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§7 Bimodules
Suppose % is corpositlen algebra over a field 3, and vensider the
algshra C(B, 1) vhrained from B and the scalar p by the Cayley-Dickson

PTOCESSR:
c{B,p) = B & BE ,

Notice that Loth the space B and the space Bi are invarlant under multi-
plication by B (recall blel) = (cb)L and (ci)b = (cbyt). Thus the sparces
B and BY with the induced multiplications furnish us with B bimodules;

B 1s called the repular bimodule reg (B) and BL the Cayley—Dickson

bimodule cay (B). (Note that 3 is always an altermative bimodule for

B, but BY will be such only when B is associative: [a,b,ef] + [a,ci,b]
= {efab) = (eh)a + (ca)b - (ch)ali = {efzh) - t(blea + (calbls =

{c(ah) - (ca)bit = = [e,a,b]%. Thus when B is a Cayley algebTa Bi is
not =n alternative bimodule just as C{B,n) is met an alternative algcbhre.

Mnother way to interprat the Caylaey-Dickson bimoduls is as follews,
We can identify BY with B a3 a ¥-module, and thc.bircpreﬁentatimn Ay o
of B becomes lbt = ¢b and PLE = ch, i.e, ;b = Hb and Fy = RE '

What are the submedules of these two hasic kinds of bhimodules?
Let's begin with the tepular himodules. The sub-Dbimedules are the:
subspaces of B invariant under all lb = Lb and B = Rb’ that i5, pre—
clzely the two-sided ddeals. How by 4.4 we know the composition algebras
are, with one exception, slumple - all the Cavley algebras, all the gua-

ternion algebras, and all the fields (P or inseparable i) are simple, but

M
the split guadratic extensions 1;"9.1 B te, are only ¥-simple, heing the
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direct sum of two ideals, The proper fdeals are ¢El and iez. end theose

are non-igcmorphic as B = ':‘-ElE ¢P.2 himodules.
Turning to the Cavley-Nickson bimodule, the second way of represant-
L ati A= o, = R— shows the sub-bimndules ara
inyg rthe representation \b Rb, o, Rb th
precisaly the right ideals of B, Diwvision algebras have no right ideals,
and neithar do Cayley algehras (not aven ths =plit ones), so the only

composition algebras with preoper right ideals zre the split quadratic

extensions (with right ideals /= ideals) bheing L fez} and the split
guaternion algebras (with righi-ideals of the form ef) for suitable idem-
potents ). In either of thesa cases ( be, + IE=€-.-2 or el 4+ (1-210) the

bimedule splits into a2 dircet sum of two irrecucible bimodules,
Thus 4n all cases the regular and Cayley-Dickson bimodulss are
completely reducible, and most of the time they are actually irraducills.

For the ordinary couwposition algebras this extends e all bimocules.

7.1 (Bimoduls Theorem) Every unital bimodule for ecne of the crdinary
compositicon algebras {Eov-:r a field ¢ is completely reduecible., 'The ir-
raducihia himndules for 'ﬂ: are isomorphic to ‘.".ll':-?. irreducinle sub-hizmndules
of the regular and Cayley-Dickson bimodules, leadiang to the IZollowing

ligt of irreducible bimadules:

1, ©= reg @
IIa. d = l:f(-‘l'r',].l,]] division algshra: reg L , cay @
11k, €= T(s,1) split: reg (15-31), reg (“bagf!, cay {¢e1}, cay (@ez}

I11a. (@C= Tlaszu ,uz} division algevra: teg @, cay

1
111h, C= C(3;1,1) eplit: veg ©, cay (el':l::l'

-3 -

v, £-= ﬁ:(ﬁ;ul,u?,u Y: reg €.
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Proof, We first werify 21l irreducible sub-btimodules of the regu—
lar and Cayley-Dickson bimodules {C z2nd €t have the abeve forms, In
cazse I, €= tand CTi= 22 are isomorphic as bimodules and we can
delate the second. In split ITTh, every right ideal is isomorphic {(a=

right Q-nodule) to e,f = +'CE1j4 In cagse IV the Cayley-Dickson

1
bimodulea {s not an alternative himcdule.

To verily that all bimedules arc completely radunihla with the zbaowe
types of irrcducibles, it suffices to prove every Limoedule M i a swm af
homamorphic {images of regular znd Cayley-Dickson bimodules (and therafore
a sum of iscmorphic copies of the irreducihle constituvents of rhese bi-
modules),

Certain types of elements give rise naturally o such submodules.

We say an elemsnt m € M is a conmuter if am = ma for all ac O .

7.2  (Commuter Lepma) If m is a commuter for ﬁ:, am = ma for all a & Q:,

then
albm) = (ab)m, (bxda = (halm

and the map & + am i5 a homomarphism of the repular binodule © cnte the

cyclic suhmodule {m} peneratad by n,

Proof., The tormulas express the condition Flash) = ar{bl}, Fb.a) =

F(bla that ¥({a)

It

am be a hemomorphism of bimedules. The first formula

is just [a,b,m] 0, and the latter is ecuivaleat to (whda = m(ha) or

[myb,al = 0 since m commutes. We need only prove one of thess. Why

should comnutativity imply associativity of m?
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7.3 (Commuter Sublemma), If B is a degree 2 subalpebra over a field §
of & unital alternative alpehra .i_,. and m & A is an element such that
bm = wh far all b€ B, then (Lb-L)[b,m,a] = 0 for all a€ &, If B is an

ordinary composition algebra, [B,m,A] = 0O,

Prasf. (b=b)[a,m,b] = bla,m,b] + Bla,m,b] (eince b + & = £(b)1)
= [b,a,mb] + [b,a,ub] (left bumping} = [h,a,hn] - [b,z,ub] (m commutes)
= [b,a,bern - t{bim] = ~ [m,a,?:-z} + [mya,t(k)b] (lincariziag [}:,3,:«'?] = (1)
= [m,a,n(h}1l] = 0 {(since B is degree 2).

If B is an ordinary composition alpebra either 3 = ¢l (whence
[B,m,A] = 0 trivially), o alse there are imn‘_:-rtible b-b Bv 3.18. We can
caneel these to get [b,m,al = 0 when b=b iz invertihla: when c—-2 is not
invertible we linearizs to .';ea = (h-b)[ec,m,al + (e—c)[b,mal = (2-b)
[e.myza], B0 Apain [n,:-r.,a]ﬁa;d [B,m,A]l = 0. BE

Thus commuters give rise to images of the regular bimedule. An
element m 1s a *—commuter if am = ma for 211 a€ L. These pive rise to

images of the Cayley-—TDicksen bimodule.
7.4 (#-Commuter Temma), TIf m is a #-conmuter for L then
afhm} = (ba'm {(buda = f:'ba}‘.?.

for all a,b& © so that ag + am ig a homomorphism of the Cayley-

Dickson bimadule ©¢ onto {m}.

Proof. The forpulas again express the homomorphism comdition. It

would be enough if we knew h{ma) = ni{ba} and {am)b = (ab)uw, since then
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afbm) = al(mh) = m{EE}.s mlha) = (ba)m and (bm)a = (b2)m, So we prove

7.5 (*-Commutaer Sublemmal), Tf b, m zare elenents of a unital alternative
algebra A such that bm = ﬁE and b+b asscciates with 4, then b(ma) =

m(ba) znd (am)bk = (ab)wm for all =z € A.

Proof. bima) = (bm + mh)a - m[hé} (lingerized laft alterativity)

= [m(a4+5) Ja - mlba) = wl(b+5)a - bal} (associatien) = m(ha) and duszlly., EH8

It 48 useful to chscrve ££ﬁtj££ mis a #*-commuter, sc 15 an¥ hm or
mhe afbw) = (ba)m = (bm)a. There is no analogous tesult for computers.

Returning to the proof of the Theorem, in ﬁrdEr to £111 H wp with
homemerphic images of regnlar and (ayley-Dickson hiﬁgdulcs we need to be
able to fill it up with commuters snd *-commuters., That is, we must show
M 1s full in the sense that it is generatad by commuters and #*-commulers.

Certainly any wnltal M ds chock Full of commulers when regerded as
a ¢1-bimndule: every m is a comnuter, (ul)m = m(al) = am. From this
hunble beginning we build up elements which commute or #*-vommute with

more znd more of L. The inductive sten is

7.6 Lerma, Let B he a composition algehra over a field with nondegene—

rate norm bilinear form nlx,y), ¥ a wnital C(B,u) bimodule.  If

m ig a commuter for B then n = &m is a *-commuter for B with m =
1 T ! e , . ' F
n € Ln, Ifmis a #—cormuter for B then any n = (bi)am is a

|

=

commuter for T(B, ). If'{bl},'{b' are dual bases for B relatiwe

1
I.I

to n{x,v) then n = m - uul Edini is a #*-commuter for L (B,.) for

= h L, “il = di«:-m, withm= 0+ 4z c'liniE T+ Eﬂ:ni.

dy =gl 8y =0y
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Thus £f M is full as a D-bimodule it is also full as a @C(B, -

blmodule.,

Pr;af. (Fullness comes about hecause if ¥ Is generated by B-commulers
and *-commuters m then it i alse gensrated by the 2 and I which are
(C(iy-cormutars and *—cormuters.)

fur construction strategy is B-commuter -+ B—%-cemmuter - @€ -cemmuter
(I: R pomu e .

Our first step is o transform ordinary comumuters for B into *-
commuters for h: piven hm = wb for =211 b € B, any slement n = {afim is
a *-commuter for B since by associativity 6.3 b{(aidm} = {b{a2)lm =
{{a)blm = (ap){bn) = {a2d{mbl = {(aiIm¥>. TIn drief, the product of a
commuter m E M with a ®—comuuter a? € Be is a F-commuter (aplm & M,

¥ow that we have a F-cemnuter m for B rathar Lhan just a commuter,
we show nn = dew (d = 1) is an ordinary commuter for ﬁ:(B,f}- Firet,

n commules with o 8 B: on = c(dm]. 4+ clwd} = cldm) + mied) (by 7.5 =

cl{dn) + nfde) (rvocecall d = bR} = Uc md = (ed)m + (md)e = (dedm + (md)e
¥

='\|

= {dmde + [mdle = no.  Next, consider an element od £ E(b1): 0 conmutcs
with such a cd since [ed,m] = 'I:ct_]}n - nfed) = Te,d,n] + =(éx) + [n.c,d]

= {(nedd = 2[e,d,n] + e(ud) - (en)d {we just saw n commutes with c,land

da = dzm + dmd = mﬁz + dmd = nd since dz = yn(h}1 & $1) = 3[c,d,n] =

3le,d,dam] = - E[C,m,dzj (linearizing [a,x,xz] = [a,x,x]ex = 0) = 0 as
d:zG. #1, Thus [ef{hl), hhem] = 0 for all h; in particular, for b =1
any [al,lem] = 0. But by lincarizing b -+ b,1 we sce 0 = [elbi), fen] +

[ef,btam], and sinece [el(bi), Lem] = [(be)i, 2em] = 0 we see [c2, dem] =

0 for al11 el & B2, Thus n = dem commutes wlth anything from B er B,



hence with @©(3,u). In brief, the circle product of a *-commuter
m& M and a2 *-commuter bl € BL is an ordinary commuter bism & M.

; 1 ;
The final sten is to shown =m - y I d]’._ni is a *-commuter for

L (B.1). It certainly #*-commutes with all elaments of B: m is a *-

commuter for B to begin with, and we have just scen the n, dinm ATE
commurers for B oas cirele producls ¥—commuters di and m =a tha d-;“-: are
#ocommuters as prodocls of %—commuters 4! with commoters n, - To show

B o 5

n *-pemmutes with elemsnts of 3% we may consider only basis clements

d, = b,z (the b,'s span B)3 here d.n — nd, = :‘]jn “h= ndj = dj"m -

1 k| i i b

u"lz djnid:‘Lni} ok u_lzidjod;]n_; (as befors, recalling the definition
of nj} 5 11:F + u_l}".n{dj.d_fl:]nj_ = nj - En{hi,bi}ni (recall nibi,b'e) =
naflb,b'"¥n(2) = - unfh,b')) = n1 - nj = 0 by the hypothezsis that the

'{bi}, {b;_]' are dual bases relative te n. Therefore n *-commutes with F

and B, so is a *—coumuter for C{B,y). I3

Wa have seen ™ is full as a $-bimodule; if the characteristic ¥ 7
then nix,v) is nondegencrats on 21 and we can apply the Lewmwa to deduce
M dis full as a {E(L'Jjul} himndule. In chartacteristic 2 the alpebra

5
':E(l;',u._} iz &1 + &u for ul‘ = u + ull. In this casz for any m & M the

element n = m = umis a lf-—:cmmu‘-:er aad n = uem a E“*"En:unutur:
a

we need only chack = o, =, and Lhese fellow from [u,n ] =
.." u

[u,m] - [le,m] =~ [u.I,m] =0 and un - au = u?!m + umu + umu + ].J_]l'.'t

]

(chln-r;-_-::.teriss':ic 211y = {uE + u + pi}:n = 7, In cither case wa gat ﬂ:{-;‘.p]}
full,

II The only ordinary compositicn alpebra for which n(x,¥) could possi-
|
bly Le degeonerate is T = 3l of characreristic ?, 2o once M im full as
§
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a C{s’y,ulj bimodule it is also full as a C{Tﬂ.ul.uz} znd C(*Q,ul,ug,uf
bimodule and therefore as a L -bimodule.
Thus all @ -bimodules ars full, znd the theorem i= cozplete. Bl
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Execrcise

1f m is = *-commuter for B, is (bi)m 2 comruter for B (M a @C(%,w)
himcdule}?

Prove the formula in 7.3 by passing to an Infinite scalar extension,
gshowing that the 4 for which b-b form 2 Pariski-dense set on which
[b,m,a] wanishas,

In the proof of 7.6, show bfem is a commuter for @(B,y) if m is a
*—pommuter for B by passing to an infinite extensicn so that the
invertible b are a Zarieki dense get on whieh [hiem, L] vanishas.
Altematﬂ]}r, passing to a scalar extension & with more than 2 ole-
ments, use 3.18 Lo show [(b 2)em, L] = U for a basis {b ] of B,
henes [Blum,ﬁf] =y

What ean yvou say about #-bimpodules feor the exirzordinary compeosition

alpebra © (purely inseparsble of charactersitic 2)?



