. Thereiore a_], bul belong



2 i =1 -1, . 2 ; ; i i
to €, and ¢la,b,a “,b 7] is assoclative Dacause 1L 1s & SUD-

algebra of the associative algebra €, i@

3.15 The same argument giwvas a onc-inverse form of the result,

; ’ ; ; -1 y S— o
namcely if a is inwvertible then $[a,a ~  b)] is assccizative.

3.16 (Arbtin's Principle). If a rakional cxpression £({x,v)
vanishes 1n all associative algchras in which it makes sense
{i.e. where all reguisite inverses axist) , then it vanisheos in

all aliternal.ive algsbras in which ik makes sScnsco.

¥roef. Any maximal asscelative subalgebra C zontaining
¢la,b] is invarse-closed, hence eontains all raticrnal expressions
in a,b which exist in A, If f£(a,b) nakes senss in 4 it makes
sense in ¢, hence wvanishes, [
3.17 ETWrGWHin—a—Quasﬁ—lnfersé Lemma)., Tf B is an associative
gubalgebra of an alternative algehra &, and b is guasi-invertible
wiith guazi-inversa ¢, Lhen B and ¢ gonerats an ascoclative sub-

algchra.

= 2
roof. Passing to the unital hull »o= 81 + A if necessary,
) N .
B'= 01 4 B stayg associative; in B the elsmenl 1-b is invertible
~u
with inverse 1l-¢, sc by the Throw-in-an-Inverse Lemma B and l-c

generiate an associative algsbra. Then its subalgebra generaled

by B and e i3 zlsc associalive. (3
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3,18 (Quaszi-Inverse Closure Theorem). Every associative sub-
algebra of an alternative algebra is contained in a guasi-

inverse glosed zsscoiabtive subalgebra.

Proof. If ¢ is a2 maximal assocciative subkaleosbra contszin-

ing B, thon € is guasi-inverse closed by the above. 0

C o=

2.19 {(Arbkin's Thecram with Quasi—InveraéE}. ILf a,b are quasi-—
invertible eloments of an alternative algebra with gquasi-inverses

c,d ther a,b,c,d gensrate an associative subalgebra. [

ra

Further associztivity resulis will be leift to the axercise.

Txerciss

3.1 Show ;u;b"l,d] =0 1F [e,b,d] = 0 by showing

[ff;'nj‘t)_l,b"l,l:r_l[‘:;-d}J T L 1

L bdlh s B leihedll T .

3.2 Pyove Lhal if a,b,c,.d E*ﬂ satisfy Ja,b,c] = [&,b,d4] = [a,c,d]
= [b,e,d] = [a,b,2d] = 0 they gerzrate zn associative subzlgohrsa,
3.3 If = subsct 8 of A satisfies [4,5,8] = 0 prove [B,EA] = 0

3.4 TIF [5,8,A] = |T,T,A] = 0 for subsets 5,T7C A show #[5,7] is

oosocintive., More gencrally, if [B,5,4] — [w,V,Aa] — [B,EB,.0n] =
[2,%,F] = 0 ghow [5,%,P] is essoctalive.
3.5 If B is an associative szubalgebra of A and [$,B,EB] = [8,8,A]

= (0 prove ¥[H,5] is asscocialive.



3.7

If a,b,c € A are invertible and [a,b,g¢] = ¢ , show

-1 =1 <1 4 ; i
dla,b,ec,a ;b “,c 7] is aszociativa.

Is a maximal associative algehra "root-closed": if B iz

3 . . - . . . ¥ ] . .
- associative and 2 € A invertible with a@ = b & B, is

$|B,a] assveiative? What if a is not reguir

invertibler



