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Abstract. We study the transfer of nondegeneracy between Lie triple systems
and their standard Lie algebra envelopes as well as between Kantor pairs,
their associated Lie triple systems and their Lie algebra envelopes. We also
show that simple Kantor pairs and Lie triple systems in characteristic 0 are
nondegenerate.

Introduction

Kantor pairs are generalizations of Jordan pairs: The symmetry of the Jordan
triple product in the outer variables is replaced by some weaker condition (1.5).
This looks like a minor generalization. It is therefore all the more surprising that
there are few general published results on Kantor pairs, despite a rather elaborate
structure theory of Jordan pairs. For example, there does not seem to exist a list
of all simple Kantor pairs.

The motivation of this paper is to initiate the structure theory of Kantor pairs.
Our reason for doing so goes beyond a pure generalization for the sake of gener-
alization. Rather, we expect that Kantor pairs will play an important rôle in a
general structure theory of Lie algebras. The reason for this is the close connection
between Kantor pairs and Lie algebras.

An example of a Kantor pair is the pair V = (L1, L−1) obtained from a Lie
algebra L with a 5-grading, i.e., a Z-grading L = L−2⊕L−1⊕L0⊕L1⊕L2, together
with the triple products {. . .} : V σ × V −σ × V σ → V σ, σ = ±, induced by the Lie
algebra bracket {x y z} = [[x, y], z]. This is in fact not really an “example”, since
any Kantor pair arises in this way from a 5-graded Lie algebra. There is a natural
choice for such a Lie algebra, the so-called standard Lie envelope LV . Because
of this close connection between Kantor pairs and Lie algebras, it is natural to
study Kantor pairs V via their Lie envelopes LV . Of course, this will only work if
properties like simplicity, (semi)primeness or nondegeneracy of V are reflected by
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the corresponding property of LV . We will prove that this is indeed the case (2.5,
2.6, 2.7).

One can go from the Kantor pair V to its standard Lie envelope LV in two steps,
first from V to the associated polarized Lie triple system T (V ) and then from the
Lie triple system to its standard Lie envelope LT (V ):

Kantor pair ! Lie triple system ! Lie algebra

The transfer of properties between V and T (V ) is straightforward (Prop. 1.9). The
heart of the matter lies in the relations between the Lie triple system T (V ) and
its standard Lie envelope LT (V ). It turns out that our methods of dealing with
this transfer are general enough to deal with Lie triple systems per se, and not
only those that arise from Kantor pairs. In particular, we show (2.4) that a Lie
triple system T is nondegenerate if and only of its standard embedding LT is so.
We can even go one step further, and simply consider Z2-graded Lie algebras. The
connection to Lie triple systems is given by the fact that the standard Lie envelope
of a Lie triple system is a Z2-graded Lie algebra. We show in 2.3 that a Z2-graded
Lie algebra is graded-nondegenerate if and only if it is nondegenerate.

One of the important questions in any structure theory is that of nondegeneracy
of a simple object. Since there are prime degenerate Jordan pairs, there are of
course prime degenerate Kantor pairs. However, we are able to prove (3.1) that
this cannot happen for simple Kantor pairs as considered in this paper, namely
over a ring Φ of scalars containing 1/2, 1/3, 1/5. The basis for this is a result
of Zelmanov [17], which says that the subalgebra generated by all absolute zero
divisors of a Lie algebra L over a ring of scalars with 1/6 is locally nilpotent. This
can be applied in our study of Kantor pairs, since it is easy to show that the
subalgebra generated by all absolute zero divisors of a simple short Z-graded Lie
algebra L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 is in fact an ideal.

We also consider the corresponding question for Lie triple systems: Is a simple
Lie triple system T nondegenerate? Our answer is yes, if T is defined over a field
of characteristic 0 (3.1). Our proof uses a result of Grishkov [9] which implies that
simple Lie algebras in characteristic zero are always nondegenerate, i.e., do not have
nonzero absolute zero divisors.

The final section of our paper contains some consequences of these results. We
obtain a nice characterization of annihilators of ideals in nondegenerate Lie triple
systems (3.2) and Kantor pairs (3.3), which easily implies the inheritance of non-
degeneracy by ideals of Lie triple systems and Kantor pairs (3.4). We also study
when Kantor pairs are Jordan pairs, and we do so by defining the biggest ideal of
a Kantor pair which is a Jordan pair. For nondegenerate Kantor pairs, this ideal
is essential if and only if the Kantor pair is in fact a Jordan pair (3.7).

1. Preliminaries on Lie triple systems and Kantor pairs

Throughout this paper we will be dealing with Lie triple systems, Kantor pairs and
Lie algebras over a ring of scalars Φ with 1/6 ∈ Φ.

1.1. We first recall some concepts for Lie algebras. An absolute zero divisor in
a Lie algebra L is an element x ∈ L satisfying [x, [x, L]] = 0. A Lie algebra is
called nondegenerate if 0 is its only absolute zero divisor. We note that any ideal
of a nondegenerate Lie algebra is again nondegenerate, see [18, Lemma 4]. The
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annihilator of an ideal I in a Lie algebra L is defined as AnnL(I) = {x ∈ L |
[x, I] = 0}. If L is nondegenerate, one knows [5, 2.5]) that

(a) AnnL(I) = {x ∈ L | [x, [I, x]] = 0}.
A Lie algebra L is called prime (respectively semiprime) if for all ideals I, J of L
we have [I, J ] = 0 ⇒ I = 0 or J = 0 (resp. [I, I] = 0 ⇒ I = 0), and it is called
strongly prime if L is prime and nondegenerate.

1.2. A Lie triple system T is a Φ-module with a trilinear product T × T × T → T
satisfying

0 = [x, x, y],(LTS1)

0 = [x, y, z] + [y, z, x] + [z, x, y],(LTS2)

[x, y, [z, w, u]] = [[x, y, z], w, u] + [z, [x, y, w], u] + [z, w, [x, y, u]].(LTS3)

A map d : T → T is a derivation of T if d[x, y, z] = [dx, y, z]+[x, dy, z]+[x, y, dz]
for every x, y, z ∈ T . We denote by Der(T ) the set of all derivations of T , which is a
Lie subalgebra of End(T )(−). For every x, y ∈ T , the map L(x, y) : T → T defined
by L(x, y)(z) := [x, y, z] is an (inner) derivation of T . The subalgebra generated by
all inner derivations of T is denoted by L(T, T ).

Every Lie algebra L can be viewed as a Lie triple system if we define the product
by: [x, y, z] := [[x, y], z] for every x, y, z ∈ L. Thus every submodule T of L such
that [[T, T ], T ] ⊂ T is an example of Lie triple system. In particular, if L is a
Z2-graded Lie algebra, L = L0 ⊕ L1, then L1 with product [x, y, z] := [[x, y], z] is
a Lie triple system. Note that under our assumptions on Φ, a Z2-grading is the
same as the eigenspace decomposition of an automorphism of L of period 2. In
fact, T is a Lie triple system if and only if there exists a Z2-graded Lie algebra
L = L0 ⊕ L1 with T = L1. Indeed, if T is a Lie triple system and D is a Lie
algebra of derivations of T such that L(T, T ) ⊂ D, then D ⊕ T with product
[d1⊕x1, d2⊕x2] = [d1, d2]+L(x1, x2)⊕(d1x2−d2x1) is a Lie algebra. In particular,
LT = L(T, T )⊕T is a Z2-graded Lie algebra which is called the standard embedding
of T , see for example [10, p. 309] or [15, IV]. The automorphism θ of LT defining
the Z2-grading of LT is also called the main involution of LT .

1.3. An ideal I of a Lie triple system T is a Φ-submodule of T satisfying [I, T, T ] ⊂
T (note that then [T, I, T ] + [T, T, I] ⊂ I by (LTS 1) and (LTS 2)). A Lie triple
system T is simple if it has nontrivial product and contains no nontrivial ideals. An
element in a Lie triple system T is an absolute zero divisor if [x, T, x] = 0. A Lie
triple system without nonzero absolute zero divisors is called nondegenerate. We
will say that a Lie triple system T is semiprime if [I, T, I] 6= 0 for every nonzero ideal
I of T , and that T is prime if every two nonzero ideals I, J of T give [I, T, J ] 6= 0.
Note that a Lie triple system is prime if and only if it is semiprime and every pair of
nonzero ideals of T have nonzero intersection. If I is an ideal of a Lie triple system
T we define the annihilator of I in T as AnnT (I) = {x ∈ T | [x, I, T ] = [T, I, x] =
0} = T ∩ AnnLT ([T, I] ⊕ I) where [T, I] ⊕ I is the ideal of LT generated by T . It
follows that AnnT (I) is an ideal of T . Analogous to the case of Lie algebras, T is
semiprime if and only if I ∩AnnT (I) = 0 for every ideal I of T .

1.4. Concerning the transfer of properties between T and its standard embedding
LT , T is (semi)prime if and only if (LT , θ) is (semi)prime as algebra with involution,
see [4, 3.1]. It also known [13, Th. 2.13], [15, VI, Th. 2 and Th. 3] that a Lie triple
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system is simple if and only if its standard embedding is either simple or a direct sum
of two simple Lie algebras. In particular, this implies that the standard embedding
of a prime Lie triple system need not be simple.

1.5. Recall that a Kantor pair V = (V +, V −) consists of two Φ-modules with
trilinear products { , , } : V σ × V −σ × V σ → V σ, σ = ±, that satisfy

[Vx,y, Vz,w] = V{x,y,z},w − Vz,{y,x,w},(KP1)

KKz,wx,y = Kz,wVx,y + Vy,xKz,w(KP2)

where [A,B] := AB − BA, Vx,yz := {x, y, z}, and Ka,bz := {a, z, b} − {b, z, a} [1,
p.533]. Note that the opposite V op := (V −, V +) of a Kantor pair is again a Kantor
pair. Also, a Jordan pair is a Kantor pair with Ka,b = 0 [14, 2.2]. Thus, Kantor
pairs are generalizations of Jordan pairs.

If L is a Z-graded Lie algebra of the form L = L−2⊕L−1⊕L0⊕L1⊕L2, then the
pair of Φ-modules (L1, L−1) with product {x, y, z} := [[x, y], z], for every x, z ∈ Lσ,
y ∈ L−σ, is a Kantor pair. Conversely, it follows from [1] or [3, Th. 4.3 and Cor. 4.6]
that for any Kantor pair V = (V +, V −) there exists a unique up to isomorphism
5-graded Lie algebra L = L−2 ⊕L−1 ⊕L0 ⊕L1 ⊕L2 with the following properties:
(i) V isomorphic to the Kantor pair (L1, L−1), (ii) L2σ = [Lσ, Lσ], L0 = [Lσ, L−σ]
for σ = ±, and (iii) if [x−2 + x0 + x2, L1 ⊕ L−1] = 0 then x−2 + x0 + x2 = 0.
Thus, after identifying V ≡ (L1, L−1) the products in L are [[x, z], y] = Kx,zy,
[[x, y], z] = Vx,yz and [[y, x], z] = −Vx,yz for x, z ∈ Lσ, y ∈ L−σ. We will call
this Lie algebra the standard embedding of V and denote it LV . In the setting of
what are now called Kantor triple systems, the construction of LV goes back to the
fundamental papers [11] and [12] of Kantor. Notice also that V is a Jordan pair if
and only if L2 and L−2 in the above construction are both zero. In this case, LV

is the Tits-Kantor-Koecher algebra of V .

1.6. Let V be a Kantor pair. A pair I = (I+, I−) of Φ-submodules of V is an ideal
of V if {Iσ, V −σ, V σ}+ {V σ, I−σ, V σ}+ {V σ, V −σ, Iσ} ⊂ Iσ for σ = ±. A Kantor
pair V is simple if it has nontrivial product and V contains no nontrivial ideals.
An element x ∈ V σ is an absolute zero divisor of V if {x, V −σ, x} = 0. A Kantor
pair without nonzero absolute zero divisors is called nondegenerate. A Kantor pair
V is semiprime if every nonzero ideal I = (I+, I−) of V has {I+, V −, I+} 6= 0 or
{I−, V +, I−} 6= 0. We will say that a Kantor pair is prime if for any two ideals I
and J of V , {Iσ, V −σ, Jσ} = 0, σ = ±, implies I = 0 or J = 0. Note that a Kantor
pair is prime if and only if it is semiprime and every two nonzero ideals of V have
nonzero intersection.

Let V be a Kantor pair and I = (I+, I−) and ideal of V . We define the annihi-
lator of I in V as (AnnV (I)+, AnnV (I)−) with

AnnV (I)σ = {x ∈ V σ | {V σ, I−σ, x} = {Iσ, V −σ, x} = {x, I−σ, V σ}
= {V −σ, x, I−σ} = {I−σ, x, V −σ} = {x, V −σ, Iσ} = 0}

As for Lie triple systems, we have that AnnV (I) = (AnnV (I)+, AnnV (I)−) is an
ideal of V . If I is the ideal of LV generated by I, then AnnV (I) = V ∩AnnLV (I).
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1.7. By [1, Th. 7] each Kantor pair V gives rise to a Lie triple system T (V ) =
V + ⊕ V − whose product is given by

[ x+ + x−, y+ + y−, z+ + z− ] =

= ({x+, y−, z+}+ {x+, z−, y+} − {y+, z−, x+} − {y+, x−, z+}) ⊕
⊕ ({x−, y+, z−}+ {x−, z+, y−} − {y−, z+, x−} − {y−, x+, z−})

for x+ + x−, y+ + y−, z+ + z− ∈ T (V ), called the associated Lie triple system.
Moreover, if V is a Kantor pair and T (V ) its associated Lie triple system, their
standard envelopes LV and LT (V ) are isomorphic as Lie algebras: if LV = L−2 ⊕
L−1 ⊕ L0 ⊕ L1 ⊕ L2 is the standard envelope of V given in (1.5), then LT (V ) =
(LT (V ))0 ⊕ (LT (V ))1 with (LT (V ))0 = L−2 ⊕ L0 ⊕ L2 and (LT (V ))1 = L−1 ⊕ L1.

There are close relations between ideals of a Kantor pair V and ideals of T (V ):

Lemma 1.8. Let V be a Kantor pair and T (V ) its associated Lie triple system.

(1) If I = (I+, I−) is an ideal V , then I+ ⊕ I− is an ideal of T (V ).
(2) If Ĩ is an ideal of T (V ), then Ĩ ∩ V := (Ĩ ∩ V +, Ĩ ∩ V −) and π(Ĩ) :=

(π+(Ĩ), π−(I)) are ideals of V , where πσ : V + ⊕ V − → V σ denotes the
projection onto V σ along V −σ.

(3) If I = (I+, I−) is an ideal V , AnnT (V )(I+⊕I−) = AnnV (I)+⊕AnnV (I)−.

Proof. (1) is trivial.
(2) That π̃(I) is an ideal follows from the following product rules with obvious

notations: πσ([x, y−σ, zσ]) = πσ
({xσ, y−σ, zσ}⊕{x−σ, zσ, y−σ}−{y−σ, zσ, x−σ}) =

{πσ(x), y−σ, zσ} and, similarly, πσ([xσ, y, zσ]) = {xσ, π−σ(y), zσ} and πσ([xσ, y−σ, z]) =
{xσ, y−σ, πσ(z)}.

(3) It is clear that AnnV (I)+ ⊕ AnnV (I)− ⊂ AnnT (V )(I+ ⊕ I−). Moreover, by
the formulas above, if z ∈ AnnT (V )(I+ ⊕ I−), then πσ(z) ∈ AnnT (V )(I+ ⊕ I−).
Now, AnnT (V )(I+ ⊕ I−) ∩ V σ ⊂ AnnV (I)σ implies (iii). ¤

The last lemma allows us to relate regularity properties of a Kantor pair with
those of its associated Lie triple system T (V ):

Proposition 1.9. Let V be a Kantor pair and T (V ) its associated Lie triple system.
Then

(1) Every absolute zero divisor of V is an absolute zero divisor of T (V ). More-
over, if x+ + x− ∈ T (V ) is an absolute zero divisor of T (V ), then x+ and
x− are absolute zero divisors of V .

(2) V is nondegenerate, semiprime, prime or simple if and only if T (V ) is so.

Proof. (1) On the one hand, if [x+ + x−, V + ⊕ V −, x+ + x−] = 0, then, for every
a ∈ V +, 0 = [x+ + x−, a, x+ + x−] = ({x+, x−, a} − 2{a, x−, x+}) ⊕ {x−, a, x−},
whence {x−, V +, x−} = 0. Similarly, {x+, V −, x+} = 0. On the other hand, if
{xσ, V −σ, xσ} = 0, then [xσ, V + ⊕ V −, xσ] = {xσ, V −σ, xσ} = 0.

(2) That V is nondegenerate if and only if T (V ) is so, follows from (1). To show
that V (semi)prime implies T (V ) (semi)prime, let Ĩ , J̃ be two nonzero ideals of T (V )
(I = J for semiprimeness) and suppose that [Ĩ , T (V ), J̃ ] = 0. Then π(Ĩ), π(J̃) are
nonzero ideals of V such that {πσ(Ĩ), V −σ, πσ(J̃)} ⊂ πσ[Ĩ , V −σ, J̃ ] = 0, σ = ±,
contradiction.
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Conversely, suppose that T (V ) is semiprime but V is not. We claim that there
exists a nonzero ideal I of V such that

(a) {Iσ, V −σ, Iσ} = {Iσ, I−σ, V σ} = {V σ, I−σ, Iσ} = 0, σ = ±.

Indeed, by assumption there exists a nonzero ideal J of V with {Jσ, V −σ, Jσ} = 0,
σ = ±. If {V σ, J−σ, V σ} = 0, then J satisfies (a). Otherwise, the non-zero
ideal I = ({V +, J−, V +}, {V −, J+, V −}) ⊂ J of V satisfies (a), since for y ∈ Jσ,
a, b ∈ V −σ and x or z belonging to Jσ we have, by (KP1),

{x, {a, y, b}, z} = −{y, a, {x, b, z}}+ {{y, a, x}, b, z}+ {x, b, {y, a, z}} = 0,

and so {Jσ, {V −σ, Jσ, V −σ}, V σ} = 0 = {V σ, {V −σ, Jσ, V −σ}, Jσ}. Let now I be
a nonzero ideal of V satisfying (a). Then I+ ⊕ I− is a nonzero ideal of T (V ) such
that [I+ ⊕ I−, T (V ), I+ ⊕ I−] = 0 because [Iσ, V + ⊕ V −, Iσ] ⊂ {Iσ, V −σ, Iσ} = 0
and [Iσ, V +⊕V −σ, I−σ] ⊂ {Iσ, I−σ, V σ}+ {V σ, I−σ, Iσ}+ {V −σ, Iσ, I−σ} = 0 for
σ = ±. Thus T (V ) semiprime implies V semiprime. If T (V ) is prime, then V is
semiprime. Hence to show that in this case V is actually prime, it suffices to prove
that every two nonzero ideals of V have nonzero intersection. But this is clear,
since it holds in T (V ).

If T (V ) is simple, V is simple by (1.8)(1). Conversely, let us suppose that V is
simple and let Ĩ be a nonzero ideal of T (V ). Then, by (1.8)(2), (π+(Ĩ), π−(Ĩ)) is a
nonzero ideal of V , so it is equal to V . It now follows that 0 6= {V σ, V −σ, V σ} =
{V σ, π−σ(Ĩ), V σ} = {V σ, Ĩ, V σ} ⊂ V σ ∩ Ĩ. The ideal Ĩ ∩ V is therefore nonzero,
hence equal to V which implies Ĩ = T (V ). ¤

2. Relations with standard Lie envelopes

The main result of this paragraph is the transfer of nondegeneracy between
Lie triple systems and their standard envelopes. As a corollary we then get the
analogous result for Kantor pairs. For the sake of completeness, we also include
results about the transfer of simplicity between Kantor pairs and Lie envelopes,
which are due to Allison and Smirnov.

In the following lemma, capital letters denote adjoint maps of elements of L, i.e.,
X = adx, A = ad a, for x, a ∈ L.

Lemma 2.1. Let L be a Lie algebra and let x, y ∈ L absolute zero divisors of L.
Then:

(1) [x, y] and, for every a ∈ L, [[x, a], [[x, a], a]] are absolute zero divisors of L.
(2) For every a1, a2, a3 ∈ L and σ ∈ S3 we have

[[x, a1], [[x, a2], a3]] = [[x, aσ(1)], [[x, aσ(2)], aσ(3)]].

Proof. (1) That [x, y] is an absolute zero divisor follows from (XY − Y X)2 =
XY XY −XY Y X − Y XXY + Y XY X = 0. Let us consider b = [[x, a], [[x, a], a]].
Then ad2

b = 9XA2XA2XA2XA2X = 0 by [7, Prop. 1.7(3)], so b is an absolute
zero divisor of L.

(2) First notice that for any a1, a2 ∈ L, [[x, a1], [x, a2]] = 0 because

[[x, a1], [x, a2]] = [[[x, a1], x], a2]− [x, [a2, [x, a1]]] = 0.
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Therefore [[x, a1], [[x, a2], a3]] = [[x, a2], [[x, a1], a3]]. Moreover,

[[x, a1], [[x, a2], a3]] = [[x, a1], [[x, a3], a2]] + [[x, a1], [x, [a2, a3]]]

= [[x, a1], [[x, a3], a2]].

The formulae above prove (2). ¤
In the following we will use a generalization of the Jordan algebras of Lie algebras

given in [6]. Let L be a Lie subalgebra of a Lie algebra L′. We will say that an
element x ∈ L′ is a L-Jordan element if ad3

x L = 0 and [[L, x], L] ⊂ L.

Theorem 2.2. Let L be a Lie subalgebra of a Lie algebra L′ and x ∈ L′ a L-
Jordan element. Then L with the new product defined by a • b := 1

2 [[a, x], b] is a
nonassociative algebra, denoted by L(x), such that:

(1) kerL(x) := {a ∈ L | [x, [x, a]] = 0} is an ideal of L(x).
(2) Lx := L(x)/ kerL(x) is a Jordan algebra, with U -operator given by Uab =

1
8ad2

a ad2
x b, for all a, b ∈ I, where a denotes the coset of a with respect to

kerI(x). This Jordan algebra is called the generalized Jordan algebra of L
at x.

(3) If L is nondegenerate or strongly prime, so is Lx.

Proof. The proofs of (1) and (2) are identical to [6, 2.4 (1)(2)], taking into account
that [6, 2.3] can be rewritten under the conditions of this theorem and that the
identities given there are true over L; (3) follows in the same way as [6, 2.15(1)]
and [8, 2.2]. ¤

We say that a Z2-graded Lie algebra L = L0 ⊕ L1 is graded-nondegenerate if it
has no absolute zero divisors in L0 ∪ L1. In the following result we will show that
the notions of nondegeneracy and graded-nondegeneracy are equivalent.

Theorem 2.3. Let L = L0 ⊕ L1 be a Z2-graded Lie algebra. Then L is graded-
nondegenerate if and only if it is nondegenerate.

Proof. It is of course sufficient to show that a graded-nondegenerate Z2-graded Lie
algebra L cannot have nonzero absolute zero divisors. Suppose that x0 + x1 is
an absolute zero divisor of L. Then, for i = 0, 1, 0 = [x0 + x1, [x0 + x1, Li]] =
[x0, [x0, Li]] + [x0, [x1, Li]] + [x1, [x0, Li]] + [x1, [x1, Li]]. Considering homogeneous
components,

ad2
x0

+ ad2
x1

= 0(a)

adx0 adx1 +adx1 adx0 = 0.(b)

Therefore [x0−x1, [x0−x1, L]] = [x0, [x0, L]]−[x0, [x1, L]]−[x1, [x0, L]]+[x1, [x1, L]] =
0 and x0−x1 is an absolute zero divisor of L. Now, [x0 +x1, x0−x1] = −[x0, x1]+
[x1, x0] = 2[x1, x0] ∈ L1, which implies [x1, x0] = 0, because, by (2.1)(1), [x0 +
x1, x0 − x1] is an absolute zero divisor. Then adx0 adx1 = adx1 adx0 , and by (b)

(c) adx0 adx1 = adx1 adx0 = 0.

Finally, we have ad3
x1

= − ad2
x0

adx1 = 0 and for any z, t ∈ L, using (a) and (c),

−[[x1, [x1, z]], [x1, t]] = [[x0, [x0, z]], [x1, t]]

= [[[x0, [x0, z]], x1], t] + [x1, [[x0, [x0, z]], t]]

= [x1, [[x0, t], [x0, z]]] + [x1, [x0, [[x0, z], t]]] = 0.
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So, for y = [x1, [x1, z]] we get [y, [x1, t]] = 0 and then

[y, [y, t]] = [y, [[x1, [x1, z]], t]]

= [y, [[x1, t], [x1, z]]] + [y, [x1, [[x1, z], t]]] = 0(d)

since [y, [[x1, t], [x1z]]] = [([y, [x1, t]]), [x1, t]] + [[x1, t], ([y, [x1, z]])] = 0. If we take
any z ∈ Li, i = 0, 1, then y = [x1, [x1, z]] ∈ Li is an absolute zero divisor of L
by (d). By hypothesis, [x1, [x1, z]] = 0 for any z ∈ L0 ∪ L1, so [x1, [x1, L]] = 0,
which implies that x1 = 0 because L has no absolute zero divisors in L1. Then
x0 + x1 = x0 ∈ L0 is an absolute zero divisor of L, so it must be zero. ¤

Now we show that nondegeneracy is an equivalent condition for a Lie triple
system and its standard envelope.

Theorem 2.4. Let T be a Lie triple system and LT = L0 ⊕ L1 be its standard
envelope. Then LT is nondegenerate if and only if T is nondegenerate.

Proof. Let us suppose that LT is nondegenerate and that there exists x ∈ L1 with
[x, [x, L1]] = 0. Then, ad3

x(LT ) = ad3
x(L0) ⊂ ad2

x(L1) = 0. So x is ad-nilpotent in
LT of index ≤ 3 and we can consider the Jordan algebra (LT )x of LT at x as in
(2.2). By hypothesis, [x, [x, L1]] = 0 so we can assume that all elements of (LT )x

are of the form a + kerLT
x, with a ∈ L0. Now,

[x, [x, [[L0, x], L0]]] ⊂ [x, [x, L1]] = 0

which implies that the Jordan algebra (LT )x has trivial (Jordan) product and, since
(LT )x is nondegenerate by (2.2)(3), (LT )x = 0, i.e., [x, [x,LT ]] = 0. Hence x = 0
because LT is nondegenerate.

Conversely, suppose that T is nondegenerate and that x ∈ L0∪L1 is an absolute
zero divisor of LT . By nondegeneracy of T , we can suppose that x ∈ L0. For any
y, y′ ∈ L1 and any λ ∈ Φ, we have by (2.1)(1) that

[[x, y + λy′], [[x, y + λy′], y + λy′]]

is an absolute zero divisor of LT contained in L1. It is therefore zero since T is
nondegenerate. Linearizing and using (2.1)(2)

0 =[[[x, y + λy′], [[x, y + λy′], y + λy′]] = [[x, y], [[x, y], y]] + 3λ[[x, y], [[x, y], y′]]

+ 3λ2[[x, y], [[x, y′], y′]] + λ3[[x, y′], [[x, y′], y′]].

Evaluating this for λ = 1, 2, 3 ∈ Φ, shows 0 = [[x, y], [[x, y], y′]] for any y′ ∈ L1,
i.e., [x, y] ∈ T is an absolute zero divisor, whence [x, y] = 0. Now x = 0 follows
because the map L0 → adL0|L1 is injective. Thus LT is graded-nondegenerate,
which by 2.3 is equivalent to being nondegenerate. ¤

Since the standard envelope of a Kantor pair V is isomorphic as a Lie algebra
to the standard envelope of T (V ) and since by (1.9)(2) V is nondegenerate if and
only if T (V ) is nondegenerate, we get:

Corollary 2.5. A Kantor pair V is nondegenerate if and only if its standard en-
velope LV is a nondegenerate Lie algebra.

Proposition 2.6. (Allison-Smirnov [2]) Let V be a Kantor pair and let LV =
L2 ⊕ L1 ⊕ L0 ⊕ L−1 ⊕ L−2 be its standard envelope.

(1) For any ideal (I+, I−) of V , the ideal of LV generated by I+ ∪ I− is
idLV

(I+ ∪ I−) = [I+, L1]⊕ I+ ⊕ ([I+, L−1] + [L1, I
−])⊕ I− ⊕ [I−, L−1].
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(2) L2 ⊕ L0 ⊕ L−2 does not contain nonzero ideals of LV .
(3) If LV is graded-semiprime, every nonzero ideal I of LV contains a nonzero

graded ideal. In particular, I has nonzero intersection with L1 ⊕ L−1.
(4) LV is (semi)prime if and only if LV is graded-(semi)prime.

Proof. (1) and (2) can easily be checked by the reader.
(3) Let 0 6= x ∈ I / LV and write x = x2 + x1 + x0 + x−1 + x−2 with xi ∈ Li.

Let i0 be the maximal index such that xi0 6= 0. The Lie algebra L̄V = LV /I
is pregraded in the sense of [16], i.e., denoting by L̄i ⊂ LV the canonical images
of Li we have L̄V =

∑2
i=−2 L̄i and [L̄i, L̄j ] ⊂ L̄i+j . Note that x̄i0 ∈ B(L̄V ) =∑2

k=−2 (L̄k ∩
∑

i<k L̄i). By [16, 2.1], B(L̄V ) is a nilpotent ideal. In particular,
idL̄V

(x̄i0) is nilpotent in L̄V , i.e., there exists m ∈ N such that (idLV
(xi0))

(m) ⊂ I.
Moreover, since LV is graded-semiprime and idLV

(xi0) is graded, (idLV
(xi0))

(m)

is a nonzero graded ideal contained in I. That I has nonzero intersection with
L1 ⊕ L−1 now follows from (1). (4) is immediate from (3). ¤

Proposition 2.7. Let V be a Kantor pair and let LV be its standard envelope.
(1) If V is semiprime, then LV is semiprime.
(2) V is prime if and only if LV is prime and V is semiprime.
(3) (Allison-Smirnov [2]) LV is a simple Lie algebra if and only if V is a simple

Kantor pair.

Proof. (1) and (2). Since by (2.6)(2) graded ideals of LV have a nonzero intersec-
tion with V , it follows that V (semi)prime implies LV graded-(semi)prime, hence
(semi)prime by (2.6)(3).

Conversely, if V is semiprime, LV is prime and I = (I+, I−) and J = (J+, J−)
are nonzero ideals of V , it suffices to show that I∩J 6= 0. LetK := [idLV

(I), idLV
(J)],

which is a nonzero graded ideal of LV . So it has nonzero intersection with L1⊕L−1.
One can check that K ∩ L1 = [[I+, L1], J−] + [I+, [J+, L−1]] + [I+, [J−, L1]] +
[[I+, L−1], J+] + [[I−, L1], J+] + [[J+, L1], I−] ⊂ I+ ∩ J+, and similarly K∩L−1 ⊂
I− ∩ J−.

(3) If LV is simple and (I+, I−) is a nonzero ideal of V , then idLV
(I+∪I−) = LV ,

so by (2.6)(1) (I+, I−) = V . Conversely, let I be a nonzero ideal of LV . If V is
simple, then V is semiprime, so by (1) and (2.6)(3) 0 6= (I ∩ L1, I ∩ L−1) / V .
Simplicity of V implies (I ∩ L1, I ∩ L−1) = V . Since V generates LV as algebra,
I = LV . ¤

3. Some Consequences

Theorem 3.1. (1) A simple Kantor pair over a ring of scalars Φ containing
1/2, 1/3, 1/5 is nondegenerate.

(2) A simple Lie triple system over a field of characteristic zero is nondegen-
erate.

Proof. (1) The standard enveloping algebra L = LV is simple by (2.7)(3). The
span K1(L) of all absolute zero divisors of L is invariant under all automorphisms,
hence in particular under all inner automorphism exp ad x, x ∈ Li, i ∈ {±1,±2}
(note that under our assumptions on Φ these maps are indeed automorphisms). It
follows that K1(L) is an ideal. Since it is locally nilpotent by [17], it must be zero,
i.e., LV is nondegenerate, whence V is nondegenerate by (2.5).
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(2) By (2.5) it suffices to show that the standard embedding L of a simple Lie
triple system is nondegenerate. As mentioned in (1.4) L is either simple or a direct
sum of two simple ideals. Hence, it suffices to show that a simple Lie algebra defined
over a field of characteristic 0 is nondegenerate. But this follows as in (1) since by
[9] the ideal generated by all absolute zero divisors is locally nilpotent. ¤

Recall from (1.1)(a) that the annihilator of an ideal I of a nondegenerate Lie
algebra L is given by AnnI(L) = {x ∈ L | [x, [I, x]] = 0}. The following two results
give analogs of this fact for Lie triple systems and for Kantor pairs.

Theorem 3.2. Let T be a nondegenerate Lie triple system and I an ideal of T .
Then AnnT (I) = {x ∈ T | [x, I, x] = 0}.
Proof. The inclusion from left to right being obvious, let us consider x ∈ T satisfying
[x, I, x] = 0 and put I := [T, I] ⊕ I, the ideal of LT generated by I. Then for
y, y′ ∈ I and t ∈ T we have [x, [x, [x, [y, t]+y′]]] = [x, [x, [x, [y, t]]]] = [x, [x, [[x, y], t]−
[[x, t], y]]] ∈ [x, [x, I]] = 0, i.e., x is an I-Jordan element in LT . We can therefore
consider the generalized Jordan algebra Ix of I at x. Because LT is nondegenerate
by (2.4), so is I by (1.1). Hence Ix is a nondegenerate Jordan algebra (2.2)(3).
Moreover, since I is a Z2-graded Lie algebra and x is homogeneous, kerI(x) = {a ∈
I | [x, [x, a]] = 0} is Z2-graded and so is then Ix = I/ kerI(x). By definition of
the Jordan algebra product, (Ix)0 = {a | a ∈ I} and (Ix)1 = {a | a ∈ [T, I]}. But
kerI(x) ∩ I = I by assumption, so that (Ix)0 = 0. By nondegeneracy we then get
Ix = 0, which says I = kerI(x). Hence x ∈ T ∩AnnLT (I) = AnnT (I). ¤

From (3.2) and (1.8)(3) we now get:

Corollary 3.3. Let V be a nondegenerate Kantor pair and I = (I+, I−) an ideal
of V . Then AnnV (I)σ = {x ∈ V σ | {x, I, x} = 0}.

An easy consequence of (3.2) and (3.3) is:

Corollary 3.4. Every ideal of a nondegenerate Kantor pair or Lie triple system is
also nondegenerate.

The remaining two results deal with Kantor pairs. First, we show that nonzero
ideals in nondegenerate Kantor pairs cannot have a zero side:

Proposition 3.5. Let V be a nondegenerate Kantor pair and let I = (I+, I−) be
an ideal of V or V op. If Iσ = 0, then I−σ = 0. In particular, if x ∈ V σ satisfies
{V −σ, x, V −σ} = 0, then x = 0.

Proof. Let us suppose I = (I+, {0}). From (2.5) we know that LV is a non-
degenerate Lie algebra. By (2.6)(1), the ideal of LV generated by I is I :=
[V +, I+] ⊕ I+ ⊕ [V −, I+] ⊂ L2 ⊕ L1 ⊕ L0. Since I is nondegenerate by (1.1),
I+ = 0 and so I = 0. ¤

Lemma 3.6. Let V be a Kantor pair and Iσ a submodule of V σ. Then I =
(Iσ, {V −σ, Iσ, V −σ}) is an ideal of V or V op if and only if {Iσ, V −σ, V σ} +
{V σ, V −σ, Iσ} ⊂ Iσ.

Proof. The condition {Iσ, V −σ, V σ} + {V σ, V −σ, Iσ} ⊂ Iσ is obviously neces-
sary for I to be an ideal. Conversely, if it is fulfilled, it suffices to verify that
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{V −σ, V σ, I−σ} + {I−σ, V σ, V −σ} ⊂ I−σ and {V σ, I−σ, V σ} ⊂ Iσ. These three
conditions are established below, where a, c, u, v ∈ V −σ, b, d ∈ V σ, and y ∈ Iσ:

{a, b, {u, y, v}} = {{a, b, u}, y, v} − {u, {b, a, y}, v}+ {u, y, {a, b, v}}
∈ {V −σ, Iσ, V −σ} = I−σ,

{{u, y, v}, b, a} = {u, y, {v, b, a}}+ {v, {y, u, b}, a} − {v, b, {u, y, a}}
∈ {V −σ, Iσ, V −σ}+ {V −σ, V σ, {V −σ, Iσ, V −σ}}
⊂ {V −σ, Iσ, V −σ} = I−σ,

{b, {u, y, v}, d} = −{y, u, {b, v, d}}+ {{y, u, b}, v, d}+ {b, v, {y, u, d}} ∈ Iσ.

¤

In the following result we characterize when Kantor pairs are Jordan pairs by
building the biggest Jordan ideal of a Kantor pair. We recall that an ideal of a
Kantor pair (or of any algebraic structure for that matter) is called essential if
it has nonzero intersection with any nonzero ideal. In a prime Kantor pair, any
non-zero ideal is essential.

Proposition 3.7. Let V be a nondegenerate Kantor pair and define for σ = + and
σ = −

Iσ := {x ∈ V σ | Kx,c a = 0 = Ka,b x, ∀ c ∈ V σ, a, b ∈ V −σ}.
(1) Then I := (I+, I−) is the biggest ideal of V which is a Jordan pair with

respect to the given triple product. Moreover, for σ = + and σ = −,

Iσ = {x ∈ V σ | Kx,c = 0 ∀ c ∈ V σ}. (a)

(2) V is a Jordan pair if and only if I is an essential ideal, in which case V = I.
In particular, if V 6= 0 is also prime, then V is a Jordan pair if and only if
I 6= 0.

Proof. (1) We first show that (Iσ, {V −σ, Iσ, V −σ}), σ = ±, are ideals of V (this
does not need the assumption that V is nondegenerate). By (3.6) and the definition
of Iσ it suffices to show that {V σ, V −σ, Iσ} ⊂ Iσ. Thus, let x ∈ Iσ, a, d ∈ V σ and
b, c, e ∈ V −σ. Then

{{a, b, x}, c, d} = {a, b, {x, c, d}}+ {x, {b, a, c}, d} − {x, c, {a, b, d}}
= {a, b, {d, c, x}}+ {d, {b, a, c}, x} − {{a, b, d}, c, x}
= {{a, b, d}, c, x} − {d, {b, a, c}, x}+ {d, c, {a, b, x}}

+ {d, {b, a, c}, x} − {{a, b, d}, c, x} = {d, c, {a, b, x}},
{c, {a, b, x}, e} − {e, {a, b, x}, c} = Kc,eVa,bx = −Vb,aKc,ex + KKc,ea,bx = 0,

so {V σ, V −σ, Iσ} ⊂ Iσ. In particular, J = (J+, J−) = (I+, {V −, I+, V −}) is an
ideal of V . By (2.6)(1),

J := [J+, V +]⊕ J+ ⊕ ([J+, V −] + [V +, J−])⊕ J− ⊕ [J−, V −]

is the ideal generated by J+ ∪ J− in LV = L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2.
Now, given y ∈ J+, x ∈ V + and z ∈ V −, we have [[y, x], z] = [[y, z], x]− [[x, z], y] =
Ky,xz = 0, which implies that 0 = [J+, V +] = π2(J ) where πi denotes the canonical
projection onto the Li-component of L. Since LV is nondegenerate by (2.4), 0 =
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π−2(J ) = [J−, V −], i.e., KJ−,V −V + = 0. Moreover, L2 ⊂ AnnLV (J ) by (1.1)(a)
because J is 3-graded. Hence [[V +, V +], J−] = 0, i.e., KV +,V +J− = 0. Therefore,
{V −, I+, V −} = J− ⊂ I− which implies that I = (I+, I−) is an ideal of V . Now
J ⊂ L−1⊕L0⊕L1, and every ideal K of V that generates in LV an ideal contained
in L1 ⊕ L0 ⊕ L−1 necessarily has K ⊂ I. Hence (a) holds.

To prove that I is the biggest ideal which is a Jordan pair, let K = (K+,K−)
be an ideal of V such that K is a Jordan pair. Again by (2.6)(1),

K := [K+, V +]⊕K+ ⊕ [K+, V −] + [V +,K−]⊕K− ⊕ [K−, V −]

is the ideal of LV generated by K. We know that K is a nondegenerate Lie algebra.
Applying (2.6)(1) one more time, it follows that the ideal ofK generated by K+∪K−

is
K′ := [K+,K+]⊕K+ ⊕ [K+, K−]⊕K− ⊕ [K−,K−].

Now, since K′ is nondegenerate and [[Kσ,Kσ],K−σ] = 0 (recall that K is a Jordan
pair) we have that [[Kσ, Kσ],K′] = 0. So [Kσ, Kσ] = 0 by nondegeneracy of K′,
and this implies, viewing [Kσ,Kσ] as elements of LV , that [[Kσ,Kσ], V −σ] = 0
and Ky,y′b = 0 for every y, y ∈ Kσ and b ∈ V −σ. Moreover, [Kσ,Kσ] = 0
implies that K′ is 3-graded and then by (1.1)(a) that [V σ,Kσ] ⊂ AnnK(K′). In
particular, Ky,ay′ = 0 for every y ∈ Kσ, a ∈ V σ and y′ ∈ K−σ. Finally, for every
y ∈ Kσ, y′ ∈ K−σ, a ∈ V σ and b ∈ V −σ we have:

{Ky,ab, y′,Ky,ab} = VKy,ab,y′Ky,ab = −Ky,aVy′,Ky,abb + KKy,ay′,Ky,abb = 0

and, since K′ is nondegenerate, Ky,ab = 0 for every y ∈ Kσ, a ∈ V σ and b ∈ V −σ.
Thus, by (1), K ⊂ I.

(2) Let I = I+ ⊕ ([I+, V −] + [V +, I−]) ⊕ I− be the ideal of LV generated by
I+ ∪ I−, and notice that L2 ∪L−2 ⊂ AnnLV (I) = 0 and I ⊂ L1 ⊕L0 ⊕L−1. Now,
I is an essential ideal of V if and only if I is an essential ideal of LV . Since the
annihilator of an essential ideal is zero, we get L2 = 0 = L−2. The converse is
obvious. ¤
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