§2 Basic associativity tests.

We want to show that an element w nucleizes a subalgebra B as soon as certain "basic" associators, involving w and the generators of B, vanish. From this we show that if the basic associators on a set of generators for B vanish, then B is associative. This leads to a host of associativity theorems in the next section.

We fix an element w@A and a set $\{x_i\}$ of generators for the subalgebra B @A. An associator [w,p,q] where p,q are monomials in the x_i of degrees ∂p , ∂q respectively is said to be a w-associator of degree $n=\partial p+\partial q$. A w-associator

$$N_{W}(x_{i_{1}}, \dots, x_{i_{n}}) = [w, x_{i_{1}}, x_{i_{2}}, (x_{i_{3}}, (\dots, x_{i_{n}}))]$$

is said to be in (left) <u>normal form</u>. If the index set I is linearly ordered, a <u>basic w-associator</u> of degree n is a normal $N_w(x_i, \dots, x_i)$ where $i_1 < i_2 < \dots < i_n$ (in particular, all the variables are distinct).

2.1 (Basic Nucleizing Lemma). The ideal $A_{W,n}$ in A generated by all w-associators of degree $\leq n$ coincides with the ideal $B_{W,n}$ in A generated by all basic w-associators of degree $\leq n$.

Proof. Since basic w-associators are a special kind of w-associator, we clearly have $B_{w,n} \subset A_{w,n}$, so we need only prove $B_{w,n} \supset A_{w,n}$. We do this by induction, the result being vacuous for n=0,1. Assume the result for n-1, $B_{w,n-1} \supset A_{w,n-1}$. It suffices if $A_{w,n} \equiv B_{w,n} \pmod{A_{w,n-1}}$.

We can write p = M(1), q = N(1) for $M, N \in M_A(B)$ multiplication operators, even though 1 may only be a figment of our imagination (i.e. an element of A). By Corollary I,7.8 to the Generation Lemma, $M_A(B)$ is generated by the L_{\times_i} and R_{\times_i} since the \times_i generate B. Therefore we need only consider associators [w,p,q] for p = M(1), q = N(1) with $M = M_{\times_i}$.

$$N = M_{x_{i_{r+1}}} \cdots M_{x_{i_n}}$$
 and each M_{x_k} is either L_{x_k} or R_{x_k} .

We have $[w,xr,s] + [w,rx,s] = x \circ [w,r,s] + r \circ [w,x,s]$ by linearized middle bumping and [w,xr,s] + [w,xs,r] = r[w,x,s] + s[w,x,r] by linearized left bumping, so

 $[w,R_{_{\mathbf{X}}}\ r,s] \equiv -\ [w,L_{_{\mathbf{X}}}\ r,s] \equiv [w,r,L_{_{\mathbf{X}}}\ s]$ modulo associators of lower degree. Thus we can move an $R_{_{\mathbf{X}}}$ or $L_{_{\mathbf{X}}}$ from r to s (perhaps introducing a minus sign or changing on R to an L); peeling off one operator at a time we can move all the operators from q to p,

 $[w,p,q] = [w,M_{x_{i_r}}, M_{x_{i_1}}, M_{x_{i_{r+1}}}, M_{x_{i_{r+1}}}, M_{x_{i_n}}] \equiv \pm [w,M_{x_{i_{n-1}}}]$

M' $_{x_{i_1}}$. Now we move them all back to $_{x_{i_1}}$, except this time we convert all R_x 's to L_x 's (our process has already done that to the R_x 's in q, but now we do it to those in p too):

$$[w,p,q] = \pm [w,x_{i_1}, x_{i_2}, \dots x_{i_{n-1}}, x_{i_n}] = \pm [w,x_{i_1}, x_{i_2}, \dots x_{i_n}]$$

This is almost basic, it still needs to be straightened so that $i_1 < \cdots < i_n$. This will follow if $[w,x_1, x_1, x_1, \cdots x_n]$ is an alternating function of its arguments mod $A_{w,n-1}$. Clearly it is linear in each variable and falls into $A_{w,n-1}$ if $x_1 = x_1$ by right bumping. If $x_1 = x_1$ for $k \ge 2$ we move L's over to x_1 to get $[w,x_1, M_x, M_x, M_x] = [w,M^*x_1, M_x^2]$ $= \pm [w,r,x^2]$, use linearized right bumping to get $[w,x_2, r_3]$ modulo associators of lower degree, then middle bumping to get $\pm x \cdot [w,x,r_3]$ congruent to zero modulo associators of lower degree. Thus $[w,x_1, x_1, x_2, \cdots x_n] = 0$ mod $A_{w,n-1}$ if two adjacent variables are equal, and the function is alternating. Consequently [w,p,q] is congruent to a multiple of a basic associator $[w,x_1, x_1, x_2, \cdots x_n]$ for $i_1 < \cdots < i_n$ modulo $A_{w,n-1}$ and $A_{w,n} \subset B_{w,n} + A_{w,n-1}$.

From this we get

2.2 (Basic Nucleizing Theorem). If a subalgebra B \subset A is generated by elements $\{x_i\}$, then an element $w \in$ A nucleizes B iff all basic w-associators vanish,

$$[w_i x_{i_1}, x_{i_2}, \dots, x_{i_n}] = 0$$
 $(i_1 < i_2 < \dots < i_n)$.

proof. If [w,B,B]=0 certainly the basic w-associators must vanish. Conversely, saying these vanish says all $B_{w,n}=0$, and since $A_{w,n}=B_{w,n}$ by the Lemma we have $A_{w,n}=0$ too. Thus [w,p,q]=0 for all monomials p,q in the x_i ; since the x_i generate B, B is spanned by such monomials, and [w,B,B]=0.

In characteristic # 3 situations we can break an associator involving a product into smaller pieces.

- 2.3.Lomma. In any linear algebra we have the associator identity
- (2.4) [xy,z,w] [x,yz,w] + [x,y,zw] = x[y,z,w] + [x,y,z]w while in any alternative algebra we have an identity
- (2.5) 3[x,y,zw] = [x,[y,z,w]] [y,[x,z,w]] + w[x,y,z] + [w,x,y]z + wo[x,y,z] + [w,x,y]oz.

Proof. (2.4) is just a matter of verification: $\{(xy)z\}_W - (xy)(zw) - \{x(yz)\}_W + x\{(yz)w\} + (xy)(zw) - x\{y(zw)\}$ $= \{(xy)z - x(yz)\}_W + x\{(yz)w - y(zw)\} = [x,y,z]_W + x[y,z,w] .$

The basic idea of (2.5) is clear: by the bumping formulas [x,y,zw] is an alternating function of its arguments modulo smaller associators, so $3[x,y,zw] \equiv [z,w,xy] + [x,w,yz] + [x,y,zw] = [xy,z,w] - [x,yz,w] + [x,y,zw] \equiv 0$ by (2.4).

To change congruence to equality, we simply fill in the details

3[x,y,zw] = -[y,x,zw] + [zw,x,y] + [x,y,zw] $= \{[w,x,zy] - y[x,z,w] - w[x,z,y]\} + \{-[yw,x,z]$ $+ [y,w,x]z + [z,w,x]y\} + [x,y,zw] \text{ (bumping)}$ = [zy,w,x] + [z,x,yw] + [x,y,zw] - [y,[x,z,w]] + w[x,y,z] + [w,x,y]z

Don't bother trying to remember formula (2.5), just remember it exists.

Now we want a test for associativity of the whole algebra A. Again we fix a generating set $\{x_i\}$ with linearly-ordered index set 1. If p,q,r are monomials in the x_i we say [p,q,r] is an associator of degree $n=\partial p+\partial q+\partial r$. A basic associator of degree n is one of the form

$$N(x_{i_1}, \dots, x_{i_n}) = [x_{i_1}, x_{i_2}, x_{i_3}, \dots, x_{i_n})](i_1 < i_2 < \dots < i_n)$$

2.6 (Basic Associating Lemma). The ideal ${\bf A}_n$ in A generated by all associators of degree $\le n$ coincides with the ideal ${\bf B}_n$ in A generated by all basic associators of degree $\le n$. Furthermore, ${\bf 3}^{n-3}\ {\bf A}_n \subset {\bf B}_3 \ .$

proof. If [p,q,r] is an associator of degree n, let x_{i_1} be the lowest index appearing in p,q, or r. Interchanging p,q,r we may assume it occurs in q. Then holding p fixed gives [p,q,r] congruent modulo p-associators of lower degree to $[p,x_{i_1},q]$ (even $q=x_{i_2}(x_{i_3}\cdots x_{i_n}))$. Now $[p,x_{i_1},q]=[x_{i_1},q,p]$; repeating this procedure with x_{i_1} fixed, $[x_{i_1},q,p]$ is congruent modulo x_{i_1} -associators of lower degree to $[x_{i_1},x_{i_2},x_{i_3}(\cdots x_{i_n})]$ for $i_2 < i_3 < \cdots < i_n$. By choice of i_1 we have $i_1 \le i_2$; if $i_1 = i_2$ the associator vanishes, otherwise $i_1 < i_2$ and $[p,q,r] = [x_{i_1},x_{i_2},x_{i_3}(\cdots x_{i_n})]$ is congruent to a basic associator modulo A_{n-1} . Once more we have $A_n \subseteq B_n + A_{n-1}$, so by induction $A_n = B_n$. Identity (2.5) shows $3A_n \subseteq A_{n-1}$; respecting this, with each factor 3 lowering degree by one, gives $3^{n-3}A_n \subseteq A_3 = B_3$.

This leads to the following associativity test:

2.7 (Basic Associativity Theorem) If $\{x_i\}$ is a set of generators for an alternative algebra A, then A will be associative if each basic associator vanishes

$$[x_{i_1}, x_{i_2}, x_{i_3}, \dots, x_{i_n}] = 0 (i_1 < \dots < i_n)$$

If 3 is injective it suffices if the generators associate

$$[x_{i_1}, x_{i_2}, x_{i_3}] = 0$$
.

Proof. A is associative if all associators of arbitrary degree in the generators vanish, i.e. all ${\bf A}_n=0$. Our hypothesis guarantees all basic associators vanish, ${\bf B}_n=0$. By the Basic Associating Lemma ${\bf A}_n={\bf B}_n$. Therefore ${\bf A}_n=0$ and A is associative.

If we only assume the basic associators of degree 3 vanish, $B_3=0, \ \text{but 3 is injective, then 3}^{n-3} \ A_n \subset B_3=0 \ \text{implies A}_n=0$ and again A is associative.

We stress again that IN CHARACTERISTIC # 3 SITUATIONS IT SUFFICES

IF THE GENERATORS ASSOCIATE, but otherwise one must check all

basic associators. Once more characteristic 3 breaks up a lovely
theorem.

Another case where associating with generators is enough is when the element also commutes with generators. We need three preliminary formulas

- $(2.8) \quad 3[x,y,z] = [xy,z] x[y,z] [x,z]y$
- $(2.9) \quad 3[x,y,z] = [xy,z] + [yz,x] + [zx,y]$
- (2.10) [x,y,zw] = [z,[x,y],w] + [z,x,y]w + z[x,y,w] .

The first two formulas are just verifications: 3[x,y,z] = [x,y,z] + [z,x,y] - [x,z,y] = (xy)z - x(yz) + (zx)y - z(xy) - (xz)y + x(zy) = [xy,z] - x[y,z] - [x,z]y and <math>3[x,y,z] - [x,y,z] + [y,z,x] + [z,x,y] = (xy)z - x(yz) + (yz)x - y(zx) + (zx)y - z(xy) + [xy,z] + [yz,x] + [zx,y] + [zx,y]

$$+ z[x,y,w] = [z,xy,w] - [z,yx,w] + [zx,y,w] - [z,xy,w]$$

$$+ [z,x,yw] (by (2.4)) = - \{[z,yx,w] + [z,yw,x]\} + \{[zx,y,w]$$

$$+ [zw,y,x]$$
 - $[zw,y,x] = - \{x[z,y,w] + w[z,y,x]\} + \{x[z,y,x]\}$

+
$$w[z,y,x]$$
} + $[x,y,zw]$ (left bumping) = $[x,y,zw]$.

2.11 Proposition. If an element c commutes and associates with generators \mathbf{x}_i of a subalgebra B, then c centralizes B:

$$[c,x_i] = [c,x_i,x_j] = 0$$
 implies $c \in C_A(B)$.

Proof. We first show c nucleizes B. By the Basic Nucleizing Theorem it suffices if basic c-associators $[c,x_i,x_i^{(***x_i)}]$ vanish. We induct on n, the result being true for n=2 by hypothesis. If true for degrees < n then by (2.10)

Once c nucleizes B, commutativity is easy: the set of b \in B which commute with c is a subspace containing the generators \mathbf{x}_i and closed under multiplication,

[c, bb'] = [c, b]b' + b[c, b'] - 3[b, c, b'] = 0 by (2.8) and nuclearity of c , so it coincides with B.

Exercises

- 2.1 Prove directly that if c commutes and associates with a set of generators for a subalgebra B, then c centralizes B. $(\text{Prove } [c,p] = [c,q,r] = 0 \text{ for monomials by induction on } \\ n = \partial p = \partial q + \partial r) \ .$
- 2.2 Prove the Basic Associativity Theorem directly, showing that $A_n \subset B_n + A_{n-1}$ by using induction to rearrange parentheses in the monomials p,q,r making up an associator [p,q,r] of degree n.
- 2.3 Prove that there is no relation $3[w,x,yz] = \alpha_1[w,x,y]z$ + $\beta_1 z[w,x,y] + \alpha_2[w,y,z]x + \beta_2 x[w,y,z] + \alpha_3[w,z,x]y$ + $\beta_3 y[w,z,x]$ valied in all alternative algebras (i.e. there is none in the free algebra). Thus in (2.5) there is no way make all the lower degree associators be w-associators. Give an example where $[w,x_i,x_j] = 0$ for a set of generators for B but w doesn't nucleize B. (even over a field of characteristic $\neq 3$).