## 58 Bimodules with involution

A bimodule with involution or \*-bimodule for a \*-algebra A is a bimodule M together with an endomorphism  $m \rightarrow m$  of period 2 such that

induces an involution on the split null extension  $E = A \oplus M$ , turning it into a \*-algebra. Because  $\overline{xy} = \overline{yx}$  already holds for  $x,y \in A$  (if A is a \*-algebra) or for  $x,y \in M$  (as  $M^2 = 0$ ), the condition amounts to

$$(8.1) \qquad \qquad \overline{am} = \overline{ma} \qquad \overline{ma} = \overline{am} .$$

This makes it clear that the negative of an involution on M is again an involution. Also, the regular bimodule M = A with the natural involution becomes a \*-bimodule.

We have obvious notions of \*-sub-bimodula, \*-irreducible, \*-completely reducible, \*-homomorphism etc. One convenient fact about \*-homomorphisms: if M  $\rightarrow$  N satisfies F(am) = aF(m) and  $F(\overline{m}) = \overline{F(m)}$ , it automatically satisfies  $F(ma) = F(ma) = F(\overline{ma}) = F(\overline{m}) = \overline{aF(m)} = \overline{F(m)}a$ .

For a composition algebra A we thus obtain the <u>regular \*-bimodules</u>  $reg_+(A)$  and  $reg_-(A)$  obtained from the regular bimodule M = A by taking the usual involution or its negative. The <u>Cayley-Dickson \*-bimodules</u>  $cay_+(A)$  and  $cay_-(A)$  are obtained from the Cayley-Dickson bimodule M = Ag by taking the usual involution (namely -I) induced from the involution on  $C(A) = A \oplus AG$ , or its negative (namely +I).

As an example, we consider the possible involutions on the regular and Cayley bimodules for the composition algebras.

8.2 Proposition. If  $\mathbb C$  is an ordinary composition algebra of dimension 1, 4, 8 over a field  $\Phi$  then the only involutions on reg  $\mathbb C$  are  $\pm$  the standard involution; if  $\mathbb C$  has dimension 2 the involutions are of the form  $f(a) = c_f \bar a$  where  $n(c_f) = 1$ , and in this case  $\mathbb C_f$  is \*-isomorphic to reg. If  $\mathbb C = \Phi e_1 \oplus \Phi e_2$  is split of dimension 2 there are no involutions on the module  $\Phi e_f$ .

If  $\mathbb C$  is a division algebra of dimension 1, 2, 4 then the only involutions on cay  $\mathbb C$  are  $\pm$  the standard involution (i.e.  $\mp$ 1); if  $\mathbb C = e_1 \mathbb C \pm e_2 \mathbb C$  is split of dimension 2 or 4, the only involution on cay  $(e_1 \mathbb C)$  are  $\pm$  the restrictions of the standard involutions (i.e.  $\mp$ 1).

Proof. According to the Commuting Criterion 3.19, in the regular bimodule reg  $\mathbb{C}$  of dimension 1, 4, 8 the only commuters are the elements of  $\emptyset$ 1, so an involution must have f(1) = al; since  $f^2(1) = 1$  we see  $a^2 = 1$ , so  $a = \pm 1$  and by (8.1)  $f(a) = f(a \cdot 1) = f(1)\overline{a} = \pm \overline{a}$ . Thus f is  $\pm$  the standard involution. In dimension 2, if f(1) = c then  $f(a) = f(a \cdot 1) = f(1)\overline{a} = c\overline{a}$  and  $1 = f(f(1)) = f(c) = c\overline{c}$ . The map  $a \mapsto c\overline{a}$  is  $a \stackrel{*}{=} -i$ somorphism  $\mathbb{C}_f \stackrel{F}{\to} \mathbb{C}_+$ : it is a linear bijection with  $F(a \cdot b) = c\overline{a}b = a\overline{c}b = aF(b)$  and  $F(b \cdot a) = c\overline{b}a = F(b)a$  and  $F(f(a)) = F(c\overline{a}) = c\overline{c}a = \overline{a}$ . Since  $f(e_i) = f(e_ie_i) = f(e_ie_i) = f(e_ie_i)$ , there are no involutions on  $\phi e_i$ .

Cay  $\mathbb{C} = \mathbb{C}\ell$  is not an alternative bimodule if  $\mathbb{C}$  has dimension 8. Let  $\mathbb{C}$  be a division algebra of dimension 1, 2, or 4. If  $f(\ell) = c\ell$  then  $f(a\ell) = f(\ell)\overline{a} = (c\ell)\overline{a} = (ca)\ell$ , where  $\ell = f(f\ell) = f(c\ell) = c^2\ell$ . But  $c^2 = 1$  in a division algebra implies  $c = \pm 1$  (as (c-1)(c+1) = 0), so  $f(a\ell) = \pm a\ell$ . In this case the only involutions are  $\pm 1$ . If  $\mathbb{C}$  is split of dimension 2

or 4,  $\mathbb{C} = e_1 \mathbb{C} \oplus e_2 \mathbb{C}$ , then cay  $\mathbb{C}$  is not irreducible and has lots of involutions  $f(a\ell) = (ca)\ell$  for  $c^2 = 1$ . However, cay  $(e_i \mathbb{C})$  is irreducible. If f is an involution on  $(e_i \mathbb{C})\ell$  we have  $f(e_i \ell) = c\ell$   $(c = e_i c)$  and  $f((e_i a)\ell) = f(a(e_i \ell)) = f(e_i \ell) \overline{a} = (c\ell) \overline{a} = (ca)\ell$ . In particular  $c\ell = f(e_i \ell) = f((e_i e_i \ell)) = (ce_i \ell)\ell$ , so  $c = ce_i$  and  $c = e_i ce_i$  belongs to the Peirce space  $e_i \mathbb{C} = e_i = e_i$ . From  $f(f(e_i \ell)) = e_i \ell$  we see  $c^2 = e_i$ ,  $\gamma^2 = 1$ ,  $\gamma = \pm 1$ ,  $c = \pm e_i$ . Thus  $f((e_i a)\ell) = \pm (e_i a)\ell$ , and f is  $\pm 1$ . We

Strange things happen with involutions in characteristic 2 (since + and - are the same), so we first consider the characteristic # 2 case.

8.3 \*-Bimodule Theorem. (First Version) Every \*-bimodule for an ordinary composition algebra C over a field of characteristic # 2 is completely \*-reducible, with \*-irreducible sub-bimodules isomorphic to the \*-sub-bimodules of the regular and Cayley-Dickson \*-bimodules.
We thus obtain the following list of \*-irreducibles:

I.  $\mathbb{C} = \Phi 1$ : reg<sub>+</sub>( $\mathbb{C}$ ), reg<sub>-</sub>( $\mathbb{C}$ )

IIa.  $\mathbb{C} = \mathbb{C}(\phi, \mu_1)$  division algebra:  $\operatorname{reg}_+(\mathbb{C})$ ,  $\operatorname{cay}_+(\mathbb{C})$ ,  $\operatorname{cay}_-(\mathbb{C})$ 

IIb.  $\mathbb{C} = C(\Phi, 1)$  split:  $reg_{+}(\mathbb{C})$ ,  $cay_{+}(\delta e_{1})$ ,  $cay_{-}(\delta e_{1})$ ,  $cay_{+}(\delta e_{2})$ ,  $cay_{-}(\delta e_{2})$ 

IIIa.  $\mathbb{C} = \mathbb{C}(\phi, \mu_1, \mu_2)$  division algebra: reg\_( $\mathbb{C}$ ), reg\_( $\mathbb{C}$ ), cay\_( $\mathbb{C}$ ), cay\_( $\mathbb{C}$ ).

IIIb.  $\mathbb{C} = C(\Phi, 1, 1)$  split:  $reg_{+}(\mathbb{C})$ ,  $reg_{-}(\mathbb{C})$ ,  $cay_{+}((e_{1}\mathbb{C})i)$ ,  $cay_{-}((e_{1}\mathbb{C})i)$ 

IV.  $\mathbb{C} = \mathbb{C}(\phi, \mu_1, \mu_2, \mu_3) : \operatorname{reg}_+(\mathbb{C}), \operatorname{reg}_-(\mathbb{C}).$ 

Proof. Once more the essential part of the proof is that every \*-bimodule is a sum of images of regular and Cayley-Dickson \*-bimodules. The difference of the present list from that in the Bimodule Theorem is due to the fact that for  $\mathbb{C} = \mathbb{C}(\Phi, \mu)$  we don't need both involutions since  $\operatorname{reg}_+(\mathbb{C}) \stackrel{\wedge}{=} \operatorname{reg}_-(\mathbb{C})$  under the map  $a \to ia$  in characteristic  $\neq 2$ :  $\operatorname{reg}_-(\mathbb{C}) = 0 + \Phi i$ ,  $i^2 = \mu 1$  so F(a) = ia is a homomorphism of bimodules which is also a \*-homomorphism since  $\overline{ia} = \overline{ia} = -ia$ ; moreover this is irreducible as \*-bimodule even in the split case as  $\Phi e_1$ ,  $\Phi e_2$  alone don't form \*-bimodules.

To fill M up with regular or Cayley-Dickson \*-bimodules we need only fill it up with symmetric and skew commuters and \*-commuters. Indeed, a symmetric (resp. skew) commuter m generates a \*-bimodule {m} which is an image of reg\_A (resp. reg\_A) since the module homomorphism  $a \rightarrow am$  of 7.2 is automatically a \*-homomorphism:  $a \rightarrow am = + am = ma = am$  (resp.  $a \rightarrow -am$ ). Similarly a skew (resp. symmetric) \*-commuter generates a \*-bimodule {m} which is an image of cay\_A (resp. cay\_A) since  $ak \rightarrow am$  as in 7.4 is a \*-homomorphism:  $ak = -ak \rightarrow -am = -ma = -am$  (resp.  $ak \rightarrow -am$  as in 7.4 is a \*-homomorphism:  $ak = -ak \rightarrow -am = -ma = -am$  (resp.  $ak \rightarrow -am$ ).

In characteristic  $\neq$  2 it is easy to fill M with such elements: since  $m \to \overline{m}$  is an anti-automorphism on E = A  $\oplus$  M, if m is a commuter or \*-commuter so is its image  $\overline{m}$  and hence also its symmetric and skew parts  $m_+ = \frac{1}{2}$  (m +  $\overline{m}$ ),  $m_- = \frac{1}{2}$ (m -  $\overline{m}$ ). Thus every commuter (resp. \*-commuter) is the sum of a symmetric and a skew commuter (resp. \*-commuter) m =  $m_+ + m_-$ , and such elements fill up (i.e. generate) M.

We now develop an alternate approach which works in all characteristics.

Instead of filling a bimodule M up with homomorphic images of the 4 basic bimodules  $\operatorname{reg}_{\pm}^A$  and  $\operatorname{cay}_{\pm}^A$  we fill it up with homomorphic images of two bimodules  $\operatorname{reg}(A)$  and  $\operatorname{cay}(A)$  with exchange involution.

Suppose M is any bimodule (not necessarily with involution) for a \*-algebra A. Then we can imbed M in the exchange \*-bimodule

$$ex(M) = M \oplus M^*$$

with A-module structure

$$a(m,n) = (am,na)$$

and exchange involution

$$\overline{(m,n)} = (n,m)$$
.

This is indeed an involution of the module structure since  $\overline{a(m,n)} = \overline{(am,n\overline{a})} = (na,am) = (n,m)\overline{a} = \overline{(m,n)}\overline{a}$ . To see ex(M) is an alternative A-bimodule, notice that M  $\subset$  ex(M) carries its given bimodule structure while the representation on M\* is given by  $\ell_a^* = r_-$ ,  $r_a^* = \ell_-$  in terms of  $\ell_a^*$ ,  $r_a^*$  on M. Now we know we can give M the structure of an  $A^{op}$ -bimodule  $M^{op}$  by  $\ell_a^{op} = r_a$ ,  $r_a^{op} = \ell_a$  (the split null extension is then just  $A^{op} \oplus M^{op} = (A \oplus M)^{op}$ , which is alternative if  $A \oplus M$  is). Composing this with the isomorphism  $A \to A^{op}$  by  $A \to \overline{a}$ , we get a birepresentation  $\ell_a^*$ :  $A \to \overline{a} \to \ell_a^0 = r_a$  and  $A \to \ell_a^0 = \ell_a$ . Thus as bimodule ex(M) is just the direct sum of the two bimodules M and M\*.

Note that this construction is additive,

$$ex(\theta_{\underline{i}}M_{\underline{i}}) \stackrel{?}{=} \theta_{\underline{i}} ex(M_{\underline{i}})$$
.

The usefulness of the exchange bimodule resides in its universal property.

8.4 (Universal Property of Exchange Rimodule) Any bimodule homomorphism  $\stackrel{F}{M} \stackrel{\to}{\to} N \text{ of a bimodule M into a $$*-$$bimodule N extends uniquely to a $$*-$homomorphism ex(M) $\to N$,$ 



Proof. If we define  $\hat{F}(m,n) = F(m) + \overline{F(n)}$  we have a \*-homomorphism because  $\hat{F}(a(m,n)) = \hat{F}(am,na) = F(am) + \overline{F(na)} = aF(m) + \overline{aF(n)} = a\hat{F}(m,n)$  and  $\hat{F}(m,n) = \hat{F}(n,m) = F(n) + \overline{F(m)} = \overline{F(m)} + F(m) = \hat{F}(m,n)$ . This is unique since it is uniquely determined on the \*-generating set M of ex(M).

8.5 Example. If  $\mathbb{C} = \phi e_1 \boxplus \phi e_2$  is split of dimension 2 then

since the imbedding  $\Phi e_1 \to reg_+ \mathbb{C}$  extends to a \*-imbedding  $ex(\Phi e_1) \to reg_+ \mathbb{C}$ .

Thus we have a universal way of building \*-bimodules out of ordinary bimodules. What happens if M already carries an involution, i.e. an endomorphism f of period 2 satisfying f(am) = f(m)a and f(ma) = af(m)? In this case the set of f-traces

$$t_f(M) = \{(m, f(m))\} \stackrel{\circ}{=} M_f$$

is a \*-sub-bimodule of ex(M) which is \*-isomorphic to  $M_f$ :  $m \neq (m, f(m))$ is a linear bijection  $M_f \rightarrow f_f(M)$  with F(f(m)) = (f(m), f(f(m)) = (f(m), m))  $= (\overline{m, f(m)}) = \overline{F(m)} \text{ and } f(am) = (am, f(am)) = (am, f(m)\overline{a}) = a(m, f(m)) = aF(m).$ 

Thus if M is a \*-bimodule it is \*-imbedded in ex(M). What does the the remaining part of ex(M) look like? We claim it looks like M, but relative to the involution -f:

$$ex(M)/t_f(M) = M_f$$
.

Indeed, by the Universal Property 8.4 the isomorphism  $M \stackrel{\tilde{F}}{\to} M_{-\tilde{f}}$  induces an epimorphism  $ex(M) \stackrel{\tilde{F}}{\to} M_{-\tilde{f}}$  by  $\hat{F}(m,n) = F(m) - f(F(n)) = m - f(n)$ , with kernel  $\{(m,n) \mid m = f(n)\} = \{(m,f(m))\} = t_{\tilde{f}}(M)$ . Thus F induces \*-isomorphism  $ex(M)/t_{\tilde{f}}(M) \to M_{-\tilde{f}}$ .

In characteristic  $\neq$  2 the exchange bimodule decomposes into the direct sum

(8.6) 
$$\operatorname{ex}(M) = \operatorname{t}_{\mathbf{f}}(M) \oplus \operatorname{t}_{-\mathbf{f}}(M) \stackrel{\wedge}{=} \operatorname{M}_{\mathbf{f}} \oplus \operatorname{M}_{-\mathbf{f}}$$

of one copy of M under its given involution, and one copy with the negative of this involution. One way to see this splits is to observe that the bimodule isomorphism M  $\stackrel{f}{\rightarrow}$  M  $\stackrel{in}{\rightarrow}$  ex(M)  $\stackrel{*}{\rightarrow}$  ex(M) (F(m) = (0,f(m)) extends to a \*-automorphism ex(M)  $\stackrel{\hat{F}}{\rightarrow}$  ex(M) of period 2 (F(m,n) = (f(n),f(m)) by universality, so the ±1 eigenspaces of  $\stackrel{\hat{F}}{\rightarrow}$  are the \*-submodules  $f_f(M) = f(m,n) | n = f(m) = f(m,n) | f(n,fm) = f(m,n) | and <math>f_f(M) = f(m,n) | f(m,fm) = f(m,n) |$  and their direct sum.

In characteristic 2, +1 coincides with -1 so  $t_f(M) = t_{-f}(M)$  and

ex(M) does not break up into their direct sum. All we can say is

$$t_f(M) \stackrel{\sim}{=} M_f \stackrel{\sim}{=} ex(M)/t_f(M)$$
.

Next we investigate to what extent ex(M) preserves irreducibility.

8.7 Proposition. Let M be an irreducible A-bimodule. Then the only proper \*-submodules of ex(M) are the submodules  $t_f(M)$  and the only nonzero \*-homomorphic images of ex(M) are ex(M) and all possible  $t_f(M)$  for all involutions f on M (if such exist).

Proof. We begin by recalling the basic fact (Vol. I) that the only proper submodules of M  $_1$   $\theta$  M  $_2$  when the M  $_1$  are irreducible are

$$M_1, M_2, t_f(M) = \{(m, f(m))\}$$

for all possible isomorphisms  $M_1 \stackrel{f}{+} M_2$ . In our case an isomorphism  $M \stackrel{f}{+} M^*$  satisfies  $f(am) = f(m)\overline{a}$ ,  $f(ma) = \overline{a}f(m)$ . If we demand proper \*-sub-bimodules, M and M\* are ruled out, and  $t_f(M)$  is a \*-bimodule only for those f of period 2:  $\overline{(m,f(m))} = (f(m),m) \in t_f(M)$  implies f(f(m)) = m. Thus the only proper \*-submodules are the  $t_f(M)$  for the involutions f on M.

Since a \*-homomorphic image of ex(M) is isomorphic to ex(M)/K for some \*-submodule K, for K = 0,  $t_f(M)$ , ex M we get ex(M),  $t_{-f}(M)$ , 0 respectively.

For all characteristics, we can at least fill up a given \*-bimodule

M for a composition algebra C with images of

$$ex(\mathbb{C}) = \mathbb{C} \oplus \mathbb{C}^*, ex(\mathbb{C} \ell) = \mathbb{C} \ell \oplus \mathbb{C} \ell^*.$$

Just as we can represent  $cay(\mathbb{C}) = \mathbb{C}\ell$  as  $\mathbb{C}$  with operations  $\ell_a = R_a$ ,  $r_a = R_a$ , the formulas  $c(a\ell,b\ell) = ((ac)\ell, (bc)\ell)$ ,  $(a\ell,b\ell)c = ((a\bar{c})\ell, (b\bar{c})\ell)$  show we can represent  $ex(\mathbb{C}\ell)$  as  $\mathbb{C} \oplus \mathbb{C}$  with action c(a,b) = (ac,bc),  $(a,b)c = (a\bar{c},b\bar{c})$ .

8.8 \*-Bimodule Theorem (2nd Version) Every \*-bimodule for an ordinary composition algebra C over a field \$\phi\$ is a sum of \*-homomorphic images of the regular and Cayley-Dickson exchange bimodules ex(C) and ex(C2). The list of images is

I.  $\mathbb{C} = \phi 1$ :  $ex(\mathbb{C})$ ,  $reg_{+}(\mathbb{C})$ 

IIa.  $\mathbb{C} = \mathbb{C}(\phi, \mu_1)$  division:  $ex(\mathbb{C})$ ,  $reg_+(\mathbb{C})$ ;  $ex(\mathbb{C}j)$ ,  $reg_+(\mathbb{C})$ 

IIb.  $\mathbb{C} = \mathbb{C}(\mathbf{e}, \mathbf{u}_1)$  split:  $ex(\mathbb{C}\mathbf{e}_1) \ge ex(\mathbb{C}\mathbf{e}_2) \ge reg_+(\mathbb{C});$   $ex((\mathbf{e}_1\mathbb{C})\mathbf{j}), \ ex((\mathbf{e}_2\mathbb{C})\mathbf{j}), \ cay_{\pm}(\mathbf{e}_1\mathbb{C}), \ cay_{\pm}(\mathbf{e}_2\mathbb{C})$ 

IIIa.  $\mathbb{C} = \mathbb{C}(\Phi, \mu_1, \mu_2)$  division:  $ex(\mathbb{C})$ ,  $reg_{\pm}(\mathbb{C})$ ;  $ex(\mathbb{C}\ell)$ ,  $eav_{\pm}(\mathbb{C})$ 

IIIb.  $\mathbb{C} = \mathbb{C}(\phi, \mu_1, \mu_2)$  split:  $ex(\mathbb{C}e_1) \cong ex(\mathbb{C}e_2) \cong reg_+(\mathbb{C})$ ,  $reg_-(\mathbb{C})$ ;  $ex((e_1\mathbb{C})2)$ ,  $ex((e_2\mathbb{C})2)$ ,  $cay_+(e_1\mathbb{C})$ ,  $cay_+(e_2\mathbb{C})$ 

IV.  $\mathbb{C} = \mathbb{C}(\Phi, \mu_1, \mu_2, \mu_3)$ :  $ex(\mathbb{C})$ ,  $reg_{\underline{+}}(\mathbb{C})$ .

The ex( $\mathbb{C}$ ) and ex( $\mathbb{C}$ £) are never \*-irreducible, and are completely \*-reducible only in characteristic  $\neq$  2.

Proof. From the ordinary Bimodule Theorem 7.1 we know M is a (direct) sum of homomorphic images  $M_1$  of regular or Cayley-Dickson bimodules  $\mathbb C$  or  $\mathbb C$ 2. By the Universal Property 8.4 of the exchange bimodule, the homomorphisms  $\mathbb C$ 8  $\to$   $M_1$   $\overset{\text{in}}{\to}$  M extend to \*-homomorphisms ex( $\mathbb C$ 8)  $\to$  M. Thus M is a

sum of \*-homomorphic images of  $ex(\mathbb{C})$  and  $ex(\mathbb{C})$ .

It remains to list the images. The regular bimodule is irreducible when  $\mathbb C$  is simple, i.e. in all cases but IIb; when  $\mathbb C$  is irreducible we know by 8.7 the only nonzero images of  $\operatorname{ex}(\mathbb C)$  are  $\operatorname{ex}(\mathbb C)$  and  $\operatorname{reg}_{\pm}(\mathbb C)$  (recall by 8.2 the only involutions on  $\mathbb C$  are  $\pm$  the standard involution in dimensions 1, 4, 8, and in dimension 2 are all equivalent to the standard involution). In IIb we have  $\mathbb C = \bigoplus_1 \mathbb H \bigoplus_2 \operatorname{and} \operatorname{ex}(\mathbb C) = \operatorname{ex}(\bigoplus_1) \bigoplus_i \operatorname{ex}(\bigoplus_i) \bigoplus_i \operatorname{reg}_{\pm}(\mathbb C)$  by 8.5, which by 8.7 are irreducible since there are no involutions  $\mathbb C$  on  $\bigoplus_i \operatorname{according}$  to 8.2. This classifies the regular images.

Turning to the Cayley-Dickson images, we know cay  $\mathbb{C} = \mathbb{C} \ell$  is irreducible when  $\mathbb{C}$  has no right ideals, i.e. I, IIa, IIIa. When  $\mathbb{C} \ell$  is irreducible, by 8.7 the only nonzero \* images are  $\mathrm{ex}(\mathbb{C} \ell)$  and  $\mathrm{cay}_{\pm}(\mathbb{C})$  (by 8.2, the only involutions on  $\mathbb{C} \ell$  are  $\pm$  the standard involution in these cases). In the split cases IIb and IIIb we have  $\mathbb{C} \ell = (e_1 \mathbb{C}) \ell \oplus (e_2 \mathbb{C}) \ell$  for  $(e_1 \mathbb{C}) \ell$  irreducible, so  $\mathrm{ex}(\mathbb{C} \ell) = \mathrm{ex}((e_1 \mathbb{C}) \ell) \oplus \mathrm{ex}((e_2 \mathbb{C}) \ell)$ . The \* images of  $\mathrm{ex}(\mathbb{C} \ell)$  are thus sums of \*-images of  $\mathrm{ex}((e_1 \mathbb{C}) \ell)$ , which by 8.7 and 8.2 are again either  $\mathrm{ex}((e_1 \mathbb{C}) \ell)$  or  $\mathrm{cay}_{\pm}(e_1 \mathbb{C})$ .

## Exercises

- 8.1 Verify directly that I is an involution on cay( $\mathbb{C}$ ).
- 8.2 Let t(m) = m + m in any \*-bimodule. If m is a \*-commuter, show t({m}) is a \*-submodule, while if m is a commuter and A is a composition algebra with nontrivial involution then t({m}) generates {m,m}.
- 8.3 Verify directly that if m is a commuter then  $(a,b) \rightarrow am + \overline{bm}$  is a \*-homomorphism  $ex(\mathbb{C}) \rightarrow \{m,\overline{m}\}$ , and if m is a \*-commuter then  $(a,b) \rightarrow am + b\overline{m}$  is a \*-homomorphism  $ex(\mathbb{C} l) \rightarrow \{m,\overline{m}\}$ .
- 8.4 In Proposition 8.2 construct infinitely many involutions on the 2-dimensional module reg(C) when Φ = R. Similarly construct infinitely many involutions on cay(C) when C is split of dimension 2 or 4.
- 8.5 Verify  $F(ma) = F(m) \cdot a$  directly in 8.4, in  $ex(M)/t_{f}(M) \stackrel{\sim}{=} M_{-f}$ , in  $t_{f}(M) \stackrel{\sim}{=} M_{f}$ .
- 8.6 Prove that the exchange bimodules ex(C) and ex(C) are definitely not completely \*-reducible in characteristic 2.