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Abstract. This paper presents an overview of the current state of knowledge
in the field of equivariant map algebras and discusses some open problems in
this area.
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Introduction

Equivariant map algebras are a large class of algebras that are generalizations of
current and loop algebras. Let X be an affine scheme (e.g. an algebraic variety) and
let a be a finite-dimensional algebra (e.g. a Lie or associative algebra), both defined
over a field k, often assumed to be algebraically closed. Furthermore, suppose that
a finite group Γ acts on both X and a by automorphisms. Then the equivariant
map algebra (or EMA) M = M(X, g)Γ is the algebra of regular maps X → a

which are equivariant with respect to the action of Γ. One can also give a more
algebraic definition of these algebras. The action of Γ on X induces an action on
the coordinate ring A of X. Then M = (a⊗ A)Γ, the fixed points of the diagonal
action of Γ on a⊗A.

Perhaps the most important, and certainly the most well-studied, EMAs are the
(twisted) loop Lie algebras or, more generally, the (twisted) multiloop Lie algebras.
These are the EMAs where k is an algebraically closed field of characteristic zero, X
is the torus (k×)n (where n = 1 for the loop algebras), a is a simple Lie algebra and Γ
is a product of n cyclic groups acting in a natural way onX and a (see Example 1.5).
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Loop Lie algebras play a crucial role in the theory of affine Lie algebras, as do
multiloop Lie algebras for extended affine Lie algebras (see [1]). Other important
examples of EMAs include (twisted) current algebras and the Onsager algebra.

However, the class of EMAs is much larger than the set of examples mentioned
above. Nevertheless, it turns out that one can say a significant amount about
EMAs and their representation theory in a very general setting. For instance, for
equivariant map Lie or associative algebras, one can classify their irreducible finite-
dimensional representations and, in the Lie case, describe the extensions between
these representations.

In the current paper we survey the present-day state of knowledge in the theory
of equivariant map algebras and their representations. A significant portion of the
exposition is also devoted to open problems in the field. We begin in Section 1 with
the most general definition of an EMA, where the “target” algebra is any finite-
dimensional algebra (rather than the Lie algebra case most often considered in the
literature). We also introduce there some of the main definitions and examples. In
particular, we discuss the important concept of an evaluation map.

In Section 2, we consider the case where a is an associative algebra. In partic-
ular, we give a classification of the irreducible finite-dimensional representations of
an equivariant map associative algebra, a result which has not previously appeared
in the literature.

In Section 3, we summarize the most important results concerning equivariant
map Lie algebras, the most well-studied class of EMAs. In the case where the target
a is a finite-dimensional Lie algebra, we recall the classification of the irreducible
finite-dimensional representations, the description of the extensions between such
representations and the corresponding block decomposition of the category of finite-
dimensional representations. We also review the important concepts of global and
local Weyl modules. We conclude Section 3 with a summary of what is known when
the target a is not a finite-dimensional Lie algebra. In particular, we discuss the
classification of certain representations in the case that a is the Virasoro algebra
and the case that a is a finite-dimensional basic classical Lie superalgebra.

Section 4 is devoted to an overview of open problems in the field of EMAs.
While our list of problems is by no means exhaustive, we have made an attempt
to present a wide range of what we consider to be some of the most interesting
and important ones. We begin in Section 4.1 with a discussion of the issue of
considering new types of EMAs. While the definition of an EMA is quite general,
it can be generalized still further, as described there. In Section 4.2 we discuss
several important open questions that apply to the general EMA setting. Finally,
in Section 4.3 we focus on the equivariant map Lie algebras and describe some
of the next steps towards establishing a comprehensive representation theory of
equivariant map Lie algebras.

Basic notation. We let k be an algebraically closed field which is of arbitrary
characteristic in §§1 and 2 and of characteristic zero in the following sections. We
set k× = k \ {0}. Vector spaces and tensor products are over k unless otherwise
indicated.

An algebra is a vector space A over k together with a k-bilinear map A×A → A,
(a, b) �→ ab, called the product of A. For general algebras we write the product by
juxtaposition while for Lie algebras we use the traditional notation [a, b]. The direct
product of two algebras A and B is denoted A�B to distinguish it from the direct
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sum of two vector spaces. We will use the terms “module” and “representation”
interchangeably.

For schemes, we use the terminology of [25]. In particular, an affine scheme
X is the (prime) spectrum of a commutative associative unital k-algebra A. For
an arbitrary scheme X, we set A = OX(X). Recall ([25, p. 45]) that x ∈ X is
a k-rational point of X if its residue field A/mx

∼= k where mx is the ideal of A
corresponding to x. We let Xrat denote the set of k-rational points of X. If A
is finitely generated, equivalently X = SpecA is an affine scheme of finite type,
the rational points correspond exactly to the maximal ideals of A, i.e., Xrat =
maxSpecA. We say that X is an affine variety if A is finitely generated and
reduced, in which case we identify X with the maximal spectrum of A (for most
readers this will be the most interesting case). For example, a finite-dimensional
vector space V is also equipped with the structure of an affine variety, the affine
n-space A

n for n = dimk V .
The symbol Γ will always denote a finite group. Although it is not necessary in

the beginning, we suppose from the start that the order |Γ| of Γ is not divisible by
the characteristic of k. (Note that this imposes no condition if k is of characteristic
zero.) If Γ acts on a set X we let Γx = {γ ∈ Γ : γ · x = x} be the isotropy group of
x ∈ X. If Γ acts on a vector space V we put V Γ = {v ∈ V : γ · v = v for all γ ∈ Γ}.

1. General equivariant map algebras

In this section we will define general equivariant map algebras. By “general”
we mean “not necessarily Lie” (as opposed to the setting of [52, 53]). We work
within the following framework:

(a) X = SpecA is an affine scheme over k.
(b) a is a finite-dimensional k-algebra, without any further assumptions. We

view a also as an affine variety.
(c) Γ is a finite group acting on the scheme X, equivalently on the algebra A,

and on the algebra a by automorphisms of the respective structure.

Definition 1.1 (Map algebra). We denote by M(X, a) the algebra of regular
functions on X with values in a, called the untwisted map algebra or the algebra of
currents. Therefore

(1.1) M(X, a) = a⊗A,

with product given by

(1.2) (a1 ⊗ a1)(a2 ⊗ a2) = (a1a2)⊗ (a1a2)

for ai ∈ a and ai ∈ A. Viewing elements of M(X, a) as maps from X to a, the
product of α1, α2 ∈ M(X, a), is given by (α1α2)(x) = α1(x)α2(x) for x ∈ X.
Although the product a ⊗ A above is an A-algebra, we will always view it as a
k-algebra.

Remarks 1.2. The multiplication rule (1.2) defines of course a k-algebra struc-
ture on a⊗A for an arbitrary a. However, with the exception of the map Virasoro
algebra discussed in Section 3.4, we always assume that a is finite-dimensional.

If a is an algebra in a class of algebras defined by multilinear identities (a
homogeneous variety of algebras in the sense of nonassociative algebras as in [61],
e.g. Lie algebras or associative algebras), then M(X, a) belongs to the same class
of algebras.
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If A = kn := k � · · · � k (n factors), equivalently, X is an algebraic variety
consisting of n points, we have M(X, a) ∼= an := a�· · ·�a (n factors). If A = k[t±1]
is the Laurent polynomial ring, so that X = k×, the algebra M(k×, a) is called the
(untwisted) loop algebra of a.

Definition 1.3 (Equivariant map algebra). Observe that Γ acts on M(X, a)
by automorphisms: For γ ∈ Γ and α ∈ M(X, a) the map γ · α is defined by
(γ · α)(x) = γ ·

(
α(γ−1 · x)

)
for x ∈ X, i.e., γ · (a ⊗ a) = (γ · a) ⊗ (γ · a) for

a ∈ a, a ∈ A. We define M(X, a)Γ to be the set of fixed points under this action.
That is,

M := M(X, a)Γ = {α ∈ M(X, a) : α(γ · x) = γ · α(x) ∀ x ∈ X, γ ∈ Γ}
is the subalgebra of M(X, a) consisting of Γ-equivariant maps from X to a. We call
M(X, a)Γ an equivariant map algebra (or EMA). We note that in general the data
(X, a,Γ) are not uniquely determined by M, see in this respect Section 4.2.1.

As was the case for the map algebras, it is clear that M inherits any multilinear
identities satisfied by a. For example, M is associative if a is associative, etc. (we
trust the reader will fill in here his or her favorite class of algebras).

Let Ξ be the set of isomorphism classes of irreducible representations of Γ. Since
Γ acts completely reducibly on a and A, each algebra has a unique decomposition
into isotypic components. Thus we have a =

⊕
ξ∈Ξ aξ where the isotypic component

aξ is the sum of all Γ-submodules of a of type ξ. Similarly A =
⊕

ξ∈Ξ Aξ. We denote
by 0 the class of the trivial representation and by −ξ the equivalence class of the
representation dual to the representation in ξ. Since (aξ⊗Aτ )

Γ = {0} unless τ = −ξ
we get

(1.3) M =
⊕

ξ∈Ξ(aξ ⊗A−ξ)
Γ ⊇ a0 ⊗A0.

One of the difficulties in studying equivariant map algebras is that it is in general
difficult to understand the elements in (aξ ⊗ A−ξ)

Γ. The situation is (somewhat)
easier in the case where Γ is abelian, see Example 1.4.

Equivariant map algebras were introduced in [53] for Lie algebras a, but it
was mentioned there that some of the preliminary results of [53] hold for arbitrary
a. We will come back to this below. We first discuss some examples so that the
reader can appreciate the full scope of the definition. We focus on examples where
Γ is abelian. The interested reader can find an example with a non-abelian Γ in
[53, Ex. 3.13].

Example 1.4 (Γ abelian). If Γ is abelian, the isomorphism classes of irreducible
representations can be identified with the character group of Γ which, for simplicity,
we also denote by Ξ. This is an abelian group (non-canonically isomorphic to Γ),
whose group operation we will write additively. The isotypic component Aξ is given
by Aξ = {a ∈ A : γ ·a = ξ(γ)a for all γ ∈ Γ}, whence (aξ ⊗A−ξ)

Γ = aξ ⊗A−ξ. The
decomposition (1.3) now reads

(1.4) M =
⊕

ξ∈Ξ aξ ⊗A−ξ.

Note that the decomposition (1.4) is a Ξ-grading of the algebra M. The next
example introduces an important special case.

Example 1.5 (Multiloop algebras). Fix positive integers n,m1, . . . ,mn. Let

Γ = 〈γ1, . . . , γn : γmi
i = 1, γiγj = γjγi, ∀ 1 ≤ i, j ≤ n〉 ∼= (Z/m1Z)×· · ·×(Z/mnZ)
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and suppose that Γ acts on a by automorphisms. Note that this is equivalent to
specifying commuting automorphisms σi, i = 1, . . . , n, of a such that σmi

i = Id. For
i = 1, . . . , n, let ξi be a primitive mi-th root of unity. Let X = (k×)n and define
an action of Γ on X by

γi · (z1, . . . , zn) = (z1, . . . , zi−1, ξizi, zi+1, . . . , zn).

Then

(1.5) M(a, σ1, . . . , σn,m1, . . . ,mn) := M(X, a)Γ

is the multiloop algebra of a relative to (σ1, . . . , σn) and (m1, . . . ,mn). General
multiloop algebras are studied in detail in [3] and [4].

Definition 1.6 (Evaluation map). For x ∈ Xrat with isotropy group Γx we set

ax = {a ∈ a : γ · a = a for all γ ∈ Γx}

and note that ax is, in general, a proper subalgebra of a. We denote by X∗ the set
of finite subsets x ⊆ Xrat for which (Γ · x) ∩ (Γ · x′) = ∅ for distinct x, x′ ∈ x. For
x ∈ X∗ we define ax = �x∈xa

x. The evaluation map

evx : M → ax, evx(α) =
(
α(x)

)
x∈x

is a surjective algebra homomorphism (see [53, Cor. 4.6]). This has important
consequences for the representation theory of M. When x = {x} is a singleton, we
will often denote the evaluation map by evx.

For the next theorem we recall that an ideal of an arbitrary k-algebra B is a
subspace I of B such that xb ∈ I and bx ∈ I for all x ∈ I and b ∈ B. One calls B
simple if B is not the zero algebra and if every ideal I of B is trivial: I = {0} or
I = B.

Proposition 1.7. Let K be an ideal of M such that the quotient algebra M/K
is finite-dimensional and simple. Then there exists a k-rational point x ∈ X such
that the canonical epimorphism π : M → M/K factors through the evaluation map
evx : M → ax :

M
π �� ��

evx �� ���
��

��
��

� M/K

ax

�� ����������

Proof. This is Proposition 5.2 together with Remark 5.3 in [53]. �

2. Equivariant map associative algebras

In this section, we assume that a is a unital associative algebra and use Proposi-
tion 1.7 to obtain a new description of representations of equivariant map algebras
M(X, a)Γ. As pointed out in Section 1, in this case M(X, a)Γ is an associative
algebra, so that it makes sense to speak of representations. We recall that a repre-
sentation of an associative algebra B is an algebra homomorphism ρ : B → Endk V
where Endk V denotes the associative k-algebra of endomorphisms of a k-vector
space V .
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Theorem 2.1. Let ρ : M(X, a)Γ → Endk V be an irreducible finite-dimensional
representation of M = M(X, a)Γ. Then there exists a k-rational point x ∈ X such
that ρ factors as

M
evx �� ��ax

ρx �� ��Endk V

where ρx is an irreducible finite-dimensional representation of the finite-dimensional
algebra ax.

Conversely, for any x ∈ Xrat and any irreducible representation ρx : a
x →

Endk V the map ρx ◦ evx is an irreducible representation of M.

Proof. Let K = Ker ρ. Then M = M/K is a finite-dimensional associative
algebra with a faithful irreducible representation ρ̄ satisfying ρ = ρ̄ ◦π for π : M →
M/K the canonical projection. By Burnside’s Theorem (see, for example, [38,
§4.5]), ρ̄ is an isomorphism, in particular M is simple. Thus, by Proposition 1.7,
there exists a rational point x such that ρ factors through evx.

That, conversely, ρx ◦ evx is an irreducible representation of M follows from
the surjectivity of evx. �

We call the representations ρx ◦ evx = ρx evx appearing in Theorem 2.1 single
point evaluation representations. The theorem can then be summarized by saying
that the irreducible finite-dimensional representations of M(X, a)Γ are precisely the
single point evaluation representations.

We now turn to describing the isomorphism classes of these representations.
We will use an approach that will reappear in the setting of Lie algebras.

For x ∈ Xrat, let Rx denote the set of isomorphism classes of irreducible finite-
dimensional representations of ax, and put RX =

⊔
x∈Xrat

Rx (disjoint union). It
is convenient to view the trivial zero-dimensional representation as an irreducible
representation; we will use 0 to denote its class in Rx. Note that Γ acts on RX by

Γ×RX → RX , (γ, [ρ]) �→ γ · [ρ] := [ρ ◦ γ−1] ∈ Rγ·x,

where [ρ] ∈ Rx is the isomorphism class of a representation ρ of ax. For isomor-
phic irreducible representations ρ and ρ′ of ax, the evaluation representations evx ρ
and evx ρ

′ are isomorphic representations of M. Therefore, for [ρ] ∈ Rx, we can
define evx[ρ] to be the isomorphism class of evx ρ, and this is independent of the
representative ρ.

We let EΓ
single denote the set of Γ-equivariant functions ψ : Xrat → RX such that

ψ(x) ∈ Rx for all x ∈ Xrat and Suppψ := {x ∈ Xrat : ψ(x) �= 0} is contained in a
single Γ-orbit. For 0 �= ψ ∈ EΓ

single we define ev
Γ
ψ = evx[ψ(x)] where Γ·{x} = Suppψ.

One can show as in [53, Lem. 4.13], that evΓψ is independent of the choice of

x ∈ Suppψ. We let evΓψ be the zero-dimensional representation if ψ = 0. Thus

ψ �→ evΓψ defines a map evΓ : EΓ
single → S, where S denotes the set of isomorphism

classes of irreducible finite-dimensional representations of M.

Corollary 2.2. The map evΓ : EΓ
single → S is a bijection. In other words,

EΓ
single enumerates the isomorphism classes of irreducible finite-dimensional repre-

sentations of M.

Proof. Surjectivity follows from Theorem 2.1 and injectivity can be be shown
as in [53, Prop. 4.15]. �
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Note that in the associative case, all irreducible finite-dimensional representa-
tions are single orbit evaluation representations, in contrast to the Lie algebra case
(see Theorem 3.2). This is not surprising since it is not clear how to define multi-
orbit evaluation representations in the associative case unless one has a bialgebra
structure on the target a.

3. Equivariant map Lie algebras

In this section we consider the most well studied case of equivariant map alge-
bras: the case where the target algebra is a Lie algebra. Unless otherwise stated, we
assume throughout this section that g is a finite-dimensional Lie algebra and that
A is a commutative associative algebra (not necessarily finitely generated) over an
algebraically closed field k of characteristic zero.

3.1. Irreducible finite-dimensional representations. DefineRx, x∈Xrat,
and RX as in Section 2 (with a replaced by g), except that 0 ∈ Rx denotes the
trivial one-dimensional representation and evψ is the trivial one-dimensional repre-
sentation if ψ = 0. Let EΓ denote the set of Γ-equivariant functions ψ : Xrat → RX

such that ψ(x) ∈ Rx for all x ∈ Xrat and Suppψ is finite.

Definition 3.1 (Evaluation representation [53, Def. 4.14]). For ψ ∈ EΓ, we
define evΓψ = evx(ψ(x))x∈x, where x ∈ X∗ contains one element of each Γ-orbit in
Suppψ. Namely, if ρx : g

x → Endk Vx, x ∈ x, is an irreducible representation with
isomorphism class [ψ(x)] then evΓψ is the composition

M(X, g)Γ
evx−−→ �x∈x g

x ⊗x∈xρx−−−−−→ Endk(
⊗

x∈x Vx).

We call evΓψ an evaluation representation and note that it is always an irreducible

finite-dimensional representation of M = M(X, g)Γ (see [53, Prop. 4.9]).1 By
[53, Lem. 4.13], evΓψ is independent of the choice of x. If ψ is the map that

is identically 0 on X, we define evΓψ to be the isomorphism class of the trivial

one-dimensional representation of M. Thus ψ �→ evΓψ defines a map EΓ → S,
where S denotes the set of isomorphism classes of irreducible finite-dimensional
representations of M.

In the classification of irreducible finite-dimensional representations of equi-
variant map algebras, there are two essential differences between the associative
and Lie cases. First, one needs to consider evaluation representations supported on
more than one orbit (compare EΓ to the EΓ

single appearing in Corollary 2.2). Second,
in the Lie case one needs, in general, to consider one-dimensional representations
since M need not be perfect.

Recall that the isomorphism classes of one-dimensional representations of a Lie
algebra L are naturally identified with the elements of the space (L/[L,L])∗.

Theorem 3.2 ([53, Thm. 5.5]). The map

(M/[M,M])∗ × EΓ → S, (λ, ψ) �→ λ⊗ evΓψ, λ ∈ (M/[M,M])∗, ψ ∈ EΓ,

1In [53] an evaluation representation need not necessarily be irreducible. We have chosen to
include irreducibility in the definition of an evaluation representation here since we will not deal
with non-irreducible evaluation representations in this paper.
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is surjective. In particular, all irreducible finite-dimensional representations of M
are tensor products of an evaluation representation and a one-dimensional repre-
sentation. If M is perfect (i.e., [M,M] = M), then the map

EΓ → S, ψ �→ evΓψ,

is a bijection.

In fact, Theorem 3.2 can be made more precise. We have that λ⊗evΓψ = λ′⊗evΓψ′

if and only if there exists Φ ∈ EΓ such that dim evΓΦ = 1, λ′ = λ − evΓΦ and
evΓψ′ = evΓψ⊗Φ. Here ψ ⊗ Φ ∈ EΓ is given by (ψ ⊗ Φ)(x) = ψ(x) ⊗ Φ(x), where

ψ(x) (respectively Φ(x)) is the one-dimensional trivial representation if x �∈ Suppψ
(respectively x �∈ SuppΦ). In particular, the restriction of the map (λ, ψ) �→ λ⊗evΓψ
to either factor (times the zero element of the other) is injective.

We see that Theorem 3.2 is simplified when M is perfect. This happens, for ex-
ample, if [gΓ, g] = g or if g is semisimple and Γ acts on g by diagram automorphisms
(see [53, Cor. 5.8]) or if M is a multiloop algebra (see [4, Lem. 4.9]).

Theorem 3.2 is a generalization of the work of many authors. The classification
of irreducible finite-dimensional representations of (twisted) loop algebras (i.e. when
A = C[t, t−1]) dates back to the work of Chari and Pressley (see [13,20,21,23]).
For the multiloop algebras, the irreducible modules were described in the untwisted
case by Rao in [27]. In certain twisted cases, they were then described by Batra
in [7]. A complete classification of the irreducible finite-dimensional modules for
twisted multiloop algebras was given by Lau in [44]. In the setting that g is a simple
Lie algebra, the action of Γ is trivial and A is finitely generated, the irreducible
finite-dimensional representations were classified by Chari, Fourier and Khandai in
[15] using the theory of Weyl modules.

3.2. Extensions and block decompositions. The category of finite-dimen-
sional representations of equivariant map Lie algebras is, in general, not semisimple.
For example, the local Weyl modules (see Definition 3.9) are indecomposable but
in general not irreducible. It is therefore important to know the extensions be-
tween irreducible objects in this category. In this section we review what is known
regarding such extensions and the resulting block decomposition of the category
of finite-dimensional representations. We focus on the issue of extensions between
evaluation representations, referring the reader to [52] for details on the more gen-
eral case.

We assume throughout this section that g is a finite-dimensional reductive Lie
algebra and that A is finitely generated. We note that in this case all subalgebras
gx, x ∈ Xrat, are also reductive. For a Lie algebra L, we set Lab := L/[L,L]. If L
is reductive, we let Lss := [L,L] be its semisimple part.

The following result reduces the determination of extensions between evaluation
modules to the computation of extensions between evaluation modules supported
on a single orbit. In the special case where Γ is trivial and g is semisimple, it was
first proven by Kodera ([43, Thm. 3.6]).

Theorem 3.3 ([52, Thm. 3.7]). Suppose V and V ′ are evaluation modules
corresponding to ψ, ψ′ ∈ EΓ respectively. Let V =

⊗
x∈x Vx and V ′ =

⊗
x∈x V

′
x for

some x ∈ X∗, where Vx, V
′
x are (possibly trivial) evaluation modules at the point

x ∈ x. Then the following are true.

(a) If ψ and ψ′ differ on more than one Γ-orbit, then Ext1M(V, V ′) = 0.
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(b) If ψ and ψ′ differ on exactly one orbit Γ · x0, x0 ∈ x, then

Ext1M(V, V ′) ∼= Ext1M(Vx0
, V ′

x0
).

(c) If ψ = ψ′ (so V ∼= V ′), then

(M∗
ab)

|x|−1 ⊕ Ext1M(V, V ) ∼=
⊕

x∈x Ext
1
M(Vx, Vx).

The next result allows one to compute the extensions between two evaluation
modules supported on the same (single) orbit, which is essential in view of Theo-
rem 3.3.

Theorem 3.4 ([52, Thm. 3.9]). Let V and V ′ be two single orbit evaluation
representations supported on the same orbit Γ · x for some x ∈ Xrat. Thus gxab acts
on V and V ′ by linear forms, which we denote by λ and λ′ respectively. Let

Kx := ker evx,

Zx := ev−1
x (gxab) = {α ∈ M : [α,M] ⊆ Kx}.

Then

(3.1) Ext1M(V, V ′) ∼=
{
Homgx(Kx,ab, V

∗ ⊗ V ′) if λ �= λ′,

Homgx
ss
(Zx,ab, V

∗ ⊗ V ′) if λ = λ′.

In particular, if gx is semisimple, then gx = gxss, λ = λ′ = 0, Kx = Zx, and

(3.2) Ext1M(V, V ′) ∼= Homgx(Kx,ab, V
∗ ⊗ V ′).

In the special case that Γ is abelian and acts freely on Xrat, the extensions are
very simple to describe as the following result shows.

Proposition 3.5 ([52, Prop. 4.9]). Suppose Γ is abelian, Γ acts freely on Xrat

and g is semisimple. Then for any two evaluation modules V1, V2 at x we have

Ext1M(V1, V2) ∼= Homg(g, V
∗
1 ⊗ V2)⊗ (mx/m

2
x)

∗,

where we recall that mx is the maximal ideal of A corresponding to x.

Note that (mx/m
2
x)

∗ is the Zariski tangent space of X at the point x. Proposi-
tion 3.5 was first proved in the case where Γ is trivial by Kodera ([43, Prop. 3.1]).
In the case of the current algebra (where k = C and A = C[t]), extensions were also
described in [17].

Having an explicit formula for the extensions between simple objects in a cat-
egory allows one (at least in theory) to compute the block decomposition of that
category. In the case that g is semisimple and Γ is abelian and acts freely on Xrat,
the description of the blocks is quite simple. First note that Γ acts on the weight
lattice P of g via the quotient Aut g � Aut g/ Int g ∼= Out g, where Int g denotes
the group of inner automorphisms of g and Out g denotes the group of diagram
automorphisms of g.

Proposition 3.6 ([52, Prop. 6.6]). Suppose that Γ is abelian and acts freely
on Xrat and that g is semisimple. Furthermore, assume that, for all x ∈ Xrat,
the tangent space (mx/m

2
x)

∗ �= 0. For example, assume that X is an irreducible
algebraic variety of positive dimension. Then the blocks of the category of finite-
dimensional representations of M are naturally enumerated by finitely supported
equivariant maps Xrat → P/Q.
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Special cases of EMAs satisfying the above assumptions are loop algebras, for
which block decompositions were described in [19] for the untwisted case and in
[58] for the twisted case. In the case that Γ is trivial, the block decomposition was
described in [43, §4.2]. We refer the reader to [52, §5] for a more general description
(i.e. with weaker assumptions than those of Proposition 3.6).

Combining the above with the results of Section 3.1, one sees a particularly nice
pattern emerge in the theory of EMAs and their representations. Namely, many
important quantities are parameterized by sets of equivariant maps on X (or Xrat):

• The EMA M itself is the space of equivariant maps X → g.
• Provided M is perfect (which is the case in many important examples), the
irreducible finite-dimensional representations are parameterized by the set
of finitely supported equivariant maps from Xrat to the set of isomorphism
classes of irreducible finite-dimensional representations of the subalgebras
gx, x ∈ Xrat.

• Provided Γ is abelian and acts freely, g is semisimple and A finitely
generated, the blocks of the category of finite-dimensional representa-
tions are parameterized by the set of finitely supported equivariant maps
Xrat → P/Q.

3.3. Weyl modules. In this section we present an overview of the present
state of the theory of Weyl modules. We begin with the untwisted case (i.e. when
Γ is trivial). We assume throughout this section that g is a simple Lie algebra.
As before, A is a commutative associative algebra with unit and both g and A are
defined over an algebraically closed field k of characteristic zero. We fix a triangular
decomposition g = n−⊕h⊕n+ of g and let P+ and Q+ denote the dominant integral
weight lattice and positive root lattice of g respectively. We also identify g with
the subalgebra g⊗ k ⊆ g⊗A

Given a left g-module V , let

PA(V ) = U(g⊗ A)⊗U(g) V.

Now suppose λ ∈ P+ and let V (λ) be the corresponding irreducible highest weight
module of g.

Definition 3.7 (Untwisted global Weyl module). The (untwisted) global Weyl
module WA(λ) associated to λ ∈ P+ is the unique maximal quotient (of (g ⊗ A)-
modules) of PA(V (λ)) whose weights are contained in λ−Q+. In other words

WA(λ) := PA(V (λ))
/∑

μ �≤λ U(g⊗A)PA(V (λ))μ.

It is possible to give an explicit description of the global Weyl modules in
terms of generators and relations. For this, we fix a set {ei, fi, hi}i∈I of Chevalley
generators of g.

Proposition 3.8 ([15, Prop. 4]). For λ ∈ P+, the global Weyl module WA(λ)
is generated as a (g⊗A)-module by a single vector wλ with defining relations

(n+ ⊗A)wλ = 0, hwλ = λ(h)wλ, f
λ(hi)+1
i wλ = 0, i ∈ I, h ∈ h.

We now define the local Weyl modules. We define Rx and RX as in Section 3.1.
For x ∈ Xrat, we identify Rx with P+ by associating to an isomorphism class of
irreducible finite-dimensional g-modules the highest weight of the modules in that
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class. In this way we identify E with the set of finitely supported maps from Xrat

to P+.

Definition 3.9 (Untwisted local Weyl module). Given ψ ∈ E (see Section 3.1),
the (untwisted) local Weyl module W (ψ) is the (g ⊗ A)-module generated by a
nonzero vector wψ with defining relations

(n+ ⊗ A)wψ = 0,

αwψ =
(∑

x∈Suppψ ψ(x)(α(x))
)
wψ, α ∈ h⊗A,

(fi ⊗ 1)λ(hi)+1wψ = 0, i ∈ I, where λ =
∑

x∈Suppψψ(x).

Global and local Weyl modules were first defined for affine algebras (i.e. loop
algebras, where X = k×) by Chari and Pressley in [24], where many of their
important properties were proved. This definition and some analogous results were
extended to the case where A is the coordinate ring of an algebraic variety by
Feigin and Loktev in [31]. A more general functorial approach to Weyl modules for
arbitrary finitely generated A was taken by Chari, Fourier and Khandai in [15].

In the loop case, where A = C[t, t−1], local Weyl modules are q = 1 limits of
irreducible representations of quantum affine algebras. This was conjectured in [24]
and proved there in the case g = sl2. It was also shown there that the general case
follows from conjectural dimension formulas for these modules. Using these results,
the statement for general g then follows from results in [18,33,47]. However, the
local Weyl modules do not remain irreducible in the q → 1 limit. In general, local
Weyl modules are reducible indecomposable representations. The module W (ψ) is
the largest indecomposable representation of highest weight λ (as a g-module) and
irreducible quotient evΓψ.

It is natural to seek to extend the notion of local and global Weyl modules to
the twisted setting, where Γ is nontrivial. Some progress has been made towards
this goal (see Section 4.3.1(b) for some open problems in this direction). In [16],
local Weyl modules were defined and studied for the twisted loop algebras. The
main idea there was to consider the restrictions of local Weyl modules for loop
algebras to the twisted subalgebras. More generally, in [32], local Weyl modules
were defined and studied in the case that Γ is abelian and its action on Xrat is
free. In the twisted loop algebra setting (where A = C[t, t−1] and Γ is a cyclic
group acting on g by diagram automorphisms), global Weyl modules were defined
and studied in [35]. A more general approach, including a definition of global Weyl
modules in a large degree of generality, has been taken in [34].

3.4. Moving beyond finite-dimensional Lie algebras as targets. We
conclude this section with a brief overview of some other equivariant map algebras
appearing in the literature. For these, it is necessary to slightly generalize the notion
of an evaluation representation. For later use we state the following definition in
the context of Lie superalgebras and we remind the reader that all Lie algebras are
also Lie superalgebras.

Definition 3.10 (Generalized evaluation representation). Let g be an arbitrary
Lie superalgebra. Suppose m1, . . . ,m	 are pairwise distinct maximal ideals of A,
n1, . . . , n	 ∈ N+, and g⊗ (A/mni) → Endk Vi is a representation of g⊗ (A/mni) for
i = 1, . . . , �. Then the composition

(3.3) g⊗A �
⊕	

i=1(g⊗A)/(g⊗mni) ∼=
⊕	

i=1 g⊗ (A/mni)
ρ−→ Endk Vi
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is called a generalized evaluation representation of g⊗A.

Note that if ni = 1, then the projection A � A/mi corresponds to evaluation
at the point xi ∈ X corresponding to mi.

Instead of the finite-dimensional targets discussed earlier in this section, one
can also consider map algebras a ⊗ A, where a is an infinite-dimensional Lie al-
gebra. For example, one can take a to be the Virasoro algebra Vir. The uni-
tary irreducible quasifinite Vir-modules (we recall that a module is quasifinite if
it has finite-dimensional weight spaces) were classified by Chari and Pressley in
[22]. All irreducible quasifinite Vir-modules (without the assumption of unitarity)
were then classified by Mathieu in [45], where it was shown that they are all high-
est weight modules, lowest weight modules or modules of the intermediate series
(otherwise known as tensor density modules ; their nonzero weight spaces are all
one-dimensional). The irreducible quasifinite modules for the map Virasoro algebra
Vir ⊗ A (where A is finitely generated and k = C) where classified by the second
author as follows.

Theorem 3.11 ([57, Th. 5.5]). Assume A is a finitely generated C-algebra.
Then any irreducible quasifinite (Vir⊗A)-module is one of the following:

(a) a single point evaluation module corresponding to a Vir-module of the in-
termediate series,

(b) a generalized evaluation module of the form (3.3), where all the Vi, i =
1, . . . , �, are irreducible highest weight modules, or

(c) a generalized evaluation module of the form (3.3), where all the Vi, i =
1, . . . , �, are irreducible lowest weight modules.

In particular, they are all generalized evaluation modules.

For the twisted case or for other infinite-dimensional a, very little is known.
One can also consider the case when the target is a Lie superalgebra. In this

case, the action of Γ on g is by Lie superalgebra automorphisms (which preserve the
even and odd parts of g). We then call M(X, g)Γ an equivariant map (Lie) superal-
gebra. Under the assumptions that g is a so-called basic classical Lie superalgebra,
A is finitely generated, k is algebraically closed, and Γ acts freely on the rational
points of X, the irreducible finite-dimensional representations of equivariant map
superalgebras were classified by the second author in [56]. (In the special case of
untwisted multiloop superalgebras with basic classical target, they were previously
classified in [26,30].) The basic classical Lie superalgebras can be split into two
types: type I and type II. A complete list (also indicating the even part g0̄ of g) is
as follows (see [39]).

g g0̄ Type
A(m,n), m > n ≥ 0 Am ⊕An ⊕ k I

A(n, n), n ≥ 1 An ⊕An I
sl(n, n), n ≥ 1 An−1 ⊕An−1 ⊕ k N/A
C(n+ 1), n ≥ 1 Cn ⊕ k I

B(m,n), m ≥ 0, n ≥ 1 Bm ⊕ Cn II
D(m,n), m ≥ 2, n ≥ 1 Dm ⊕ Cn II

F (4) A1 ⊕B3 II
G(3) A1 ⊕G2 II

D(2, 1;α), α �= 0,−1 A1 ⊕A1 ⊕A1 II
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One can define the set EΓ as in Section 3.1. We will use the notation E(g)Γ
to denote this set for a target Lie superalgebra g. We can then define evaluation
representations evΓψ, ψ ∈ E(g)Γ, as in Definition 3.1. Let gss0̄ = [g0̄, g0̄] be the

semisimple part of g0̄ and let gab0̄ be the center of g0̄. Let

L(X, gab0̄ )={θ∈(gab0̄ ⊗A)∗ :θ(gab0̄ ⊗I)=0 for some ideal I of A with finite support}.
There is a natural action of Γ on L(X, gab0̄ ) given by γθ := θ◦γ−1. We let L(X, gab0̄ )Γ

denote the set of Γ-invariant elements of L(X, gab0̄ ).

Theorem 3.12 ([56, Th. 7.10]). Suppose g is a basic classical Lie superalgebra
and let S(X, g)Γ be the set of isomorphism classes of irreducible finite-dimensional
representations of (g⊗A)Γ. Then we have the following:

(a) If g0̄ is semisimple (i.e. g is of type II or is A(n, n), n ≥ 1), then the map

(3.4) E(g)Γ → S(X, g)Γ, ψ �→ evΓψ,

is a bijection.
(b) If g0̄ is of type I, then the map

(3.5) L(X, gab0̄ )Γ × E(gss0̄ )Γ → S(X, g)Γ, (θ, ψ) �→ V Γ(θ, ψ),

is a bijection, where V Γ(θ, ψ) is a particular generalized evaluation module,
called a Kac module, associated to θ and ψ (see [56, Def. 7.9]).

4. Open problems

In this section we discuss some open problems. The choice of problems reflects
of course the authors’ taste and is by no means exhaustive.

4.1. New types of equivariant map algebras. Although we have assumed
in Definitions 1.1 and 1.3 that a is finite-dimensional and that Γ is finite, these
restrictions are not necessary for the definitions. There are indeed many natural
generalizations. We list here some interesting possibilities.

(a) More general groups Γ. Instead of a finite group Γ, one can consider, for
instance, an algebraic group acting completely reducibly on A and a. The first
step in the study of the resulting EMAs would be to classify their irreducible finite-
dimensional representations.

(b) More general targets. There are many possible choices for the “target”
algebra g for which the resulting EMA has not been studied. Even in the setting of
Lie algebras, one could consider g to be, for instance, a Kac-Moody algebra (see [28]
for the untwisted multiloop case) or some other well-studied infinite-dimensional
Lie algebra, such as the Heisenberg algebra. One can also move beyond the Lie
(or associative) algebra setting. In fact, one can study the representation theory of
any EMA for which the target is an algebra with well-defined representations. For
example, it would be natural to consider the finite-dimensional representations in
the case of alternative algebras or Jordan algebras.

(c) Superschemes and superalgebras. The equivariant map superalgebra setting
of [56] can be naturally generalized. First, one can consider more general Lie
superalgebras for the target g. For example, one could take any finite-dimensional
simple Lie superalgebra (not just basic classical ones). Furthermore, one can replace
A by a supercommutative algebra (in other words, let X be a superscheme) and Γ
by a Z2-graded group.
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(d) Analytic setting. Another interesting problem is to replace the algebraic
setting by an analytic one. For example, let X be a Banach manifold, a a Banach
algebra and consider equivariant differentiable maps X → a. See, for example,
[48,49,60] for work in this direction.

4.2. General equivariant map algebras. Even for the most familiar types
of EMAs, there is still much to be learned about their representation theory. In
this subsection, we list some open problems in this direction that apply to general
EMAs (e.g. both the associative and Lie setting). In Section 4.3 we will consider
the Lie case in further detail. In this subsection a is an arbitrary algebra of finite
dimension over an algebraically closed field. We abbreviate M = M(X, a)Γ.

4.2.1. Isomorphism problem. Characterizing EMAs up to isomorphism is one
of the fundamental problems in the theory of EMAs. In the case of loop algebras,
a deep result of Kac states that a loop algebra M(k×, g)Γ with g a simple Lie
algebra and Γ cyclic is isomorphic to a loop algebra M(k×, g)〈σ〉 with σ a diagram
automorphism of g (see [40, Th. 8.5]). Kac’ Theorem has recently been extended
to the case M

(
(k×)2, g)Γ for Γ = 〈σ1, σ2〉 abelian in [2]. While this paper uses Lie

algebra theory, in the paper [36] the authors consider M
(
(k×)2, a)Γ, Γ as before, for

an arbitrary algebra a and establish a cohomological invariant for this equivariant
map algebra. It is therefore natural, though likely difficult, to try to generalize the
results of both papers [2] and [36] to the multiloop case and beyond that to more
general EMAs.

4.2.2. Automorphisms. Related to the problem of characterizing EMAs up to
isomorphism, is the question of determining the automorphism groups of EMAs.
In the case where g is a Lie algebra and A is an integral domain with trivial Picard
group, the automorphism group of g⊗A is described in [54]; for Lie superalgebras
see [37]. Results about the automorphism group of the twisted loop algebra can
be obtained by specializing the paper [41], which studies the automorphism group
of arbitrary Kac-Moody algebras; see also [2]. Results about the automorphism
groups of multiloop algebras can be found in [36].

4.2.3. Indecomposable modules. The classification of the irreducible objects in
the category of finite-dimensional modules of M for an associative a in Theorem 2.1
is only a first step towards a complete understanding of the category. Ideally, one
would like to describe all of the indecomposable finite-dimensional modules and
understand the block decomposition of this category. See Section 4.3.1 for a more
detailed discussion of this problem in the Lie setting.

4.2.4. Associative bialgebras. In the case that a is an associative bialgebra, one
can naturally define multi-orbit evaluation representations using the comultiplica-
tion on a. It would be interesting to understand these representations.

4.3. Equivariant map Lie algebras. In this subsection we consider the most
well-studied types of EMAs: the equivariant map Lie algebras. We let g denote
a finite-dimensional Lie algebra over an algebraically closed field of characteristic
zero and we use the acronym EMA to mean “equivariant map Lie algebra”. As
usual, M = M(X, g)Γ.

4.3.1. Representation Theory. As mentioned in Section 4.2, the study of the
representation theory of EMAs goes well beyond the classification of irreducible
finite-dimensional modules. Even in the Lie setting, where the extensions between
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irreducible finite-dimensional modules have been described in [52], there are many
open problems. We list here some particularly important ones.

(a) Higher extensions. Only the first Ext groups are calculated in [52], where
it is shown that these groups are related to both the representation theory of the
target g and the geometry of the scheme X (see, for instance, Proposition 3.5, which
involves the tangent space). It is natural to try to compute higher Ext groups. One
would expect a rich interplay between these groups and the geometry of the scheme
X. It would be particularly interesting to see how the global dimension of the
category of finite-dimensional modules is related to this geometry.

(b) Weyl modules. The study of (global and local) Weyl modules for EMAs is
an active area of research. In particular, one would like to extend the results on
the lengths, dimensions and characters of the local Weyl modules (see [8,18,19,
24,33,46,47]) to the setting of more arbitrary EMAs (see [34] for the definitions
of global and local Weyl modules in this setting). It is also natural to try to extend
the notion of BGG reciprocity described in [10,11] to a more general EMA setting
(see [10, Rem. 2.7]).

(c) Possibly infinite-dimensional representations. Much of the current focus in
the study of the representation theory of arbitrary EMAs has been on the category
of finite-dimensional representations. However, in specific cases (most importantly,
the loop and current algebras) more general categories of representations have been
studied. For instance, one can consider a type of category O for (central extensions
of) loop algebras (see, for example, the survey article [14]). It would be interesting
to study analogous categories in the more arbitrary EMA setting. For example,
one could consider the category of integrable highest weight representations, the
category of quasifinite representations (i.e. representations with finite-dimensional
weight spaces) or appropriate generalizations of category O.

4.3.2. Cohomology. Assume g is semisimple. The formulas for ExtM(V1, V2)
proven in [52] have a cohomological interpretation since

ExtM(V1, V2) ∼= H1
(
M,Homk(V1, V2)

)
.

One can therefore expect that it should be possible to describe the first cohomol-
ogy group H1(M, V ) for a general M-module V . For some equivariant map alge-
bras M, including multiloop algebras, and locally-finite M-modules, this is done in
[51]. A particular instance of this question is the adjoint module Mad, for which
H1(M,Mad) = Derk(M)/ IDer(M). The structure of the derivation algebra in the
untwisted case M = g ⊗ A is determined in [6, 9, 12] and for multiloop algebras
in [5, 55]. In both cases, g need not be a Lie algebra but can be an arbitrary
finite-dimensional k-algebra.

A related problem is to determine the homology groups H∗(M, V ). Some re-
sults on H0(M,Mad) = M/[M,M] are contained in [53] and [52], see for example
Lemmas 6.1 and 6.10 of [52] describing classes of perfect equivariant map algebras.
The interest in perfect equivariant map algebras comes from Theorem 3.2 which
indicates that these algebras have a simpler representation theory. A second rea-
son is that perfect Lie algebras have universal central extensions, as discussed in
Section 4.3.3 below.

4.3.3. Central extensions. Central extensions of Lie algebras often have a sim-
pler representation theory, the affine Kac-Moody Lie algebras being a case in point.
It is therefore of interest to understand central extensions of equivariant map alge-
bras M, preferably the universal central extension uce(M) of a perfect M.
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In the untwisted case uce(g⊗A) is described in [42] and later again in [29]. In
general, the canonical map uce(g⊗ A) → g⊗ A has an infinite-dimensional kernel,
contrary to what happens in the case of loop algebras. For example, this is already
so for A = k[t±1

1 , . . . , t±1
n ] and n ≥ 2.

Generalizing the example of twisted loop algebras, one would like to relate the
universal central extension of a perfect equivariant map algebra (g ⊗ A)Γ to the
well-understood universal central extension uce(g⊗A). Observe that the action of
Γ on g ⊗ A uniquely lifts to an action on uce(g ⊗ A). The formula one is aiming

for is then very natural: uce
(
(g ⊗ A)Γ

) ∼=
(
uce(g ⊗ A)

)Γ
. It is known that this is

indeed true for certain multiloop algebras, the so-called Lie tori (see [50,59]).
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