55 Triality and Local Triality

Recall from Part 1 that if Q is any quadratic form on a vector space X over a field Φ , the generalized orthogonal group GO(Q) of Q, or group of <u>similarities</u>, consists of all bijective transformations T on X which preserve the quadratic form up to a scalar: $Q(Tx) = \tau Q(x)$ where $\tau \in \Phi$ is the <u>multiplier</u> of T. Those transformations with multiplier 1 comprise the <u>orthogonal group</u> O(Q). If the bilinear form Q(x,y) is non-degenerate and X is finite-dimensional the orthogonal group is generated by the <u>symmetries</u>

$$S_a(x) = x - Q(a)^{-1}Q(a,x)a$$

determined by non-isotropic vectors $\mathbf{a} \in X$ (Q(a) \neq 0). Those orthogonal transformations which are products of an even number of symmetries are called <u>proper orthogonal</u> transformations, and constitute a subgroup $0^+(0)$ of index 2 in O(Q).

We wish to show that when the quadratic form Q is the norm form N of a composition algebra (in particular, a Cayley algebra) then "proper" norm similarities belong to the structure group. We do this in two steps, first considering those similarities which move the distinguished element 1 of X, and then those fixing this element.

5.1 Proposition. If N is the norm form of a composition algebra, every norm similarity T has a unique decomposition

$$T = L_x S$$

where x = T(1) and S is orthogonal fixing 1, 1 = S(1).

Proof. Such a decomposition is clearly unique, for if $T = L_x S$ then $T(1) = L_x S(1) = L_x (1) = x$ determines x and $S = L_x^{-1} T$ determines S. Such a decomposition exists since $N(x) = N(T1) = \tau T(1) = \tau$ invertible guarantees x invertible (II.20), thence L_x invertible (Inverse Theorem I.42), so $S = L_x^{-1} T$ is also an invertible transformation, where now $N(Sy) = N(L_{x}^{-1} Ty) = N(x^{-1})N(Ty) = N(x)^{-1}N(Ty) = \tau^{-1}\tau N(y) = N(y)$ shows S is orthogonal (not just a similarity) and $S(1) = L_{x}^{-1} T(1) = x^{-1} x = 1$.

Note that this result does not depend on Φ being a field, only on $\tau \in \Phi$ being invertible.

Thus by a translation we can reduce any similarity to an orthogonal transformation fixing the unit element. For these we have

5.2 Proposition. If N is the norm form of a standard composition algebra over a field ⁰, every proper orthogonal transformation T ∈ 0⁺(N) belongs to the structure group.

(5.3)
$$T(xy) = T'(x)T''(y)$$

for similarities T', T"; every improper orthogonal T € 0 (N) satisfies

$$(5.4) T(xy) = T''(y)T'(x)$$

for similarities T', T".

Proof. The assumption that the composition algebra is standard is imposed to guarantee that the bilinear form N(x,y) is nondegenerate and X is finite-dimensional, so that the symmetries S_a generate the orthogonal transformations.

First consider the case of a symmetry $T = S_a$. We claim

(5.5)
$$S_{a}(xy) = -N(a)^{-1}(L_{a}\bar{y})(R_{a}\bar{x}) = T''(y)T'(x)$$

The reason for this is the intimate connection between symmetries and U-operators:

(5.6)
$$S_a(x) = -N(a)^{-1}U_a^{-1}$$

(5.7)
$$U_{\underline{a}}(x) = -N(\underline{a})S_{\underline{a}}x$$

recalling $S_a(x) = x - N(a)^{-1}N(a,x)a$ and $U_a(x) = N(a,\bar{x})a - N(a)\bar{x}$ or $U_a\bar{x}$ = N(a,x)a - N(a)x (II.2.0). Note also $\bar{x} = t(x)1 - x = N(1)^{-1}N(1,x)1 - x$

$$(5.8) \tilde{x} = - S_1(x),$$

so we can also describe the U-operator by

(5.9)
$$U_a = N(a)S_aS_1$$
.

These relation show once more how the algebraic structure (in this case the involution and U-operators) of a composition algebra are determined by the norm form N and its symmetries.

Once we have related the symmetry S_a to the U-operator U_a , the Moufang formula $U_a(xy) = (ax)(ya)$ shows $S_a(xy) = -N(a)^{-1}U_a(\overline{xy})$ (by (5.6)) $= -N(a)^{-1}U_a(\overline{yx}) = -N(a)^{-1}(\overline{ay})(\overline{xa})$ as required by (5.5), with T', T'' similarities.

For a product $S_a S_b$ of two symmetries we get $S_a S_b(xy) = S_a \{T_b''(y)T_b'(x)\}$ = $T_a''\{T_b'(x)\}T_a'\{T_b''(y)\} = T'(x)T''(y)$ repeating (5.5) twice. In the same way we see

$$T(xy) = T''(y)T'(x)$$

for all improper orthogonal T (odd number of symmetries) and

$$T(xy) = T'(x)T''(y)$$

for all proper orthogonal T (even number of symmetries).

5.10 Remark: The T', T" in (5.5) need not be orthogonal if T is. However, if Φ is closed under square roots (e.g. if it is algebraically closed) we can scale them up so they are orthogonal: if T', T" have multipliers $\tau' = N(T'1)$, $\tau'' = N(T''1)$ then $\tau'\tau'' = N(T''1)N(T''1) = N(T'1\cdot T''1) = N(T(1\cdot 1)) = N(T1) = 1$ (T is orthogonal); if $\sigma^2 = \tau'$ then T(xy) = S'(x)S''(y) for $S' = \sigma^{-1}T'$, $S'' = \sigma T''$ with multipliers $N(S'1) = \sigma^{-2}N(T'1) = \sigma^{-2}\tau' = 1$ and $N(S''1) = \sigma^2\tau'' = \sigma^2 \tau'^{-1} = 1$, i.e. S' and S'' are both orthogonal.

We say T is a proper <u>similarity</u>, and write $T \in GO^+(N)$, if T(xy) = T'(x)T''(y), while if T(xy) = T''(y)T'(x) we say $T \in GO^-(N)$ is an <u>improper</u> similarity.

(5.3)
$$T(xy) = T'(x)T''(y)$$

where T', T" are also proper similarities, or it is an improper similarity

(5.4)
$$T(xy) = T''(y)T'(x)$$

where T', T" are also improper.

Proof. Every invertible $T = L_{\kappa}$ is proper

$$T(yz) = L_x(yz) = x\{y(xx^{-1}z)\} = (xyx)(x^{-1}z) = T'(y)T''(z)$$

for similarities $T' = U_X$, $T'' = L_{-1}$, and by the previous proposition every orthogonal T is proper or improper. Then an arbitrary similarity $T = L_X S$ is proper or improper according as its orthogonal part S is proper or improper.

A proper similarity T is an isotopy, which implies T', T" are also isotopies. We go through the corresponding argument when T is improper, i.e. an anti-isotopy: (5.4) implies $T(x) = t^{"}T'(x)$ and T(y) = T"(y)t' for t' = T'(1), t'' = T''(1), so $T' = L_{t''}^{-1}T$ and $T'' = R_{t'}^{-1}T$ are improper if T is.

We now see $GO^{+}(N)$ is a subgroup of GO(N) of index 1 or 2; the natural representative for the complementary coset $GO^{-}(N)$ is the standard involution * ((xy)* = y*x*). We have $GO^{-} = GO^{+}$ iff * is proper, which happens iff the composition algebra is commutative. Thus $GO = GO^{+} = GO^{-}$ in dimensions 1 and 2, while GO^{+} has index 2 in dimensions 4 and 8.

5.12 Corollary. The similarities T', T' determined by (5.3), (5.4) are unique up to a multiple from the nucleus; in the case of a Cayley algebra, up to a scalar multiple.

Proof. In a Cayley algebra over Φ the nucleus is just Φ 1; in general, $T'(x)T''(y) = S'(x)S''(y) \text{ implies } T' = L_nS', \ T'' = L_n^{-1}S'' \text{ for nuclear n (as in III.1.0).}$

We can develop an analogous theory of local triality. A linear transformation W is <u>semi-alternating</u> relative to a quadratic form Q if $Q(Wx,x) = \omega Q(x)$ for all x, where $\omega \in \Phi$ is some fixed multiplier; W is <u>alternating</u> if $\omega = 0$, i.e. Q(Wx,x) = 0. This implies W is skew, but as usual in characteristic 2 skew does not imply alternating. We denote by GL(Q) and L(Q) the Lie algebras of semi-alternating and alternating transformations. If Q is nondegenerate and finite-dimensional over a field, the alternating transformations are spanned by the

$$S_{a,b}(x) = Q(x,a)b - Q(x,b)a$$
.

We are interested in the case where Q = N is the norm of a composition algebra, and begin by translating semi-alternating to alternating.

5.13 Proposition. Every semi-alternating W ∈ GL(N) has a unique decomposition

$$M = \Gamma^2 + S$$

where z = W1 and Z is alternating with Z1 = 0.

Proof. Again such a decomposition is clearly unique since z=Wl and $Z=W-L_x$. It exists since $W-L_z$ is still semi-alternating (since L_z is: N(zx,x)=T(z)N(x) with multiplier T(z) by I1.2.0), but now satisfies Zl=Wl-z=0. This forces Z to be alternating, since in general the multiplier is $\omega=\omega N(1)=N(Nl,1)$.

Since we are dealing with sums rather than products, and addition is always commutative, there is no propriety or impropriety in local triality.

5.14 Proposition. If N is the norm of a standard composition algebra over a field Φ, any alternating transformation W∈ L(N) is a local isotopy:

(5.15)
$$W(xy) = W'(x)y + xW''(y)$$

for semi-alternating W', W".

Proof. Since W is spanned by the $S_{a,b}$ and everything is linear, it suffices to consider $W=S_{a,b}$. Recall $S_{a,b}(x)=N(x,a)b-N(x,b)a$. This is almost the same as $V_{a,\overline{b}}(x)=U_{a,x}\overline{b}=N(a,b)x+N(x,b)a-N(a,x)b$, indeed

(5.16)
$$S_{a,b} = N(a,b)I - V_{a,\bar{b}}.$$

Since $V_{a,b}$ belongs to the structure algebra by IV.4.0, as does I, we see $S_{a,b}$ does too.

More directly, $S_{a,b}(xy) = N(xy,a)b - aN(xy,b) = \{(xy)\overline{a} + a(\overline{xy})\}b - \{a(\overline{xy})\}b - \{a\overline{b}\}(xy) \text{ (using } aN(z) = a(\overline{z}z) = (a\overline{z})z) = x \cdot U_{y,b}\overline{a} - \{(xb)\overline{a}\}y - \{a\overline{b} \cdot x\}y + x\{(a\overline{b})y\} = x\{(y\overline{a})b + (b\overline{a})y + (a\overline{b})y\} - \{(xb)\overline{a} + (xa)\overline{b} + a(\overline{b}x)\}y = x\{(y\overline{a})b\} + x\{N(a,b)y\} - \{xN(a,b)\}y - \{a(\overline{b}x)\}y = x\{(y\overline{a})b\} - \{a(\overline{b}x)\}y = xW''(y) + W'(x)y.$

5.17 Remark: If Φ is closed under division by 2, i.e. has characteristic \neq 2 (the additive analogue of the multiplicative condition that Φ be closed under square roots), then W', W' can be chosen alternating if W is. In fact since the multipliers ω' , ω'' are negatives by $\omega' + \omega'' = N(W'1,1) + N(W''1,1) = N(W'(1)\cdot1 + 1\cdot W''(1),1) = N(W1,1) = \omega = 0$ we have W(xy) = S'(x)y + xS''(y) for $S' = W' - \frac{1}{2}\omega' I$, $S'' = W'' - \frac{1}{2}\omega'' I$ where S', S'' now have multipliers $G' = N(W'1,1) - \frac{1}{2}\omega' N(1,1) = \omega' - \frac{1}{2}\omega' \{2N(1)\} = 0$ and $G'' = N(W''1,1) = \omega'' - \frac{1}{2}\omega'' \cdot 2 = 0$.

For a general $W=L_Z+Z$ we have (5.15) for the alternating transformation Z by the above, and also for L_Z since $z(xy)=(z\circ x)y-x(zy)$, so (5.15) holds for W:

5.18 (Local Triality Principle) If W is semi-alternating relative to the norm form of a standard composition algebra then W is a local isotopy,

$$W(xy) = W'(x)y + xW''(y)$$

for semi-alternating W', W". 📵

Again, W' and W" are unique up to translation by a nuclear element (W'(x)y + xW''(y) = S'(x)y + xS''(y)) implies $S' = W' - L_z$, $S'' = W'' + L_z$ for nuclear z); if the composition algebra has dimension 8 its nucleus is just Φ 1, so W', W'' are unique up to a scalar. When W is alternating in characteristic \neq 2, the alternating W', W'' are uniquely determined by W.

Exercises

- 5.1. Show $V_a = S_{1,a}$ when T(a) = 0; if T(b) = 0 too show $[V_a, V_b] = 2S_{a,b}$. In characteristic $\neq 2$ show the V_a with T(a) = 0 generate the $S_{a,b}$ as Lie algebra; conclude that since V_a lie in the structure algebra, so do all $S_{a,b}$.
- 5.2. In characteristic ≠ 2 and dimension 8, where skew W', W" are uniquely determined by a skew W, show W → W' and W → W" are automorphisms of L(N).
- 5.3. Prove the multiplicative analogue of #2 when Φ is closed under square roots.
- 5.4. Prove that for arbitrary Φ (Not necessarily closed under $\frac{1}{2}$ or under square roots) the maps $W \Rightarrow W'$, $W \Rightarrow W''$ are automorphisms of $GL(N)/\Phi I$ and $T \Rightarrow T'$, $T \Rightarrow T''$ of $CO(N)/\Phi I$ for N the norm of a Cayley algebra (dimension 8).
- 5.5. Show that GL(N) = ΦI ⊕ L(N) for a Cayley algebra in characteristic ≠ 2, and GO(N) = Φ1 × O(N) when Φ is closed under square roots, so GL(N)/ΦI and GO(N)/ΦI can be canonically identified with L(N) and O(N).