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§5 Triality and Loeal Triality
Recall from Part 1 that i1f Q is any quadratie form on a wvactor

gpace X over a field ¢, the generalized orthoponal group GO(R) of O, or

group of similarfitics, ceonsists of all bijective transformations T on

X which preserve. the gquadratic form up to a scalar: Q(Tx) = Q(x) where
TE % 15 the multiplier of T. Those transformaticns with multiplier 1

comprise the crthogonal growp 0(0). T£ the bilinear form Q(x,y) is non-
degenerate and X is finita-dimensional the orthogernal group is generated

by the symmeotiles
<
Safx] = x = Q{a) O{a,x)a

determined by non-isotropie vectors a &€ X (Q(z2) # 0). Thosa orthogonal
transformarions which are preducts of an even numher of symmetriss are
called proper orthegonzl transformations, énd consciture a subproup ﬁ+{Q)
of index 2 dn 0{Q).

We wish to sheow that wher the quadratic form Q is the norm form
N of a composition algebra (dn particular, a Cayley alpebra) than ”p;opﬁr"
nerm simdilaritles belong to the strueturs group. We de this in two steps,
first considering those similarities which move the distinguished clemsnt

1 of %, and then those fixing this element.

5.1 Proposition, If N is the norm-form of a composition algsbra, cvery

o norm slmilarity T has a mmique dcormmpositdon

wherex = T(1) and § is orthogonal fixing 1, 1 = 5(1).



Proof. Such a decompositien is clearly unique, for if T =1 3

-1 )
then T{1) = L 3(1) = folj = % determines x and & = Lx T determines S.
7
Such 2 deconposition exists sinece H{x) = H{T1) = =T{1) = 1 invertikle
guarantees x invertidle (I7.20), thence Lx invertikle (Inverse Theoran
: 17 i +1h! f atki h now H{2v)
I.42%, so 8 = Lx T ig -alse an invertinle transforustion, whers g5
- =1 ) 2 4
= N(L _,Ty) = W(x Lygeoy) = NGO T N(TY) = 7 LaNly) = N{y) shows S is
3 -1
orthogonal (net just & similarity) and §(1) = L _1T(1} =x x= 1.
e B - A T
Note that this result do2s not depend on P being & field, enly on

T &€ % belng fnvertible. [3

Thus by a translation we can reduce any similarity to an orthogonal

transformation fixing the wmitr elegment. For these we hawve

3.2 Propositicn. TIf H is the norm form of a standard composition algebra
£ s sy - = . - Ry g
over a field 9, ewery proper orthegonal transformation T € 0 (8)

belongs to the structure group.

(5.3) Tlxy) = T'(x)T"(y)

for eimilarities T', T"; every iuproper orthogonal T& 0O (N) satisfias
(5.4) - Tlxy) = T"iy2T" (=)
for similarities T', T".

Froef., The assumption that the composition algebra is standard is
imposed to puarantee that the bilinear form N¥(x,v) is nondegensrata znd
X 1s finlte-dimensional, sco that the svometries 8 generate the orthogonal
& :

transformacicns.
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First conaider the case of a symmetry T = Sa. We claim
(5.5) 5,060 = = M@ TR T = TGHT ()

The reasecn for this is the Intimare connection between svmxerries and

li—opeTators?
(5.6) 8 (x) = = N(a]_lU =
& Fa

(5.7) U - - -zq{ajsaﬁ

T i

recalling §_(x) = x - Hea) Wlayda and U_(x) = ¥(a,B)a - ¥(2)% or U X

= -3
= Na,x)a - Efa)x (II1.2,0), MWote zlso x £ £(x)l - x = N(1) "N{l,x)1 - x
{5.8) x= - $100),
so we can also describe the U-eopsrator by

(5.9 uEl = Hfa]Easl =

These relation show onece mere how the algebraic structure (In this cssze
the inwvolution and l-operators) of a composition algebra are determinad
by the norin form M and irs symmelries,

Onece we hawve relared che svomeotry Sa to the U-cperstor Ua’ the
Moufang formula UE(KY] = {ax)lyal shotrs Sﬂfxy} = = N{aﬁ_lﬁafggj (bf (5,630
= - H{a}HTUa(EE} = - H{a}_l(u;ﬁf;a) as required by (5,5), with 7', 1"
gimilarities.

Tor a product Saﬁb of two symmerrias we gat SHEb{xF} = Sa{T;(y}T;(x}}
= TQ{TL{K)}I;{TE{y]} = T (x)T"(y) vepeating (5.5) twice, In the same

wWay wWe sea



Tlxy) = TV (y)TT (%)

for all dmproper orthogonal T {?dd number of symmetries) and
T(xy) = T'(x)T"(y)

for all proper orthogonal T (even numker of symetries). @

5.10 ERepark: The T', T" in (5.5) need not be orthopenal if T is.
However, if ¢ 1s closad wnder square roots (e.g. if it is alga- |

bralecally clesed) we can scale them up so they are orthogonal:

if T', T" have meltipliers t' = M(T'1), " = N(T"1) then +"«" =

H(TTIRCIML) = N(T"1.T"1) = NH{T{1-1)} = W(T1) = 1 (T is orthogonall;

if o° = 1' then T(xy) = §'(x)S"(y) for &' = o -

“=' = 1 and W(5"1) = GET” =

T', 8" = oT" with
. k]
multiplicrs H{3'1l} = o "H{I'l) = ¢

UET'_l =1, i.e. 8" and 8" arz both orthogonal. H

: +
We say T is a proper similavity, and write T € GO (N), if Tlxzy) =

TV ()T (v), while 17 T{xy) = T"(y)1" (%} wae say T € G0 (W) iz an imbroper

gimllard Ly,

5.11 (Triality Principal) Every norm similarity T & GO(N) of a standard

compesition algelbra over a field 1z either a proper similarily,
(5.3) T(xy} = T' () T"(y)

where T', T" are also proper similarities, or it is an ioproper

gimllarity

(5.4) CTOry) =TT G



where 7", T" are z2lec improper,

Proof. Ewvery invertible T = Lx is prover
. =] =1 mr "
T(yz) = L (yz) = x{y(xx 2)] = Gyx)(x "2) = T ()T ()

for slmllarities T' = Ux' T, o
x

every orthogonal 4 1s proper or improper. Then an arbitrary similarity

and by the previous proposition

T = Lxﬂ iz proper or improper according as its orthegonal part 5 is pro-
PET OT ingrnﬁer.

A proper similarity T is an isotopy, which dmplies T', T" are also
isoteoies, We go through the corresponding argument wheo T is improper,
{.e, an anti-lsctopy: (5.4) implies T(x) = £"0"(x) and T{y) = T"(y)L'

-1

for £" = T'(1), t" = T"(1}, so T" =L_, T and T" = Rt,_lT are improper

t
i T 12, 8§

+ LR o8
We now see GO (N} is a subpreoup of GO(N) of index 1 or 2¢ the naturzal
representative for the complementary cosel fO (N) is the standard invelu-

. - + ,
tion # ({xy)* = y¥x*), We have GO = GO {iff # is proper, which happens

-+ ey
1ff the compositicn algebra is commutative. Thus 0 = G0 = GO in dimen-

-+ 5
glens 1 and 2, while GO thaz index 2 in dimensicns 4 and 3.

5.12 Corollary. The similarities T', T" determined by (5.3), (5.4) are
wifgque up to a nultiple from the nusleus; in the case of a Cayley

algebra, up to 2 secalar multinla,

Procf. In a Cayley alpehra over & the nucleus is just 21; in general,

T"EIT"(y) = 8'()8"(¥) 1mplies T' = LHE', ™ = L;lﬂ" for nueclear n (as

in I11.1.0), &
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We can develop an analogous theory of local triality. 4 linear

transformation W is semi-slternaling relative to a quadratic form Q if

O(Wx,x) = wl(x) for 211 =, where w&= ¢ is some fiwed multiplier; W is
alternating 1f @ = 0, i.e., QWx,x) = 0, This implies W is skew, Lut as
vsual fn characteristic 2 skew doss neot imply alternating. We denote by
GL0OY znd L{G) the Lié alpehras of semi-alternating and alternating
transformzticns. II @ is nondeogenerate and finire-dimensional over a

field, the alternating transformatieons are spanned by the

Ea’b{x} = Oix,a)h - Of=x,b)a .

We are interected in tha case where § = N is the norn of a composi-

tion algebra, and hegin by translating semi-alternating o alternating.

5.13 Proposition. Every semi-alternzating W€ GL(W) has a unique de-

composition

where z = Wl and 2 1s zlternating with Z1 = 0.

Proof. A4pain such 2z decomposition Is ciEarly unigue since z = Wl
and Z = W - Lx' It exists since W - ‘Lz is still sa?*i—alternating (since
Lz is:. Wilzx,x) = T(YN{x) with wultipiier T{(z) by I1.2.0)1, but now
gatisfies Z1 = WL - z = 0, This forces 7 to he altermating., since in

general the multiplier is o = oN(1) = N(W1,1). &

Since we are dealinp with sums rather than products, and additicn
is alvays commutative, there is ne propricty or Impropriety in local

triality.
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5.14 Proposition. If N is the norm of a standard composition algebra
over a field ¢, any dlternating transformation W& L(H) 1s a lecal

isotopy:

(5.15) WG = Gy + )

for semi-alternating W', W"

Proof. Since W is spaoned by the 8 and everything iz linezr, it

b

=3

suffices Lo consgider W= 8 .. -Feeall E3 h{x] = N{x,a)b - H(x,k)a, This

is almost the same as V_ ~(x} = U b = K{a,b)x +.N(x,b)a - K(a,x)h, in-
E-,:?‘r__ El..}, <

dend

(5.16) Ha,b = N(a,b)I - va,ﬂ .

ince Ha = belengs to the structure algebra by IV.4.0, as does I, we =ae
3

9 does too.
2,b )

More directlw, Sa b{xyj = Mixy,a)b - a¥{xy,b) = [{xv)a + a(z) v
L

- {aGw) b = {ab}(xy) (using aN{z) = a(Zz) = (az)z) = =g bE B

&
{Gd)aly - {ab « =)y + xi(ab)y} = ={(z2)b + (3a)v + (ab)y} - {(ub)3d +
(xa)b + albx)}y = x[(ya)b} + x{¥(a,b)y} - {xN(a,b)ly - {a(Fx)}iv =

x{(valb) - {a(bu)ly = =" ) + Wiy, B

5.17 Remark: If % is clesed under division hy 2, i.e. has characteris-
tic # 2 (the additive analogue of the multiplicasive condition that &

be closed under square roots), then W', W" can be chosen alternating if

W is. In fact gince the maltipliers w', «" are negatives by w' + o" =

NOW'L,1) + N(W'1,1) = WO (1)1 4 1+0"(1D),1) = H{Wl,1) = w'= O we have

Wizy) = 8" (xdy + =8"(y) foi 57 = W' - %ﬂfI, " = W - ;M“I wlhere 8', 8"

ta

now have multiplicrs ©' = W(UW'1,1) - %M'N{I,l} = w' - %w'{iﬂil}} = 0 and

¢" = N(W'L,1) = u" - %m"-? = 0. [
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For a general W =1L + 2 we have (3.15) for the alternating trans-

formation Z by the abowve, and also for Lz since z(xy) = (zoxdy — =(ayl,

go (5.15%) holds for Wi

5.18 ({Local Triality Principle) If W is semi-alternating relative to

the norm form of & standerd composirion algebra then W is a locsal

isotopy,
Wixy) = W' (=)y 4 =0 (y)
for semi-alternatine W', W', £

Again, W' znd W' are wmique up to translation by a nuclear elexsut
(W ()y + =" {¥) = 8" (=)y + =5"{y) implies 3" = W' - Lz’ g = W' o+ Lz
for puelear z); 1f the compositien algshra has dimenzion B ils nucleus
is Just 1, so W', W' are unigque up to a scalar. When W is alternating

Pl

in characteristic # 2, the alternating W', W' are uniquely determined

by W,



5.1,

3.2,

5.3,

S

3.5.

Exerclsas

Show ?E'= sl.a when T(a) = 0; 1? T(h) = O too show {va,vh] = Era,b'
In characteristic # 2 show the "u'a with T{a} = 0 generate the Sa,h
ag Lie algebra; conclude Lhat zince Ha lie in the structure algzbra,
so do all.Sa,;.
In characteristic # 2 and dimension B, whare skew W', W' are wumi-
gquely determinad by a skew W, show W=+ W' and W+ W' are aulowor-
phisma of L{N).

Frove the multiplicative analogue of #2 when ¢ is clezed under
Equare roots.

PFD‘JE. that for arhitrary & (Not necessarily cleosed undar %— or
under sguare rocts) the maps W= W', W= W" are automorphisms of
GL(M) /2L apd T=T', T+ 1" of COCNY/4T for M fhc rorm of a Cayley
aiéeﬁra (dimension 8&).

Show that GL(H) = ¢I & L(N) for a Cayley algebra in characteristie

4 2, and GOLE)Y = $1 x O(H) when & is clesed under sgquare roots, so

GLC) /3T and GO(N)/2] can be canonically identified with L(K) and

.O(N).



