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That finite-dimensional simple Lie algebras over the complex 
numbers can be classified by means of purely combinatorial 
and geometric objects such as Coxeter–Dynkin diagrams and 
indecomposable irreducible root systems, is arguably one of 
the most elegant results in mathematics. The definition of the 
root system is done by fixing a Cartan subalgebra of the given 
Lie algebra. The remarkable fact is that (up to isomorphism) 
this construction is independent of the choice of the Cartan 
subalgebra. The modern way of establishing this fact is by 
showing that all Cartan subalgebras are conjugate.
For symmetrizable Kac–Moody Lie algebras, with the appro-
priate definition of Cartan subalgebra, conjugacy has been 
established by Peterson and Kac. An immediate consequence 
of this result is that the root systems and generalized Car-
tan matrices are invariants of the Kac–Moody Lie algebras. 
The purpose of this paper is to establish conjugacy of Cartan 
subalgebras for extended affine Lie algebras; a natural class 
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of Lie algebras that generalizes the finite-dimensional simple 
Lie algebra and affine Kac–Moody Lie algebras.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Let g be a finite-dimensional split simple Lie algebra over a field k of characteristic 0, 
and let G be the simply connected Chevalley–Demazure algebraic group associated to g. 
Chevalley’s theorem [11, VIII, §3.3, Cor de la Prop. 10] asserts that all split Cartan 
subalgebras h of g are conjugate under the adjoint action of G(k) on g. This is one of 
the central results of classical Lie theory. One of its immediate consequences is that the 
corresponding root system is an invariant of the Lie algebra (i.e., it does not depend on 
the choice of Cartan subalgebra).

We now look at the analogous question in the infinite dimensional setup as it relates 
to extended affine Lie algebras (EALAs for short). We assume henceforth that k is 
algebraically closed, but the reader should keep in mind that our results are more akin to 
the setting of Chevalley’s theorem for general k than to conjugacy of Cartan subalgebras 
in finite-dimensional simple Lie algebras over algebraically closed fields. The role of (g, h)
is now played by a pair (E, H) consisting of a Lie algebra E and a “Cartan subalgebra” H. 
There are other Cartan subalgebras, and the question is whether they are conjugate and, 
if so, under the action of which group.

The first example is that of untwisted affine Kac–Moody Lie algebras. Let R = k[t±1]. 
Then

(0.0.1) E = g⊗k R⊕ kc⊕ kd

and

(0.0.2) H = h⊗ 1 ⊕ kc⊕ kd.

The relevant information is as follows. The k-Lie algebra g ⊗kR⊕kc is a central exten-
sion (in fact the universal central extension) of the k-Lie algebra g ⊗k R. The derivation 
d of g ⊗k R corresponds to the degree derivation td/dt acting on R. Finally h is a fixed 
Cartan subalgebra of g. The nature of H is that it is abelian, it acts k-diagonalizably 
on E, and it is maximal with respect to these properties. Correspondingly, these algebras 
are called MADs (Maximal Abelian Diagonalizable) subalgebras. A celebrated theorem 
of Peterson and Kac [24] states that all MADs of E are conjugate (under the action of 
a group that they construct which is the analogue of the simply connected group in the 
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finite-dimensional case). Similar results hold for the twisted affine Lie algebras. These 
algebras are of the form

E = L⊕ kc⊕ kd.

The Lie algebra L is a loop algebra L = L(g, σ) for some finite order automorphism σ of 
g (see 4.1 below for details). If σ is the identity, we are in the untwisted case. The ring 
R can be recovered as the centroid of L.

Extended affine Lie algebras can be thought of as multi-variable generalizations of 
finite-dimensional simple Lie algebras and affine Kac–Moody algebras. For example, 
taking R = k[t±1

1 , . . . , t±1
n ] in (0.0.1) and increasing kc and kd correspondingly leads to 

toroidal algebras, an important class of examples of EALAs. But as is already the case 
for affine Kac–Moody algebras, there are many interesting examples where g ⊗k R is 
replaced by a more general algebra, a so-called Lie torus (see 2.1).

In the EALA setup, the Lie algebras g as above are the case of nullity n = 0, while 
the affine Lie algebras are the case of nullity n = 1. In higher nullity n we have R =
k[t±1

1 , . . . , t±1
� ] for some � ≤ n, where again R is the centroid of the centreless core Ecc

of the given EALA. Most of our work will concentrate in the case when � = n. In this 
situation Ecc is finitely generated as a module over the centroid R (called the fgc condition
in EALA theory). We hasten to add that the non-fgc algebras are fully understood and 
classified (see 2.2 below), but it is presently not known if our conjugacy theorem holds 
in this case. The crucial result about the fgc case is that Ecc is necessarily a multiloop 
algebra, hence a twisted form of g ⊗k R for some (unique) g. This allows methods from 
Galois cohomology to be used in the study of the algebras under consideration (all of 
this, with suitable references, will be explained in the main text).

Part of the properties of an EALA (E, H) is a root space decomposition: E =⊕
α∈Ψ Eα with E0 = H. The “root system” Ψ is an example of an extended affine 

root system. The main question, of course, is whether Ψ is an invariant of E. In other 
words, if H ′ is a subalgebra of E for which the pair (E, H ′) is given an EALA structure, 
is the resulting root system Ψ′ isomorphic (in the sense of [extended affine] root systems) 
to Ψ? That this is true follows immediately from the main result of our paper.

0.1. Theorem. (See Theorem 7.6.) Let (E, H) be an extended affine Lie algebra of fgc 
type. Assume E admits the second structure (E, H ′) of an extended affine Lie algebra. 
Then H and H ′ are conjugate, i.e., there exists a k-linear automorphism f of the Lie 
algebra E such that f(H) = H ′.

The main idea of the proof is as follows. Just as for the affine algebras, an EALA 
E can be written in the form E = L ⊕ C ⊕ D. Unlike the affine case, starting with L
(which is a multiloop algebra given our fgc assumption), one can construct an infinite 
number of E′s. The exact nature of all possible C and D, and what the resulting Lie 
algebra structure is, has been described in works by one of the authors (Neher). For 
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the reader’s convenience we will recall this construction below. By the main result of 
[12] one knows that conjugacy holds for L. The challenge, which is far from trivial, is 
to “lift” this conjugacy to E. It worth noting that [24] proceeds to some extend in the 
opposite direction. They establish conjugacy “upstairs”, i.e. for E, and use this to obtain 
conjugacy “downstairs”, i.e. for L. It is also worth emphasizing that in the affine case, the 
most important and useful result is conjugacy upstairs. The same consideration applies 
to EALAs.

Built into the EALA definition is the existence of a certain ideal, the so-called core Ec

of an EALA (E, H). For example, for E as in (0.0.1) we have Ec = g ⊗k R⊕ kc, while in 
the realization E = L ⊕C⊕D of above the core is Ec = L ⊕C. An important step in our 
proof of Theorem 0.1 is to show in Corollary 3.2 that the cores of two EALA structures 
on E are the same, not only isomorphic. It then follows immediately that the core Ec

of an EALA (E, H) is stable under automorphisms of E (Proposition 3.4). These new 
structural results are true for any, not necessarily fgc EALA.

A priori, it is not clear at all that conjugacy at the level of the centreless core can be 
“lifted” to the EALA. As a rehearsal to get insight into the difficulties that this question 
poses it is natural to look at the case of EALAs of nullity 1, which are precisely the affine 
Kac–Moody Lie algebras. This is the content of [13]. The positive answer on nullity 1 
motivated us to try to tackle the general case, which resulted in the present work. It is 
worth mentioning that the methods needed to establish the general case are far more 
delicate than those used in [13].

Notation: We suppose throughout that k is a field of characteristic 0. Starting with 
section §4 we assume that k is algebraically closed. For convenience ⊗ = ⊗k.

1. Some general results

Some of the key results needed later to establish our main theorem are true and easier 
to prove in a more general setting. This is the purpose of this section.

Throughout L will denote a Lie algebra over k.

1.1. Cohomology

Let V be an L-module. We denote by Z2(L, V ) the k-space of 2-cocycles of L with 
coefficients in V . Its elements consist of alternating maps σ : L × L → V satisfying the 
cocycle condition (li ∈ L)

l1 · σ(l2, l3) + l2 · σ(l3, l1) + l3 · σ(l1, l2)

= σ([l1, l2], l3) + σ([l2, l3], l1) + σ([l3, l1], l2).(1.1.1)

Given such a 2-cocycle σ, the vector space L ⊕ V becomes a Lie algebra with respect to 
the product
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[l1 + v1, l2 + v2] = [l1, l2]L +
(
l1 · v2 − l2 · v1 + σ(l1, l2)

)
.

We will denote this Lie algebra by L ⊕σ V . Note that the projection onto the first factor 
prL : L ⊕σ V → L is an epimorphism of Lie algebras whose kernel is the abelian ideal V . 
Note that L is not necessarily a subalgebra of L ⊕σ V .

A special case of this construction is the situation when V is a trivial L-module. In 
this case a 2-cocycle will be called a central 2-cocycle. Note that all terms on the left 
hand side of (1.1.1) vanish. For a central 2-cocycle, V is a central ideal of L ⊕σ V and 
prL : L ⊕σ V → L is a central extension.

1.2. Invariant bilinear forms

A bilinear form β : L × L → k is invariant if β([l1, l2], l3) = β(l1, [l2, l3]) holds for all 
li ∈ L.

Let g be a finite-dimensional split simple Lie algebra with Killing form κ. Let R ∈
k-alg. For any linear form ϕ : R → k, i.e., an element of R∗, we obtain an invariant 
bilinear form (·|·) of the Lie algebra g ⊗kR by (x ⊗r | y⊗s) = κ(x, y) ϕ(rs). We mention 
that every invariant bilinear form of g ⊗k R is obtained in this way for a unique ϕ ∈ R∗

(see Cor. 6.2 of [22]).

1.3. Central 2-cocycles and invariant bilinear forms

Assume our Lie algebra L comes equipped with an invariant bilinear form (·|·). We 
denote by Derk(L) the Lie algebra of derivations of L and by SDer(L) the subalgebra of 
skew derivations, i.e., those derivations d satisfying 

(
d(l) | l

)
= 0 for all l ∈ L. Let D be a 

subalgebra of SDer(L) and denote by D∗ = Homk(D, k) its dual space. It is well-known 
and easy to check that then σD : L × L → D∗ defined by

(1.3.1) σD

(
l1, l2) (d) =

(
d(l1) | l2)

is a central 2-cocycle. We have not included the dependence of σD on (·|·) in our notation 
since later on the bilinear form (·|·) will be unique up to a scalar and hence the cocycles 
defined by different forms also differ only by a scalar, see Remark 2.9.

1.4. A general construction of Lie algebras

We consider the following data:

(i) two Lie algebras L and D;
(ii) an action of D on L by derivations of L, written as d · l or sometimes also as d(l) for 

d ∈ D, l ∈ L (thus [d1, d2] ·l = d1 ·(d2 ·l) −d2 ·(d1 ·l) and d ·[l1, l2] = [d ·l1, l2] +[l1, d ·l2]
for d, di ∈ D and l, li ∈ L);



V. Chernousov et al. / Advances in Mathematics 290 (2016) 260–292 265
(iii) a vector space V which is a D-module and which will also be considered as a trivial 
L-module;

(iv) a central 2-cocycle σ : L × L → V and a 2-cocycle τ : D ×D → V .

Given these data, we define a product on

E = L⊕ V ⊕D

by (vi ∈ V , li ∈ L, and di ∈ D)

[l1 + v1 + d1, l2 + v2 + d2] =
(
[l1, l2]L + d1 · l2 − d2 · l1

)

+
(
σ(l1, l2) + d1 · v2 − d2 · v1 + τ(d1, d2)

)

+ [d1, d2]D.(1.4.1)

Here [., .]L and [., .]D are the Lie algebra products of L and D respectively. To avoid any 
possible confusion we will sometimes denote the product of E by [., .]E .

1.5. Proposition. The algebra E defined in (1.4.1) is a Lie algebra.

We will henceforth denote this Lie algebra (L, σ, τ).

Proof. The product is evidently alternating. For ei ∈ E let J(e1, e2, e3) =
[
[e1, e2] e3

]
+[

[e2, e3] e1
]

+
[
[e3, e1] e2

]
for ei ∈ E. That J(E, E, E) = 0 follows from tri-linearity of 

J and the following special cases: J(D, D, D) = 0 since D is a Lie algebra and τ is a 
2-cocycle; J(D, D, L) = 0 since L is a D-module; J(D, D, V ) = 0 since V is a D-module; 
J(D, V, V ) = 0 = J(D, L, V ) since all terms vanish by definition (1.4.1); J(D, L, L) = 0
since D acts on L by derivations; J(L ⊕V, L ⊕V, L ⊕V ) = 0 since L ⊕σ V is a Lie algebra 
by 1.1. �

We will later use this construction for different data. For example, it is the standard 
construction of an EALA as reviewed in §2.

One of the central themes of this paper is to extend automorphisms from the Lie alge-
bra L to the Lie algebra E = (L, σ, τ). Recall that the elementary automorphism group 
EAut(M) of a Lie k-algebra M is by definition the subgroup of Autk(M) generated by 
the automorphisms exp(adM x) for adM x a nilpotent derivation. Clearly, any elementary 
automorphism is Ctdk(M)-linear, where here and below Ctdk denotes the centroid of a 
k-algebra.5

5 We recall that for an arbitrary k-algebra A, Ctdk(A) = {χ ∈ Endk(A) : χ(ab) = χ(a)b = aχ(b) ∀ a, b ∈
A}. The space A is naturally a left Ctdk(A)-module via χ · a = χ(a). If Ctdk(A) is commutative, for 
example if A is perfect, the above action endows A with an algebra structure over Ctdk(A). The reader 
may refer to [7] for general facts about centroids.
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1.6. Proposition. Every elementary automorphism f of L lifts to an elementary auto-
morphism f̃ of E = (L, σ, τ) with the following properties:

(i) f̃(L) ⊂ L ⊕ V ; the L-component of f̃ |L is f , i.e., prL ◦f̃ |L = f .
(ii) f̃(V ) ⊂ V . In fact f̃ |V = IdV .
(iii) For d ∈ D the D-component of f̃(d) ∈ E is d, i.e., f̃(d) = d + xf,d for some 

xf,d ∈ L ⊕ V .

Proof. Let x ∈ L and denote by adL x and adE x the corresponding inner derivation of 
L and E respectively. We let e = l + v + d ∈ E be an arbitrary element of E with the 
obvious notation. Then

(adE x)(e) =
(
[x, l]L − d · x

)
+ σ(x, l) ∈ L⊕ V.

Putting e1 = [x, l] − d · x, an easy induction shows that

(adE x)n(e) = (adL x)n−1(e1) + σ
(
x, (adL x)n−2(e1)

)
∈ L⊕ V, n ≥ 2.

In particular, if adL x is nilpotent then so is adE x. Assuming this to be the case, it is 
immediate from the product formula (1.4.1) that (i)–(iii) hold for f̃ = exp(adE x). �
2. Review: Lie tori and EALAs

2.1. Lie tori

In this paper the term “root system” means a finite, not necessarily reduced root 
system Δ in the usual sense, except that we will assume 0 ∈ Δ, as for example in [2]. 
We denote by Δind = {0} ∪ {α ∈ Δ : 1

2α /∈ Δ} the subsystem of indivisible roots and 
by Q(Δ) = spanZ(Δ) the root lattice of Δ. To avoid some degeneracies we will always 
assume that Δ �= {0}.

Let Δ be a finite irreducible root system, and let Λ be an abelian group. A Lie torus 
of type (Δ, Λ) is a Lie algebra L satisfying the following conditions (LT1)–(LT4).

(LT1) (a) L is graded by Q(Δ) ⊕Λ. We write this grading as L =
⊕

α∈Q(Δ),λ∈Λ Lλ
α and 

thus have [Lλ
α, L

μ
β ] ⊂ Lλ+μ

α+β . It is convenient to define

Lα =
⊕

λ∈Λ Lλ
α and Lλ =

⊕
α∈Q(Δ) L

λ
α.

(b) We further assume that suppQ(Δ) L = {α ∈ Q(Δ); Lα �= 0} = Δ, so that 
L =

⊕
α∈Δ Lα.

(LT2) (a) If Lλ
α �= 0 and α �= 0, then there exist eλα ∈ Lλ

α and fλ
α ∈ L−λ

−α such that

Lλ
α = keλα, L−λ

−α = kfλ
α ,
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and

[[eλα, fλ
α ], xβ ] = 〈β, α∨〉xβ

for all β ∈ Δ and xβ ∈ Lβ .6

(b) L0
α �= 0 for all 0 �= α ∈ Δind.

(LT3) As a Lie algebra, L is generated by 
⋃

0�=α∈Δ Lα.
(LT4) As an abelian group, Λ is generated by suppΛ L = {λ ∈ Λ : Lλ �= 0}.

We define the nullity of a Lie torus L of type (Δ, Λ) as the rank of Λ and the root-
grading type as the type of Δ. We will say that L is a Lie torus (without qualifiers) if 
L is a Lie torus of type (Δ, Λ) for some pair (Δ, Λ). A Lie torus is called centreless if 
its centre Z(L) = {0}. If L is an arbitrary Lie torus, its centre Z(L) is contained in L0

from which it easily follows that L/Z(L) is in a natural way a centreless Lie torus of the 
same type as L and nullity (see [31, Lemma 1.4]).

An obvious example of a Lie torus of type (Δ, Zn) is the Lie k-algebra g ⊗R where g
is a finite-dimensional split simple Lie algebra of type Δ and R = k[t±1

1 , . . . , t±1
n ] is the 

Laurent polynomial ring in n-variables with coefficients in k equipped with the natural 
Z
n-grading. Another important example, studied in [8], is sll(kq) for kq a quantum torus.
Lie tori have been classified, see [1] for a recent survey of the many papers involved in 

this classification. Some more background on Lie tori is contained in the papers [3,20,21].

2.2. Some known properties of centreless Lie tori

We review the properties of Lie tori used in our present work. This is not a compre-
hensive survey. The reader can find more information in [3,20,21]. We assume that L is 
a centreless Lie torus of type (Δ, Λ) and nullity n.

For eλα and fλ
α as in (LT2) we put hλ

α = [eλα, fλ
α ] ∈ L0

0 and observe that (eλα, hλ
α, f

λ
α) is 

an sl2-triple. Then

(2.2.1) h = spank{hλ
α} = L0

0

is a toral7 subalgebra of L whose root spaces are the Lα, α ∈ Δ.
Up to scalars, L has a unique nondegenerate symmetric bilinear form (·|·) which is 

Λ-graded in the sense that (Lλ | Lμ) = 0 if λ + μ �= 0 [22,31]. Since the subspaces Lα

are the root spaces of the toral subalgebra h we also know (Lα | Lτ ) = 0 if α + τ �= 0.

6 Here and elsewhere α∨ denotes the coroot corresponding to α in the sense of [10].
7 A subalgebra T of a Lie algebra L is toral, sometimes also called ad-diagonalizable, if L = ⊕

α∈T ∗ Lα(T )
for Lα(T ) = {l ∈ L : [t, l] = α(t)l for all t ∈ T}. In this case {ad t : t ∈ T} is a commuting family of 
ad-diagonalizable endomorphisms. Conversely, if {ad t : t ∈ T} is a commuting family of ad-diagonalizable 
endomorphisms and T is a finite-dimensional subalgebra, then T is a toral.
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The centroid Ctdk(L) of L is isomorphic to the group ring k[Ξ] for a subgroup Ξ of Λ, 
the so-called central grading group.8 Hence Ctdk(L) is a Laurent polynomial ring in ν
variables, 0 ≤ ν ≤ n ([18, 7], [7, Prop. 3.13]). (All possibilities for ν do in fact occur.) 
We can thus write Ctdk(L) =

⊕
ξ∈Ξ kχξ, where the χξ satisfy the multiplication rule 

χξχδ = χξ+δ and act on L as endomorphisms of Λ-degree ξ.
L is a prime Lie algebra, whence Ctdk(L) acts without torsion on L ([1, Prop. 4.1], 

[18, 7]). As a Ctdk(L)-module, L is free. If L is fgc, namely finitely generated as a module 
over its centroid, then L is a multiloop algebra [3].

If L is not fgc, equivalently ν < n, one knows [18, Th. 7] that L has root-grading 
type A. Lie tori with this root-grading type are classified in [8,9,29]. It follows from 
this classification together with [23, 4.9] that L � sll(kq) for kq a quantum torus in n
variables and q = (qij) an n ×n quantum matrix with at least one qij not a root of unity.

Any θ ∈ HomZ(Λ, k) induces a so-called degree derivation ∂θ of L defined by ∂θ(lλ) =
θ(λ)lλ for lλ ∈ Lλ. We put D = {∂θ : θ ∈ HomZ(Λ, k)} and note that θ �→ ∂θ is a vector 
space isomorphism from HomZ(Λ, k) to D, whence D � kn. We define evλ ∈ D∗ by 
evλ(∂θ) = θ(λ). One knows [18, 8] that D induces the Λ-grading of L in the sense that 
Lλ = {l ∈ L : ∂θ(l) = evλ(∂θ)l for all θ ∈ HomZ(Λ, k)} holds for all λ ∈ Λ.

If χ ∈ Ctdk(L) then χd ∈ Derk(L) for any derivation d ∈ Derk(L). We call

(2.2.2) CDerk(L) := Ctdk(L)D =
⊕

γ∈Ξ χξD

the centroidal derivations of L. Since

(2.2.3) [χξ∂θ, χ
δ∂ψ] = χξ+δ(θ(δ)∂ψ − ψ(ξ)∂θ)

it follows that CDer(L) is a Ξ-graded subalgebra of Derk(L), a generalized Witt algebra. 
Note that D is a toral subalgebra of CDerk(L) whose root spaces are the χξD = {d ∈
CDer(L) : [t, d] = evξ(t)d for all t ∈ D}. One also knows [18, 9] that

(2.2.4) Derk(L) = IDer(L) � CDerk(L) (semidirect product).

For the construction of EALAs, the Ξ-graded subalgebra SCDerk(L) of skew-centroidal 
derivations is important:

SCDerk(L) = {d ∈ CDerk(L) : (d · l | l) = 0 for all l ∈ L}

=
⊕

ξ∈Ξ SCDerk(L)ξ,

SCDerk(L)ξ = χξ{∂θ : θ(ξ) = 0}.

8 In [20] the central grading group is denoted by Γ. We will reserve this notation for the Galois group of 
an extension S/R which is prominently used later in our work.
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Note SCDerk(L)0 = D and [SCDerk(L)ξ, SCDerk(L)−ξ] = 0, whence

SCDerk(L) = D�
(⊕

ξ �=0 SCDer(L)ξ
)

(semidirect product).9

2.3. Extended affine Lie algebras (EALAs)

An extended affine Lie algebra or EALA for short, is a triple 
(
E, H, (·|·)

)
(but see Re-

mark 2.4) consisting of a Lie algebra E over k, a subalgebra H of E and a nondegenerate 
symmetric invariant bilinear form (·|·) satisfying the axioms (EA1)–(EA5) below.

(EA1) H is a nontrivial finite-dimensional toral and self-centralizing subalgebra of E.

Thus E =
⊕

α∈H∗ Eα for Eα = {e ∈ E : [h, e] = α(h)e for all h ∈ H} and E0 = H. We 
denote by Ψ = {α ∈ H∗ : Eα �= 0} the set of roots of (E, H) – note that 0 ∈ Ψ! Because 
the restriction of (·|·) to H ×H is nondegenerate, one can in the usual way transfer this 
bilinear form to H∗ and then introduce anisotropic roots Ψan = {α ∈ Ψ : (α | α) �= 0}
and isotropic (= null) roots Ψ0 = {α ∈ Ψ : (α | α) = 0}. The core of 

(
E, H, (·|·)

)
is by 

definition the subalgebra generated by 
⋃

α∈Ψan Eα. It will be henceforth denoted by Ec.

(EA2) For every α ∈ Ψan and xα ∈ Eα, the operator adxα is locally nilpotent on E.
(EA3) Ψan is connected in the sense that for any decomposition Ψan = Ψ1 ∪ Ψ2 with 

Ψ1 �= ∅ and Ψ2 �= ∅ we have (Ψ1 | Ψ2) �= 0.
(EA4) The centralizer of the core Ec of E is contained in Ec, i.e., {e ∈ E : [e, Ec] =

0} ⊂ Ec.
(EA5) The subgroup Λ = spanZ(Ψ0) ⊂ H∗ generated by Ψ0 in (H∗, +) is a free abelian 

group of finite rank.

The rank of Λ is called the nullity of 
(
E, H, (·|·)

)
. Some references for EALAs are 

[2,8,9,19–21]. It is immediate that any finite-dimensional split simple Lie algebra is an 
EALA of nullity 0. The converse is also true [21, Prop. 5.3.24]. It is also known that any 
affine Kac–Moody algebra is an EALA – in fact, by [4], the affine Kac–Moody algebras 
are precisely the EALAs of nullity 1. The core Ec of an EALA is in fact an ideal.

2.4. Remark. In [19–21] an EALA is defined as a pair (E, H) consisting of a Lie algebra 
E and a subalgebra H ⊂ E satisfying the axioms (EA1)–(EA5) of 2.3 as well as

(EA0) E has an invariant nondegenerate symmetric bilinear form (·|·).

9 The left-hand side depends a priori on the choice of invariant bilinear form on L, while the right-hand 
side does not. This is as it should be given that the non-degenerate invariant bilinear form is unique up to 
non-zero scalar.
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As we will see in Corollary 3.3 below the choice of the invariant bilinear form is not 
important. To be precise, the sets of isotropic and anisotropic roots, which a priori 
depend on the form (·|·), are actually independent of the choice of (·|·). In other words, 
two EALAs of the form 

(
E, H, (·|·)

)
and 

(
E, H, (·|·)′

)
have the same Ψ (this is obvious), 

Ψan and Ψ0, and hence also the same core Ec and centreless core Ecc = Ec/Z(Ec). The 
role of (·|·) is to show that Ψ is an extended affine root system (EARS) [2]10 and to pair 
the dimensions between the homogeneous spaces Cλ and D−λ, introduced in 2.7. In fact, 
as indicated in [20, §6], it is natural to consider more general EALA structure in which 
the existence of an invariant form is replaced by the requirement that the set of roots of 
(E, H) has a specific structure without changing much the structure of EALAs.

2.5. Isomorphisms of EALAs

An isomorphism between EALAs 
(
E, H, (·|·)

)
and 

(
E′, H ′, (·|·)′

)
is a Lie algebra iso-

morphism f : E → E′ that maps H onto H ′. Any such map induces an isomorphism 
between the corresponding EARS.

We point out that no assumption is made about the compatibility of the bilinear forms 
with the given Lie algebra isomorphism f : E → E′. In particular, f is not assumed to be 
an isometry up to scalar as in [6]. There is a good reason for not making this assumption. 
While the form is unique on the core Ec up to a scalar, there are many ways to extend 
it from Ec to an invariant form on E without changing the algebra structure. This can 
already be seen at the example of an affine Kac–Moody Lie algebra E with the standard 
choice of H for which there exists an infinite number of invariant bilinear forms (·|·) on E
which are not scalar multiple of each other and such that 

(
E, H, (·|·)

)
is an EALA. The 

isometry up to scalar condition will render all these EALAs non-isomorphic. Removing 
this condition yields the equivalence (up to Lie algebra isomorphism) between the affine 
Kac–Moody Lie algebras and EALAs of nullity one (see above).

2.6. Roots

The set Ψ of roots of an EALA E has special properties: It is a so-called extended 
affine root system in the sense of [2, Ch. I]. We will not need the precise definition of 
an extended affine root system or the more general affine reflection system in this paper 
and therefore refer the interested reader to [2] or the surveys [20, §2, §3] and [21, §5.3]. 
But we need to recall the structure of Ψ as an affine reflection system: There exists an 
irreducible root system Δ ⊂ H∗, an embedding Δind ⊂ Ψ and a family (Λα : α ∈ Δ) of 
subsets Λα ⊂ Λ such that

(2.6.1) spank(Ψ) = spank(Δ) ⊕ spank(Λ) and Ψ =
⋃

α∈Δ(α + Λα).

10 EARS can be defined without invariant forms [17, Prop. 5.4, §5.3].
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Using this (non-unique) decomposition of Ψ, we write any ψ ∈ Ψ as ψ = α + λ with 
α ∈ Δ and λ ∈ Λα ⊂ Λ and define (Ec)λα = Ec ∩ Eψ. Then Ec =

⊕
α∈Δ,λ∈Λ(Ec)λα is 

a Lie torus of type (Δ, Λ). Hence Ecc = Ec/Z(Ec) is a centreless Lie torus, called the 
centreless core of Ec.

2.7. Construction of EALAs

To construct an EALA one reverses the process described in 2.6. We will use data 
(L, σD, τ) described below. Some background material can be found in [20, §6] and [21, 
§5.5]:

• L is a centreless Lie torus of type (Δ, Λ). We fix a Λ-graded invariant nondegenerate 
symmetric bilinear form (·|·) and let Ξ be the central grading group of L.

• D =
⊕

ξ∈Ξ Dξ is a graded subalgebra of SCDerk(L) such that the evaluation map 
evD0 : Λ → D0 ∗, λ → evλ |D0 is injective. Since (Lλ | Lμ) = 0 if λ + μ �= 0 and 
since Dξ(Lλ) ⊂ Lξ+λ it follows that the central cocycle σD of (1.3.1) has values in 
the graded dual Dgr∗ =: C of D. Recall C =

⊕
ξ∈Ξ Cξ with Cξ = (D−ξ)∗ ⊂ D∗. 

We also note that the contragredient action of D on D∗ leaves C invariant. In the 
following we will always use this D-action on C. In particular, d ∈ D0 acts on Cξ by 
the scalar − evλ(d).

• τ : D×D → C is an affine cocycle defined to be a 2-cocycle satisfying for all d, di ∈ D

and d0 ∈ D0

τ(d0, d) = 0, and τ(d1, d2)(d3) = τ(d2, d3)(d1).

It is important to point out that there do exist non-trivial affine cocycles, see [8, 
Rem. 3.71].

The data (L, σD, τ) as above satisfy all the axioms of our general construction 1.4 and 
hence, by 1.5, is a Lie algebra with respect to the product (1.4.1).11 We will denote this 
Lie algebra by E. By construction we have the decomposition

(2.7.1) E = L⊕ C ⊕D.

Note that E has the toral subalgebra

H = h⊕ C0 ⊕D0

for h as in 2.2. The symmetric bilinear form (·|·) on E, defined by
(
l1 + c1 + d1 | l2 + c2 + d2

)
= (l1 | l2)L + c1(d2) + c2(d1),

11 Strictly speaking we should write EA(L, D, (·|·)L, τ). The effect that different choice of forms has on 
the resulting EALA is explained in Remark 2.9.
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is nondegenerate and invariant. Here (·|·)L is of course our fixed chosen invariant bilinear 
form of the Lie torus L. We have now indicated part of the following result.

2.8. Theorem. (See [19, Th. 6].) (a) The triple 
(
E, H, (·|·)

)
constructed above is an 

extended affine Lie algebra,12 denoted EA(L, D, τ). Its core is L ⊕Dgr ∗ and its centreless 
core is L.

(b) Conversely, let 
(
E, H, (·|·)

)
be an extended affine Lie algebra, and let L =

Ec/Z(Ec) be its centreless core. Then there exists a subalgebra D ⊂ SCDerk(L)
and an affine cocycle τ satisfying the conditions in 2.7 such that 

(
E, H, (·|·)

)
�

EA(L, (·|·)L, D, τ) for some Λ-graded invariant nondegenerate bilinear form (·|·)L on L.

2.9. Remark. As mentioned in 2.2, invariant Λ-graded bilinear forms on L are unique up 
to a scalar. Changing the form on L by the scalar s ∈ k, will result in multiplying the 
central cocycle L × L → C by s. Including for a moment the bilinear form (·|·) on L
in the notation, the map IdL ⊕s IdC ⊕ IdD is an isomorphism from EA(L, (·|·)L, D, τ) to 
EA(L, s(·|·)L, D, sτ).

3. Invariance of the core

In this section 
(
E, H, (·|·)

)
is an EALA whose centreless core Ecc = Ec/Z(Ec) is an 

arbitrary Lie torus L, hence not necessarily fgc. We decompose E in the form

E = L⊕ C ⊕D

as described in the previous section. We have a canonical map : Ec → Ec/Z(Ec) = L.
We start by proving a result of independent interest on the structure of ideals of the 

Lie algebra E.

3.1. Proposition. Let I be an ideal of the Lie algebra E. Then either I ⊂ C = Z(Ec) or 
Ec ⊂ I.

Since L is centreless, the centre of Ec is C. We note that it is immediate that C � E.

Proof. We assume that I �⊂ C and set Ic = I ∩ Ec and Icc = Ic. We will proceed in 
several steps using without further comments the notation introduced in §2.

(I) Icc �= {0}: Let e = x + c + d ∈ I where x ∈ L, c ∈ C and d ∈ D. For any l ∈ L

we then get [e, l]E = (adL x + d)(l) + σD(x, l) ∈ I, whence (adL x + d)(l) ∈ Icc. If for all 
e ∈ I the corresponding derivation adL x + d = 0 it follows that x = 0 = d since L is 
centreless. But then I ⊂ C which we excluded. Therefore some e ∈ I has adL x + d �= 0, 
hence 0 �= (adL x + d)(l) ∈ Icc for some l ∈ L.

12 See Remark 2.4 above.
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(II) d · x ∈ Icc for all d ∈ D and x ∈ Icc: There exists c ∈ C such that x + c ∈ Ic. 
Hence [d, x + c]E = d · x + d · c ∈ Ic since Ic is an ideal of E. Therefore d · x ∈ Icc.

(III) Icc = L: Since the Λ-grading of L is induced by the action of D0 ⊂ D on L, 
it follows from (II) that Icc is a Λ-graded ideal. By [30, Lemma 4.4], L is a Λ-graded 
simple. Hence Icc = L.

(IV) Ec ⊂ I: Let c ∈ C be arbitrary. Since Ec is perfect, there exist li, l′i ∈ L

such that c =
∑

i[li, l′i]E . By (III) there exist ci ∈ C such that li + ci ∈ Ic. Then 
[li, l′i]E = [li + ci, l′i]E ∈ Ic implies c ∈ Ic which together with (III) forces Ec ⊂ I. �
3.2. Corollary. Let 

(
E, H, (·|·)

)
and (E, H ′, (·|·)′

)
be two extended affine Lie algebra struc-

tures on E with cores Ec and E′
c respectively. Then Ec = E′

c.

For special types of EALAs, namely those for which the root system Δ in (2.6.1) is 
reduced, Corollary 3.2 is proven in [27, Th. 5.1] with a completely different method.

Proof. Since E′
c is an ideal of E, Proposition 3.1 says that either E′

c ⊂ Z(Ec) or Ec ⊂ E′
c. 

In the first case E′
c is abelian, a contradiction to the assumption that anisotropic roots 

exist. Hence Ec ⊂ E′
c. By symmetry, also E′

c ⊂ Ec. �
3.3. Corollary. Let (E, H, (·|·)) and (E, H, (·|·)′) be two EALAs. We distinguish the no-
tation of 2.3 for (E, H, (·|·)′) by ′.

(a) Ψ = Ψ′, Ψ0 = Ψ′ 0, Ψan = Ψ′ an.
(b) There exists 0 �= a ∈ k such that (·|·)|E′

c×E′
c

= a(·|·)|Ec×Ec
.

Proof. (a) The equality Ψ = Ψ′ is obvious since Ψ is the set of roots of H. By Corol-
lary 3.2, we have Ec = E′

c. The algebra Ec is a Lie torus whose root-grading by a finite 
irreducible root system Δ is induced by Hc = H ∩Ec. Let π : H∗ → H∗

c be the canonical 
restriction map. The structure of the root spaces of E, see for example [20, 6.9], shows 
that Ψ0 = π−1({0}) whence Ψ0 = Ψ′0.

(b) Because Ec is perfect, the centre of Ec equals the radical of (·|·)|Ec×Ec
. Indeed, 

let z ∈ Ec. Then, using that (·|·) is nondegenerate and invariant and that Ec is perfect 
we have z ∈ Z(Ec) ⇐⇒ 0 = ([z, Ec] | E) = (z | [Ec, E]) = (z | Ec) ⇐⇒ z lies in 
the radical of the restriction of (·|·) to Ec. Now (b) follows from the fact that invariant 
bilinear forms on Ecc are unique up to a scalar. �

As a consequence, when no explicit use of the form is being made, we will denote 
EALAs as couples (E, H).

As an application of Corollary 3.2 we can now prove

3.4. Proposition. The core Ec of an EALA (E, H) is stable under automorphisms of the 
algebra E, i.e., f(Ec) = Ec for any f ∈ Autk(E).
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Proof. Let f ∈ Autk(E). Denote H ′ = f(H). Let (·|·)′ be the bilinear form on E given 
by

(x | y)′ =
(
f−1(x) | f−1(y)

)
.

Clearly, 
(
E, H ′, (·|·)′

)
is another EALA-structure on the Lie algebra E. Therefore, by 

Corollary 3.2, we have that the core E′
c of 

(
E, H ′, (·|·)′

)
is equal to Ec. It remains to 

show that E′
c = f(Ec).

Let α ∈ Ψ be a root with respect to H. There exists a unique element tα in H such that 
(tα | h) = α(h) for all h ∈ H. Recall that α is anisotropic if (tα | tα) �= 0 and that Ec is 
generated (as an ideal) by ∪α∈ΨanEα. Let Ψ′ be the set of roots of (E, H ′). The mapping 
tf−1

|H : H∗ → H ′∗ satisfies tf−1
|H (Ψ) = Ψ′. Notice that f(tα) = t(tf)−1(α). We next 

have (t(tf)−1(α) | t(tf)−1(α))′ = (f(tα) | f(tα))′ = (tα | tα). Therefore, tf−1(Ψan) = (Ψ′)an, 
f(Eα) = E′

tf−1(α), and this implies f(Ec) = E′
c = Ec. �

By Proposition 3.4 we have a well-defined restriction map

resc : Autk(E) −→ Autk(Ec).

Since L is centreless, the centre of Ec is C. It is left invariant by any automorphism 
of Ec. Hence : Ec → L induces a natural group homomorphism

res : Autk(Ec) → Autk(L).

Composing the two group homomorphisms yields

(3.4.1) resc := res ◦ resc : Autk(E) → Autk(L).

We can easily determine the kernel of resc. For its description we recall that a k-linear 
map ψ : D → C is called a derivation if ψ([d1, d2]) = d1 · ψ(d2) − d2 · ψ(d1) holds for all 
di ∈ D. We denote by Derk(D, C) the k-vector space of derivations from D to C.

3.5. Proposition. (a) res is injective.
(b) The kernel of resc consists of the maps f of the form

(3.5.1) f(l + c + d) = l +
(
c + ψ(d)

)
+ d, ψ ∈ Derk(D,C).

In particular, Ker(resc) is a vector group isomorphic to Derk(D, C).

Proof. (a) is immediate from the fact that L ⊕C = [L, L]E . It implies that Ker(resc) =
Ker(resc). Let f ∈ Ker(resc). Then there exist linear maps fCD ∈ Homk(D, C), fLD ∈
Homk(D, L) and fD ∈ Endk(D) such that f(d) = fLD(d) + fCD(d) + fD(d) holds for 
all d ∈ D. For l ∈ L we then get d · l = f([d, l]) = [fLD(d) + fCD(d) + fD(d), l] =
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(
adL fLD(d) + fD(d)

)
(l), i.e., d = adL fLD(d) + fD(d). Since D∩ IDerL = {0} it follows 

that fLD = 0 and fD = IdD. One then sees that fCD is a derivation by applying f to a 
product [d1, d2]E . That conversely any map of the form (3.5.1) is an automorphism, is a 
straightforward verification. �

Our next goal is to study in detail the image of resc. From Proposition 1.6 we know

EAut(L) ⊂ resc
(
Autk(E)

)
.

For the Conjugacy Theorem 7.6 it is necessary to know that a bigger group of au-
tomorphisms of L lies in the image of resc. We will do this in Theorem 6.1. Its proof 
requires some preparations to which the next two sections are devoted.

4. Fgc EALAs as subalgebras of untwisted EALAs

We remind the reader that from now on k is assumed to be algebraically closed. In this 
section we will describe how to embed an fgc EALA into an untwisted EALA. Here, we 
say that an EALA E is fgc if its centreless core is so, and we say that E is untwisted if its 
centreless core Ecc, as a Lie torus, is of the form Ecc = g ⊗R for some finite-dimensional 
simple Lie algebra g over k and Laurent polynomial ring R in finitely many variables.

4.1. Multiloop algebras

In order to realize an fgc EALA as a subalgebra of an untwisted EALA, we need some 
preparation starting with a review of fgc Lie tori which by [3] are multiloop algebras 
L = L(g, σ). They are constructed as follows: g is a simple finite-dimensional Lie algebra 
and σ = (σ1, . . . , σn) is a family of commuting finite order automorphisms. We will 
denote the order of σi by mi. We fix once and for all a compatible set (ζ�)�∈N of primitive 
�-th roots of unity, i.e. ζnn� = ζ� for n ∈ N. The second ingredient are two rings,

R = k[t±1
1 , . . . , t±1

n ] and S = k[t
± 1

m1
1 , . . . , t

± 1
mn

n ].

For convenience we set zi = t
1

mi
i . Thus zmi

i = ti and S = k[z±1
1 , . . . , z±1

n ].
Let Λ = Z

n. For λ = (λ1, · · · , λn) ∈ Λ let

zλ = zλ1
1 · · · zλn

n := t
λ1
m1
1 · · · t

λn
mn
n .

The k-algebra S has a natural Λ-grading by declaring that zλ is of degree λ. Then R
is a graded subalgebra of S whose homogeneous components have degree belonging to 
the subgroup

Ξ = m1Z⊕ · · · ⊕mnZ ⊂ Λ.

Note that Ξ � Z
n.
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We set Λ = Λ/Ξ and let : Λ → Λ denote the canonical map. After the natural 
identification of Ξ with Zn, this is nothing but the canonical map : Zn → Z/m1Z ⊕
· · · ⊕ Z/mnZ.

The automorphisms σi can be simultaneously diagonalized. For λ̄ = (λ1, · · · , λn) ∈ Λ
we set

gλ̄ = {x ∈ g : σi(x) = ζ λ̄i
mi

x, 1 ≤ i ≤ n}

then g =
⊕

λ̄∈Λ gλ̄.
Note that g ⊗ S is a centreless Λ-graded Lie algebra with homogeneous subspaces 

(g ⊗S)λ = g ⊗Sλ. By definition, the multiloop algebra L(g, σ) is the graded subalgebra 
of g ⊗ S given by

(4.1.1) L = L(g,σ) =
⊕

λ∈Λ gλ̄ ⊗ zλ ⊂ g⊗ S.

Note that the Λ-grading of L is given by Lλ = L ∩ (g ⊗ S)λ = gλ̄ ⊗ zλ. The grading 
group of L is

ΛL := span{λ ∈ Λ : Lλ �= 0} = span{λ ∈ Λ : gλ̄ �= 0} ⊂ Λ.

We shall later see that in the cases we are interested in, namely those related to the 
realization of Lie tori and EALAs, we always have ΛL = Λ.

4.2. The EALA construction with L(g, σ) as centreless core

From now on we consider an EALA E whose centreless core is fgc. By [3, Prop. 3.2.5 
and Th. 3.1] one then knows that Ecc is a multiloop algebra L(g, σ) with g simple and 
σ as above. The (admittedly delicate) choice of σ is such that the Λ-grading of L(g, σ)
yields the Λ-grading of the Lie torus Ecc. With such a choice g0 is simple.

By [7,15] the ring R is canonically isomorphic to the centroid Ctdk(L) of the Lie 
algebra L = L(g, σ). More precisely, for r ∈ R let χr ∈ End(L) be the homothety l �→ rl. 
Then the centroid Ctdk(L) of L is {χr : r ∈ R} and the map r �→ χr is a k-algebra 
isomorphism R → Ctdk(L). We will henceforth identify these two rings without further 
mention and view L naturally as an R-Lie algebra.

Let ε ∈ S∗ be the linear form defined by ε(zλ) = δλ,0. We will also view ε as a 
symmetric bilinear form on S defined by ε(s1, s2) = ε(s1s2) for si ∈ S. We denote by κ
the Killing form of g and define a bilinear form (·|·)S on g ⊗ S by

(x1 ⊗ s1 | x2 ⊗ s2)S = κ(x1, x2) ε(s1s2),

i.e., (·|·)S = κ ⊗ ε. The bilinear form (·|·)S is invariant, nondegenerate and symmetric. 
By [22, Cor. 7.4], the restriction (·|·)L of (·|·)S to the subalgebra L(g, σ) has the same 
properties and is up to a scalar the only such bilinear form.
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Since S is Λ-graded, every θ ∈ HomZ(Λ, k) gives rise to a derivation ∂θ of S, defined by 
∂θ(zλ) = θ(λ)zλ for λ ∈ Λ. We get a subalgebra DS = {∂θ : θ ∈ HomZ(Λ, k)} of degree 
0 derivations of S. The map θ �→ ∂θ is a vector space isomorphism. It is well-known, 
cf. (2.2.2) and (2.2.3), that Derk(S) = SDS . It follows that Derk(S) is a Λ-graded Lie 
algebra with homogeneous subspace (Derk(S))λ = SλD. The analogous facts hold for 
the Ξ-graded algebra R, i.e., putting DR = {∂ξ : ξ ∈ HomZ(Ξ, k)} the Lie algebra 
Derk(R) = RDR is Ξ-graded with Derk(R)ξ = RξD. But we can identify DS with DR

and then denote D = DS = DR since the restriction map HomZ(Λ, k) → HomZ(Ξ, k)
is an isomorphism of vector spaces (this because Λ/Ξ = Γ is a finite group and k is 
torsion-free). Hence Derk(R) = RD ⊂ Derk(S) = SD. Observe that the embedding 
Derk(R) ⊂ Derk(S) preserves the degrees of the derivations.13

One easily verifies that zλ∂θ is skew-symmetric with respect to the bilinear form ε of 
S if and only if θ(λ) = 0. The analogous fact holds for R:

SDerk(R) = {δ ∈ Derk(R) : δ is skew-symmetric}

=
⊕

ξ∈Ξ zξ{∂θ : θ ∈ HomZ(Ξ, k), θ(ξ) = 0} ⊂ SDerk(S).

We now consider derivations of g ⊗ S and of L. It is well-known that the map δ �→
Idg⊗ δ identifies Derk(S) with the subalgebra CDerk(g ⊗ S) of centroidal derivations 
of g ⊗ S; it maps SDerk(S) onto SCDerk(g ⊗ S). Analogously, Derk(R) → CDer(L), 
δ �→ (Idg⊗ δ)|L is an isomorphism of Lie algebras [25].14 One can check that under 
this isomorphism SDerk(R) is mapped onto SCDerk(L). The embedding SDerk(R) ⊂
SDerk(S) of above then gives rise to an embedding

(4.2.1) SCDerk(L) ⊂ SCDerk(g⊗ S).

To construct an EALA E with Ecc = L we follow 2.7 and take a graded subalgebra 
D ⊂ SCDerk(L) � SDerk(R) such that the evaluation map ev: Λ → D0∗ is injective. 
This then provides us with the central cocycle σD : L ×L → C = Dgr∗. Using Theorem 2.8
it follows that EA(L, D, τ) is an EALA with centreless core L for any affine cocycle 
τ : D×D → C and, conversely, any EALA E with Ecc � L is isomorphic to EA(L, D, τ)
for appropriate choices of D and τ .

4.3. Example (Untwisted EALA). Let σi = Id for all i. Then S = R, L = g ⊗ S = g ⊗R. 
Using the invariant bilinear form (·|·)S on g ⊗S described above we observe that for any 
D ⊂ SCDer(L) as above and affine cocycle τ we have an EALA EA(g ⊗ S, D, τ). Any 
EALA isomorphic to such an EALA will be called untwisted.

13 Since S is an étale covering of R, in fact even Galois, every k-linear derivation δ ∈ Derk(R) uniquely 
extends to a derivation δ̂ of S. Under our inclusion Derk(R) ⊂ Derk(S) we have δ = δ̂.
14 Note that in the expression Idg ⊗ δ the element δ ∈ Derk(R) is viewed as an element of Derk(S) under 
the inclusion Derk(R) ⊂ Derk(S) described above.
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4.4. Remark. Note that if we replace (·|·)S by s(·|·)S for some s ∈ k×, then, as explained 
in Remark 2.9, the resulting EALA is EA(g ⊗ S, D, sτ), which is again an untwisted 
EALA.

By taking into account that the invariant bilinear form (·|·)L on L = L(g, σ) is by 
assumption the restriction of (·|·)S to L, the following lemma is immediate from the 
above.

4.5. Lemma. Let E = EA(L, D, τ) = L ⊕ C ⊕ D be an EALA with centreless core 
L = L(g, σ) as in (4.1.1). Assume, without loss of generality, that the invariant bilinear 
form (·|·)E of E is such that its restriction to L is the form (·|·)L above. By means of 
(4.2.1) view D as a subalgebra of SCDer(g ⊗ S). Then

(4.5.1) ES = EA(g⊗ S,D, τ) = g⊗ S ⊕ C ⊕D

is an untwisted EALA containing E as a subalgebra.

4.6. Remark. That there is no loss of generality on the choice of (·|·)E follows from 
Remark 4.4. Indeed, scaling a given form to produce (·|·)L when restricted to L will 
result in replacing EA(g ⊗ S, D, τ) by EA(g ⊗ S, D, sτ). The relevant conclusion that E
is a subalgebra of an untwisted EALA remains valid.

The following lemma will be useful later.

4.7. Lemma. Let E = L ⊕ C ⊕D be an EALA with centreless core an fgc Lie torus.
(a) Let g ∈ Autk(L). Then the endomorphism fg of E defined by

(4.7.1) fg(l ⊕ c⊕ d) = g(l) ⊕ c⊕ d

is an automorphism of E if and only if g ◦ d = d ◦ g holds for all d ∈ D.
(b) The map g �→ fg is an isomorphism between the groups

AutD(L) = {g ∈ Autk(L) : g ◦ d = d ◦ g for all d ∈ D}

and {f ∈ Autk(E) : f(L) = L, f |C⊕D = Id}. In particular, for any g in

(4.7.2) {g ∈ AutR(L) : g(Lλ) = Lλ for all λ ∈ Λ} ⊂ AutD(L)

the map fg of (4.7.1) is an automorphism of E.

Proof. (a) It is immediate from (4.7.1) and the multiplication rules (1.4.1) that fg is an 
automorphism of E if and only if
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(i) g ◦ d = d ◦ g holds for all d ∈ D and
(ii) σ

(
g(l1), g(l2)

)
= σ(l1, l2) holds for all li ∈ L.

To show that the second condition is implied by the first, recall that σ is defined by 
(1.3.1), whence (ii) is equivalent to 

(
(d ◦ g)(l1) | g(l2)

)
=

(
d(l1) | l2). Because of (i) 

this holds as soon as g is orthogonal with respect to (·|·). But this is exactly what [22, 
Cor. 7.4] says.

The first part of (b) is immediate. Any automorphism stabilizing the homogeneous 
spaces Lλ commutes with D viewed as a subset of SCDer(L). If it is also R-linear it com-
mutes with all of SCDer(L) and so in particular with the subalgebra D ⊂ SCDer(L). �
5. Lifting automorphisms in the untwisted case

In this section we assume that E is an extended affine Lie algebra whose centreless 
core Ecc is untwisted in the sense that Ecc = L = g ⊗ R. In other words L = L(g, Id). 
In particular R = S and ti = zi.

5.1. Notation

We let G and G̃ be the adjoint and simply connected algebraic k-groups corresponding 
to g. Recall that we have a central isogeny

(5.1.1) 1 → μ → G̃ → G → 1

where μ is either μm or μ2 × μ2.
The algebraic k-group of automorphisms of g will be denoted by Aut(g). For any 

(associative commutative unital) k-algebra K by definition Aut(g)(K) is the (abstract) 
group AutK(g ⊗K) of automorphisms of the K-Lie algebra g ⊗K.

Recall that we have a split exact sequence of k-groups (see [14] Exp. XXIV 
Théorème 1.3 and Proposition 7.3.1)

(5.1.2) 1 → G → Aut(g) → Out(g) → 1

where Out(g) is the finite constant k-group Out(g) corresponding to the group of sym-
metries of the Dynkin diagram of g.15

There is no canonical splitting of the above exact sequence. A splitting is obtained 
(see [14]) once we fix a base of the root system of a Killing couple of G̃ or G. Accordingly, 
we henceforth fix a maximal (split) torus T̃ ⊂ G̃. Let Σ = Σ(G̃, T̃) be the root system of 
G̃ relative to T̃. We fix a Borel subgroup T̃ ⊂ B̃ ⊂ G̃. It determines a system of simple 

15 The group Out(g) is denoted by Aut
(
Dyn(g)

)
in [14].
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roots {α1, . . . , α�}. Fix a Chevalley basis {Hα1 , . . . , Hα�
, Xα, α ∈ Σ} of g corresponding 

to the pair (T̃, B̃). The Killing couple (B̃, T̃) induces a Killing couple (B, T) of G.
In what follows we need to consider the R-groups obtained by the base the change 

R/k of all of the algebraic k-groups described above. Note that Aut(g)R = Aut(g ⊗R). 
Since no confusion will arise we will omit the use of the subindex R (so that for example 
(5.1.1) and (5.1.2) should now be thought as an exact sequence of group schemes over R).

5.2. Theorem. The group AutR(g ⊗ R) is in the image of the map resc of (3.4.1), i.e., 
every R-linear automorphism of g ⊗R can be lifted to an automorphism of E.

Proof. By (5.1.2) we have

(5.2.1) AutR(g⊗R) = G(R) � Out(g).

We will proceed in 3 steps:

(1) Lifting of automorphisms in the image of G̃(R) in G(R).
(2) Lifting of automorphisms in G(R).
(3) Lifting of the elements of Out(g).

To make our proof more accessible we start by recalling the main ingredients of the 
construction of E, see 1.4 and 2.7.

(a) Up to a scalar in k, the Lie algebra g ⊗R has a unique nondegenerate invariant 
bilinear form (·|·)R, namely (x ⊗ r | x′ ⊗ r′)R = κ(x, x′) ε(rr′) where κ is the Killing 
form of g, x, x′ ∈ g and ε ∈ R∗ is given by ε(

∑
λ∈Λ aλt

λ) = a0. Recall that tλ =
tλ1
1 · · · tλn

n for λ = (λ1, . . . , λn) ∈ Λ = Z
n.

(b) The Lie algebra D is a Λ-graded Lie algebra of skew-centroidal derivations of R acting 
on g ⊗ R by Id⊗ d for d ∈ D. Every homogeneous d ∈ D, say of degree λ, can be 
uniquely written as d = tλ∂θ for some additive map θ : Λ → k, where ∂θ(tμ) = θ(μ)tμ

for μ ∈ Λ.
(c) The Lie algebra E is constructed using the general construction 1.4 with L = g ⊗R, 

D as above, V = C = Dgr∗ with the canonical D-action on L and C, the central 
2-cocycle of (1.3.1) using the bilinear form (·|·)R of (a) above, and some 2-cocycle 
τ : D ×D → C.

In our proofs of steps 1 and 2 we will embed E as a subalgebra of a Lie algebra Ẽ
and use the following general result.

5.3. Lemma. Assume that R is a subring of a commutative associative ring R̃. We put 
L̃ = g ⊗ R̃.
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(a) Assume that:

(i) the action of D on R extends to an action of D on R̃ by derivations,
(ii) σ̃ : L̃× L̃ → C is a central 2-cocycle such that σ̃|L×L = σ.

Then D acts on L̃ by d(x ⊗s) = x ⊗d(s) for d ∈ D, x ∈ g and s ∈ R̃. The data (L̃, ̃σ, τ)
satisfy the conditions of the construction 1.4, hence define a Lie algebra Ẽ = L̃⊕C⊕D. 
It contains E as a subalgebra.

(b) Let f̃ ∈ Aut(Ẽ) satisfy f̃(L ⊕ C) = L ⊕ C. Then f̃(E) = E.

Proof. The easy proof of (a) will be left to the reader. In (b) it remains to show that 
f̃(D) ⊂ L ⊕ C ⊕ D. We fix d ∈ D. We then know f̃(d) = l̃ + c̃ + d̃ for appropriate 
l̃ ∈ L̃, c̃ ∈ C and d̃ ∈ D. We claim that l̃ ∈ L. For arbitrary l ∈ L we have d · l =
[d, l]E = [d, l]Ẽ where [., .]E and [., .]Ẽ are the products of E and Ẽ respectively. Hence 
f̃
(
d · l

)
= [f̃(d), f̃(l)]Ẽ = [l̃+ c̃+ d̃, f̃(l)]Ẽ . Denoting by (·)L̃ the L̃-component of elements 

of Ẽ, it follows that

f̃
(
d(l)

)
L̃

= [l̃, f̃(l)L̃]Ẽ + [d̃, f̃(l)L̃]Ẽ .

By assumption for all x ∈ L, f̃(x)L̃ ∈ L. It follows that the last term in the displayed 
equation and the left hand side lie in L. Since C is the centre of L̃⊕C we know f̃(C) = C

whence (prL ◦ f̃)(L) = L for prL : L ⊕ C → L the canonical projection. The displayed 
equation above therefore implies [l̃, L]L̃ ⊂ L.

We will prove that this in turn forces l̃ ∈ L. Indeed, let {ri : i ∈ I} be a k-basis of R
and extend it to a k-basis of R̃, say by {sj : j ∈ J}. Thus l̃ =

∑
i xi ⊗ ri +

∑
j yj ⊗ sj

for suitable xi, yj ∈ g. For every z ∈ g we then have [l̃, z⊗ 1] =
∑

i[xi, z] ⊗ ri +∑
j [yj , z] ⊗ sj ∈ g ⊗R. Hence [yj , z] = 0 for all j ∈ J . Since this holds for all z ∈ g, we 

get yj = 0 for all j ∈ J proving l̃ ∈ g ⊗R. �
After these preliminaries we can now start the proof of Theorem 5.2 proper. 

In what follows we view R as a subring of the iterated Laurent series field F =
k((t1))((t2)) · · · ((tn)).16

Step 1. Lifting of automorphisms of G(R) coming from G̃(R).
We will follow the strategy suggested by Lemma 5.3 and construct a Lie algebra 

Ẽ = (g ⊗ F ) ⊕ C ⊕D containing E = (g ⊗ R) ⊕ C ⊕D as subalgebra, and then show 
that if g ∈ G̃(R) ⊂ G̃(F ), then Ad g ∈ AutF (g ⊗ F ) can be lifted to an automorphism 
of Ẽ that stabilizes E and whose image under resc is precisely Ad g ∈ AutR(g ⊗R).

The following lemma implies that the conditions of Lemma 5.3 (a) are satisfied.

16 The field F is more natural to use than the function field K = k(t1, · · · , tn). The extensions of forms and 
derivations of R are easier to see on F than K. There is also a much more important reason: The absolute 
Galois group of F coincides with the algebraic fundamental group of R. This fact is essential in [16].
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5.4. Lemma. (a) The linear form ε ∈ R∗ extends to a linear form ε̃ of F .
(b) The bilinear form (·|·)̃ defined by (x ⊗ f | x′ ⊗ f ′)̃ = κ(x, x′) ̃ε(ff ′) for x, x′ ∈ g, 

f, f ′ ∈ F , is an invariant symmetric bilinear form extending the bilinear form (·|·) of 
g ⊗R.

(c) Every derivation d ∈ D extends to a derivation d̃ of F such that

(i) d̃ is skew symmetric with respect to the bilinear form (·|·)̃,
(ii) d �→ d̃ is an embedding of D into Derk(F ).
(iii) Every d ∈ D acts on L̃ = g ⊗ F by the derivation Id⊗ d̃ which is skew-symmetric 

with respect to the bilinear form (·|·)̃.

(d) Let σD : L̃×L̃ → D∗ be the central 2-cocycle of (1.3.1) with respect to the action of 
D on L̃ defined in (c). Let pr: D∗ → C be any projection of D∗ onto C whose restriction 
to C ⊂ D∗ is the identity map. Then σ̃ = pr ◦σD : L̃ × L̃ → C = Dgr∗ is a central 
2-cocycle such that σ̃|L×L is the central 2-cocycle appearing in the construction of E.

Proof. An arbitrary k-derivation of R extends to a k-derivation of F . To see this use the 
fact that Derk(R) is a free R-module admitting the degree derivations ∂i = ti∂/∂ti as a 
basis. It is thus sufficient to show that the ∂i extend to k-derivations of F , but this is 
easy to see. The rest of the proof is straightforward and will be left to the reader. �

We can now apply Lemma 5.3 (a) and get a Lie algebra Ẽ = L̃⊕C ⊕D, with L̃ =
g ⊗F , containing E = L ⊕ C ⊕D as a subalgebra.

Since adXα, α ∈ Σ, is a nilpotent derivation, exp(ad fXα) is an elementary au-
tomorphism of g ⊗ F for all f ∈ F . It is well-known that, since F is a field, the 
group G̃(F ) is generated by root subgroups Uα = {xα(f) | f ∈ F}, α ∈ Σ and that 
Adxα(f) = exp(ad fXα). By Proposition 1.6, Adxα(f) lifts to an automorphism of Ẽ
which maps g ⊗ F to (g ⊗ F ) ⊕ C and such that its (g ⊗ F )-component is Adxα(f). 
Consequently, for any g ∈ G̃(F ) there is an automorphism f̃g ∈ Autk(Ẽ) such that 
(prg⊗Fn

◦f̃g)|(g ⊗ F ) = Ad g ∈ AutF (g ⊗ F ). Moreover, again by Proposition 1.6, 
f̃g(C) = C, whence f̃g(L ⊕ C) = L ⊕ C whenever g ∈ G̃(R). Therefore, by Lemma 5.3, 
we get f̃g(E) = E. This finishes the proof of Step 1.

Step 2. Lifting automorphisms from G(R).
We begin with a preliminary simple observation.

5.5. Lemma. There exist an integer m > 0 such that the algebra R̃ = k[t±
1
m

1 , . . . , t
± 1

m
n ]

has the following property: All the elements of G(R), when viewed as elements of G(R̃), 
belong to the image of G̃(R̃) in G(R̃).

Proof. Recall that H1(R, μm) � R×/(R×)m. Let m be the order of μ(k) (if μ = μ2×μ2
we can take m = 2 instead of m = 4). Consider the exact sequence

G̃(R) → G(R) → H1(R,μ)
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resulting from (5.1.1). Let g ∈ G(R) and consider its image [g] ∈ H1(R, μ). Then g is in 
the image of G̃(R) if and only if [g] = 1. It is clear that the image of [g] in H1(R̃, μ) is 
trivial. The lemma follows. �

Let R̃ be as in the previous lemma, and let L̃ = g ⊗ R̃. By Lemma 5.3 (a) we have a 
Lie algebra Ẽ = L̃⊕ C ⊕D containing E = L ⊕ C ⊕D as a subalgebra.

Let g ∈ G(R) ⊂ G(R̃). To avoid any possible confusion when g is viewed as an 
element of G(R̃) we denote it by g̃. By Step 1 there is a lifting f̃g ∈ Autk(Ẽ) of Ad g̃ ∈
AutR̃(g ⊗ R̃). To establish this we used that f̃g(L̃⊕C) = L̃⊕C. But since g ∈ G(R) and 
f̃g lifts Ad g̃ we conclude that f̃g(L ⊕C) = L ⊕C. We can thus apply Lemma 5.3 (b) and 
conclude f̃(E) = E. Hence f̃ |E is the desired lift of Ad g ∈ AutR(g ⊗R). This completes 
the proof of Step 2.

Step 3. Lifting automorphisms from Out(g).
Let g be a diagram automorphism of g, or more generally any automorphism of g. We 

identify g with g⊗ IdR and note that g is an R-linear automorphism of g ⊗R preserving 
the Λ-grading. Hence Lemma 4.7 (b) shows that g lifts to an automorphism of E. This 
completes the proof of Theorem 5.2. �
6. Lifting automorphisms in the fgc case

In this section we will consider an EALA E whose centreless core L is an fgc Lie 
torus. If R = k[t±1

1 , . . . , t±1
n ] is the centroid of L (see the second paragraph of 4.2), we 

will show that any R-linear automorphism of L lifts to an automorphism of E. Although 
our method of proof is inspired by general Galois descent considerations, we will give a 
self-contained presentation (with some hints for the expert readers regarding the Galois 
formalism).

Throughout we will use the notation and definitions of §4. Thus L = L(g, σ) is 
a multiloop Lie torus with σ = (σ1, . . . , σn) consisting of commuting automorphisms 
σi ∈ Autk(g) of order mi. The crucial point here is that the subalgebras L ⊂ g ⊗ S and 
E ⊂ ES are the fixed point subalgebras under actions of Γ = Z/m1Z ⊕ · · · ⊕ Z/mnZ

on g ⊗ S and ES respectively. In this section we will write the group operation of Γ as 
multiplication.

Indeed, let γi be the image of (0, . . . , 0, 1, 0, . . . , 0) ∈ Z
n in Γ. Then γi can be viewed 

as an automorphism of S via γi · zλ = ζλi
mi

zλ for λ ∈ Λ = Z
n. This defines in a natural 

way an action of Γ as automorphisms of S. Clearly R = SΓ. The group Γ also acts on g
by letting γi act on g via σ−1

i . The two actions of Γ combine to the tensor product action 
of Γ on g ⊗ S. Note that Γ acts on g ⊗ S as automorphisms. The subalgebra L ⊂ g ⊗ S

is the fixed point subalgebra under this action.17

17 In fact, S/R is a Galois extension with Galois group Γ. The action of Γ on g ⊗ S is the twisted action 
of Γ given by the loop cocycle η(σ) mapping γi ∈ Γ to σ−1

i ⊗ IdS ∈ AutS(g ⊗ S).
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By construction every γ ∈ Γ acts on g ⊗ S by an R-linear automorphism preserving 
the Λ-grading of g ⊗ S. Identifying (with any risk of confusion) γ ∈ Γ with this auto-
morphism, the inclusion (4.7.2) applied to ES = g ⊗ S ⊕ C ⊕D says that γ extends to 
an automorphism fγ ∈ Autk(ES) given by (4.7.1). Moreover, the group homomorphism 
γ �→ fγ defines an action of Γ on ES by automorphisms. By construction, E is the fixed 
point subalgebra of ES under this action. To summarize,

L = (g⊗ S)Γ and E = (ES)Γ.

The action of Γ on g ⊗ S gives rise to an action of Γ on the automorphism group 
Autk(g ⊗S) by conjugation: γ · g = γ ◦ g ◦ γ−1 for g ∈ Autk(g ⊗S) and γ ∈ Γ. Similarly, 
Γ acts on Autk(ES) by conjugation. The first part of the following theorem shows that 
these two actions are compatible with the restriction map resc of (3.4.1).

6.1. Theorem. (a) The restriction map resc : Autk(ES) → Autk(g ⊗ S) is Γ-equivariant. 
Its kernel is fixed pointwise under the action of Γ.

(b) The canonical map

Autk(ES)Γ → Im(resc)Γ

induced by resc is surjective.
(c) Every R-linear automorphism g of L lifts to an automorphism fg of E, i.e., 

resc(fg) = g.

Proof. (a) Let γ ∈ Γ and view γ as an automorphism of g ⊗ S. By construction 
resc(fγ) = γ. Since resc is a group homomorphism, for any f ∈ Autk(ES) we get 
resc(γ · f) = resc(fγ ◦ f ◦ f−1

γ ) = γ ◦ resc(f) ◦ γ−1 = γ · resc(f). We have determined the 
kernel of resc in Proposition 3.5. The description in Proposition 3.5 together with the 
definition of the lift fγ in (4.7.1) implies the last statement of (a).

(b) By [26, I§5.5, Prop. 38], the exact sequence of Γ-modules 1 → Ker(resc) →
Autk(ES) → Im(resc) → 1 gives rise to the long exact cohomology sequence

1 → Ker(resc) → Autk(ES)Γ → Im(resc)Γ → H1(Γ,Ker(resc)
)
→ · · ·

of pointed sets. Since Ker(resc) is a torsion-free abelian group and Γ is finite, we have 
H1(Γ, Ker(resc)

)
= 1. Now (b) follows.

(c) Every automorphism g ∈ Autk(g ⊗ S)Γ leaves (g ⊗ S)Γ = L invariant and in 
this way gives rise to an automorphism ρL(g) ∈ Autk(L). Similarly we have a group 
homomorphism ρE : Autk(ES)Γ → Autk(E). Since resc : Autk(ES) → Autk(g ⊗ S) is 
Γ-equivariant, it preserves the Γ-fixed points. We thus get the following commutative 
diagram where resc,E : Autk(E) → Autk(L) is the map (3.4.1):



V. Chernousov et al. / Advances in Mathematics 290 (2016) 260–292 285
(6.1.1)

Autk(ES)Γ
resc

ρE

Autk(g⊗ S)Γ

ρL

Autk(E)
resc,E

Autk(L)

We will prove (c) by restricting the diagram (6.1.1) to subgroups. Observe that ρL maps 
AutS(g ⊗ S)Γ to AutR(L). In fact, we claim

ρL : AutS(g⊗ S)Γ → AutR(L) is an isomorphism.

This can be proven as a particular case of a general Galois descent result of affine group 
schemes. That said, due to the concrete nature of the algebras involved it is easy to give 
a direct proof (which we now do). The Lie algebra L is an S/R-form of g ⊗ S. Indeed, 
the S-linear Lie algebra homomorphism

θ : L⊗R S → g⊗k S,
∑

i xi ⊗ si ⊗ s �→
∑

i xi ⊗ sis

where 
∑

i xi ⊗ si ∈ L, s ∈ S, is an isomorphism. This can be checked directly [5, 
Lem. 5.7], or derived from the fact that L is given by the Galois descent described in the 
last footnote. It follows that L ⊂ g ⊗ S is a spanning set of the S-module g ⊗ S, which 
implies that ρL is injective. For the proof of surjectivity, we associate to g ∈ AutR(L)
the automorphisms g ⊗ IdS ∈ AutS(L ⊗ S) and g̃ = θ ◦ (g ⊗ IdS) ◦ θ−1 ∈ AutS(g ⊗ S). 
We contend that g̃ ∈ AutS(g ⊗ S)Γ, i.e., γ ◦ g̃ ◦ γ−1 = g̃ holds for all γ ∈ Γ. Since both 
sides are S-linear, it suffices to prove this equality by applying both sides to l ∈ L. Since 
θ(l ⊗ 1) = l we get (θ ◦ (g ⊗ Id) ◦ θ−1)(l) =

(
θ ◦ (g ⊗ Id)

)
(l ⊗ 1) = θ−1(g(l) ⊗ 1) = g(l)

and since γ fixes L ⊂ g ⊗ S pointwise the invariance of g̃ follows. It is immediate that 
ρL(g̃) = g.

By Theorem 5.2, every S-linear automorphism of g ⊗S lifts to an automorphism of ES , 
in other words AutS(g ⊗ S) ⊂ Im(resc). Using (b) this implies that the canonical map 
res−1

c

(
AutS(g ⊗ S)Γ

)
→ AutS(g ⊗ S)Γ is surjective. By restricting the diagram (6.1.1)

we now get the commutative diagram

res−1
c

(
AutS(g⊗ S)Γ

)

ρE

AutS(g⊗ S)Γ


 ρL

res−1
c,E

(
AutR(L)

)
AutR(L)

which implies that the bottom horizontal map is surjective and thus finishes the 
proof. �
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7. The conjugacy theorem

In this section we will prove the main result of our paper: Theorem 0.1 asserting 
the conjugacy of Cartan subalgebras of a Lie algebra E which give rise to fgc EALA 
structures on a Lie algebra E (Theorem 7.6). Assume therefore that H and H ′ are 
subalgebras of E such that (E, H) and (E, H ′) are fgc EALAs.18 The strategy of our 
proof is as follows:

(a) Show that the canonical images Hcc and H ′
cc of H and H ′ respectively in the 

centreless core Ecc are conjugate by an automorphism of Ecc that can be lifted to E.
This allows us to assume Hcc = H ′

cc. Then we prove that
(b) Two Cartan subalgebras H and H ′ of E with Hcc = H ′

cc are conjugate in Autk(E).
It turns out that part (b) can be proven for all EALAs, not only for fgc EALAs. In 

view of later applications we therefore start with part (b), which is the theorem below.

7.1. Theorem. Let (E, H) and (E, H ′) be two EALA structures on the Lie algebra E. We 
put Hc = H ∩ Ec, Hcc = Hc ⊂ Ecc and use ′ to denote the analogous data for (E, H ′)
keeping in mind that Ec = E′

c by Corollary 3.2. Assume Hcc = H ′
cc. Then:

(a) Hc = H ′
c.

(b) There exists f ∈ Ker(resc) ⊂ Autk(E) such that f(H) = H ′.

Proof. (a) Let x ∈ Hc. Since Hcc = H ′
cc there exists y ∈ H ′

c such that x = y ∈ Ecc. 
Then c = x − y ∈ C = Z(Ec), so that the elements x and y commute. Being elements of 
Hc and H ′

c, both adE x and adE y are k-diagonalizable endomorphisms of E. It follows 
that adE c is also k-diagonalizable.

We now note that it follows from [C, D]E ⊂ C and [C, Ec]E = 0 that any eigenvector of 
adE c with a nonzero D-component necessarily commutes with c. Therefore c ∈ Z(E) ⊂
H ′

c. Thus x = y + c ∈ H ′
c, and therefore Hc ⊂ H ′

c. Thus H ′
c = Hc by symmetry finishing 

the proof of (a).
Since the proof of (b) is much more involved, we have divided it into a series of 

lemmas (Lemma 7.2–Lemma 7.5). The reader will find the proof of (b) after the proof 
of Lemma 7.5.

Because H ′
c = Hc = Hcc ⊕ C0 we have decompositions H = Hcc ⊕ C0 ⊕ D0 and 

H ′ = Hcc ⊕ C0 ⊕ D′0 for a (non-unique) subspace D′0 ⊂ E. Our immediate goal is 
restrict the possibilities for D′0.

7.2. Lemma. D′0 ⊂ Hcc ⊕ C ⊕D0.

18 We have seen that the core, in particular the fgc assumption, is independent of the chosen invariant 
bilinear form.
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Proof. Let d′0 ∈ D′0, say d′0 = l′ + c + d with obvious notation. Since [d′0, h]E = 0 for 
h ∈ H ′

cc = Hcc we get 0 = [l′ + c + d, h]E =
(
[l′, h]L + d(h)

)
+ σ(l′, h) = [l′, h]L because 

CDer(L)0(Hcc) = 0 and therefore d(h) = σ(l′, h) = 0. Thus l′ ∈ CL(Hcc) = L0.
We have two Lie tori structures on L, the second one is denoted by L′; the L′-structure 

has a Λ′-grading L′ = ⊕λ′∈Λ′Lλ′ , induced by D′0. Similarly, L = ⊕λ∈ΛL
λ is induced 

by D0. Since Hcc = H ′
cc the identity map of L is an isotopy (see [1, Theorem 7.2]). Thus

Lλ
α = L

′ φΛ(λ)+φs(α)
φr(α) .

The nature of the maps φ is given in [1]. All that is relevant to us is the fact that for all 
λ, α there exist appropriate α′, λ′ such that Lλ

α = L′λ′

α′ . Since D′0 induces the Λ-grading 
of L, we have for lλ ∈ Lλ that

klλ � [d′0, lλ]E = [l′ + c + d, lλ]E =
(
[l′, lλ]L + d(lλ)

)
+ σ(l′, lλ).

Thus 0 = σ(l′, lλ)(d̃) = (d̃(l′) | lλ) for all d̃ ∈ D and all lλ. By the nondegeneracy of 
(·|·) on L we get d̃(l′) = 0 for all d̃ ∈ D. As D0 ⊂ D induces the Λ-grading of L this 
forces l′ ∈ L0, whence l′ ∈ L0

0 = Hcc. But then [l′, lλ]L ∈ klλ so that the equation above 
implies d(lλ) ∈ klλ. We can write d =

∑
γ∈Γ rγd0γ for some rγ ∈ Rγ and d0γ ∈ D0. 

Since rγd0γ(lλ) ∈ Lλ+γ we get rγd0γ(lλ) = 0 for all γ �= 0. But R acts without torsion 
on L, so rγ = 0 or d0γ = 0 for γ �= 0, and d ∈ D0 follows. �

We keep the above notation and set C �=μ = ⊕λ �=μC
λ.

7.3. Lemma. There exists a subspace V ⊂ H ′ such that:

(a) H ′ = Hc ⊕ V , V ⊂ C �=0 ⊕D0, and
(b) V is the graph of some linear map ξ ∈ Hom(D0, C �=0).

Proof. (a) By the already proven part (a) of Theorem 7.1 we have H ′ = H ′
c ⊕ D′0 =

Hc ⊕D′0 and by Lemma 7.2, D′0 ⊂ Hcc ⊕ C ⊕D0. We decompose

(7.3.1) Hcc ⊕ C ⊕D0 = (Hcc ⊕ C0) ⊕ (C �=0 ⊕D0).

Let p : Hcc ⊕ C ⊕ D0 → C �=0 ⊕ D0 be the projection with kernel Hcc ⊕ C0 and put 
V = p(D′0). Since D′0 ∩ (Hcc ⊕ C0) ⊂ D′0 ∩ Ec = 0, we see that p|D′0 : D′0 → V is a 
vector space isomorphism. Note also that V ⊂ H ′. Indeed, every v ∈ V is of the form 
v = p(d′0) for some d′0 ∈ D′0, whence d′0 = h + c0 +v for unique c0 ∈ C0, h ∈ Hcc. Since 
h, c0 ∈ H ′ it follows that v = d′0 − c0 − h ∈ H ′. Moreover the inclusion V ⊂ C �=0 ⊕D0

implies V ∩(Hcc⊕C0) = 0 by (7.3.1). By a dimension argument we now get H ′ = Hc⊕V .
(b) The multiplication rule (2.2.3) together with the fact that the Λ-grading of D is 

induced by D0 shows [D, D] =
⊕

λ �=0 D
λ. Hence, using (1.4.1) and the perfectness of Ec, 

we have E = [E, E] ⊕ D0 and then D0 � E/[E, E] � D′0. In particular, dim(V ) =
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dim(D′0) = dim(D0). Note also that V ∩ C �=0 = {0}. Indeed, let v = p(d′0) for some 
d′0 = hcc +c0 +c�=0 +d0 (obvious notation). Then p(d′0) = c�=0 +d0 ∈ C �=0 forces d0 = 0, 
whence d′0 ∈ Ec. But then d′0 = 0 because Ec ∩D′0 = {0}. Therefore v = p(d′0) = 0. 
It now follows that the projection p1 : C �=0 ⊕ D0 → D0 with kernel C �=0 is injective 
on V . By reasons of dimensions p1|V : V → D0 is a vector space isomorphism. Its inverse 
followed by the projection onto C �=0 is the map ξ whose graph is V . �
7.4. Lemma. (a) The weights of the toral subalgebra V of C ⊕ D are the linear forms 
ev′

μ ∈ V ∗ for μ ∈ supp(C) = supp(D) ⊂ Λ, defined by

ev′
μ(ξ(d0) + d0) = evμ(d0)

for d0 ∈ D0 and ξ as in Lemma 7.3.
(b) There exists a unique linear map ψμ : Dμ → C �=μ such that the ev′

μ-weight space 
of C ⊕D is given by

(7.4.1) (C ⊕D)ev′
μ

= Cμ ⊕ {ψμ(dμ) + dμ : dμ ∈ Dμ}.

(c) We have ψ0 = ξ.

Proof. (a) Since V ⊂ H ′ ∩ (C ⊕D) the space V is indeed a toral subalgebra of C ⊕D. 
We write the elements of V in the form ξ(d0) + d0. Since τ(D0, D) = 0 we then have the 
following multiplication rule for the action of V on C ⊕D:

(7.4.2) [ξ(d0) + d0, c + d]E = (d0 · c− d · ξ(d0)) + [d0, d]D.

It follows that Cμ is contained in (C ⊕ D)ev′
μ
. Moreover, for any eigenvector c + d of 

adV with d �= 0 the D-component d is an eigenvector of the toral subalgebra D0 of D, 
whence d ∈ Dμ for some μ ∈ suppD and thus c + d ∈ (C ⊕D)ev′

μ
.

(b) By (7.4.2) we have c + d ∈ (C ⊕D)ev′
μ

with d �= 0 if and only if d = dμ and

evμ(d0) (c + dμ) = ev′
μ(ξ(d0) + d0) (c + dμ) = [ξ(d0) + d0, c + dμ]E

=
(
d0 · c− dμ · ξ(d0)

)
+ evμ(d0)dμ

holds for all d0 ∈ D0. Thus evμ(d0)c = d0 ·c −dμ ·ξ(d0). Writing c in the form c =
∑

λ∈Λ cλ

with cλ ∈ Cλ and comparing homogeneous components we get evμ(d0)cλ = evλ(d0)cλ −
(dμ · ξ(d0))λ for every λ ∈ Λ, whence

(7.4.3) (dμ · ξ(d0))λ = evλ−μ(d0)cλ.

Since Cμ ⊂ (C ⊕D)ev′
μ

we can assume cμ = 0. But for λ �= μ there exists d0 ∈ D0 such 
that evλ−μ(d0) �= 0 and then (7.4.3) uniquely determines cλ. Thus c + d = ψμ(dμ) + dμ

for a unique ψμ(dμ) ∈ C �=μ. That ψμ is linear now follows from uniqueness.
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(c) We have C0 ⊕ V ⊂ (C ⊕ D)ev′
0

by definition of the ev′
0-weight space. Moreover, 

by (7.4.1) and Lemma 7.3 (b), dim(C0 ⊕ V ) = 2 dimD0 = dim(C ⊕ D)ev′
0
, whence 

C0 ⊕ V = (C ⊕D)ev′
0
. But then ψ0 = ξ follows from Lemma 7.3 (b) and the uniqueness 

of ψ0. �
7.5. Lemma. Let ψ : D → C be the unique linear map satisfying ψ|Dμ = ψμ with ψμ as 
in Lemma 7.4. Then ψ is a derivation, i.e., for dλ ∈ Dλ and dμ ∈ Dμ we have

(7.5.1) ψλ+μ([dλ, dμ]D) = dλ · ψμ(dμ) − dμ · ψλ(dλ).

Proof. The multiplication in C ⊕D yields

[ψλ(dλ) + dλ, ψμ(dμ) + dμ]C⊕D =
(
τ(dλ, dμ) + dλ · ψμ(dμ) − dμ · ψλ(dλ)

)
+ [dλ, dμ]D.

Since τ(dλ, dμ) ∈ Cλ+μ the C �=(λ+μ)-component of this element is

(7.5.2) [ψλ(dλ) + dλ, ψμ(dμ) + dμ]C �=(λ+μ) = dλ · ψμ(dμ) − dμ · ψλ(dλ).

But because ψλ(dλ) + dλ ∈ (C ⊕D)ev′
λ

and ψμ(dμ) + dμ ∈ (C ⊕D)ev′
μ

we also know

[ψλ(dλ) + dλ, ψμ(dμ) + dμ]C⊕D ∈ (C ⊕D)ev′
λ+μ

.

By (7.4.1) there are therefore two cases to be considered, [dλ, dμ]D �= 0 and [dλ, dμ]D = 0.
Case [dλ, dμ]D �= 0: In this case

[ψλ(dλ) + dλ, ψμ(dμ) + dμ]C⊕D = ψλ+μ([dλ, dμ]D) + [dλ, dμ]D

with C �=(λ+μ)-component equal to ψλ+μ([dλ, dμ]D) so that (7.5.1) follows by comparison 
with (7.5.2).

Case [dλ, dμ]D = 0: In this case (7.5.1) becomes

dλ · ψμ(dμ) = dμ · ψλ(dλ)

with both sides being contained in C �=(λ+μ). We prove this equality by comparing the 
Cρ-component of both sides for some ρ �= λ + μ. By (7.4.3)

ev(ρ−λ)−μ(d0)ψ(dμ)ρ−λ = dμ · (ξ(d0)(ρ−λ)−μ) and

ev(ρ−μ)−λ(d0)ψ(dλ)ρ−μ = dλ · (ξ(d0)(ρ−μ)−λ).

Hence, choosing d0 ∈ D0 such that evρ−λ−μ(d0) �= 0, setting e = evρ−λ−μ(d0)−1 and 
using [dλ, dμ]D = 0 we have
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dλ · ψ(dμ)ρ−λ = dλ · (e dμ · ξ(d0)ρ−λ−μ) = e dμ · (dλ · ξ(d0)ρ−λ−μ)
= e dμ · (evρ−λ−μ(d0)ψ(dλ)ρ−μ) = dμ · ψ(dλ)ρ−λ.

This finishes the proof of (7.5.1). �
End of the proof of Theorem 7.1 (b): It follows from Lemma 7.5 that the map f

defined by (3.5.1) lies in Ker(resc). This map fixes L ⊕ C pointwise and maps D0 to 
(ψ + Id)(D0) = V . Thus f(H) = H ′ in view of Lemma 7.3. �

We can now prove the main result of this paper: Conjugacy of Cartan subalgebras of 
a Lie algebra E which give rise to fgc EALA structures on E.

7.6. Theorem. Let (E, H) be an EALA whose centreless core Ecc is fgc, and let (E, H ′)
be a second EALA structure. Then there exists an automorphism f of the Lie algebra E

such that f(H) = H ′.

Proof. Using the notation of Theorem 7.1, we know that (Ecc, Hcc) and (Ecc, H ′
cc) are 

fgc Lie tori. Both subalgebras Hcc and H ′
cc are MADs of L = Ecc [1, Cor. 5.5]. We can 

now apply [12]: Both H and H ′ are Borel–Mostow MADs in the sense of [12, §13.1]
and satisfy the conditions of the general Conjugacy Theorem [12, Thm. 12.1]. Hence 
there exists g ∈ AutR(L) such that g(H ′

cc) = Hcc.19 According to Theorem 6.1 (c), 
g ∈ AutR(L) ⊂ Autk(L) can be lifted to an automorphism, say fg, of E. So replacing 
the second structure (E, H ′) by (E, f(H ′)) we may assume without loss of generality 
that Hcc = H ′

cc.20 An application of Theorem 7.1 now finishes the proof. �
7.7. Remarks. (a) We point out that conjugacy does not hold for all maximal 
ad-diagonalizable subalgebras of an EALA (E, H), see [28].

(b) In the setting of Theorem 7.6 let Ψ and Ψ′ be the root systems of the EALA 
structures (E, H) and (E, H ′) respectively, cf. axiom (EA1) of the Definition 2.3. The 
dual map of the isomorphism f |H is an isomorphism Ψ′ → Ψ, namely an isomorphism 
H ′∗ → H∗ sending Ψ′ to Ψ and Ψ′re to Ψre. The root system Ψ and Ψ′ are extended affine 
root systems and are thus given in terms of finite irreducible, but possibly non-reduced 
root systems Ψ̇ and Ψ̇′ ([2], or [17] where Ψ̇ and Ψ̇′ are called quotient root systems). 
It follows from [17, 4.1] that isomorphic extended affine root systems have isomorphic 
quotient root systems. Thus Ψ̇′ � Ψ̇. We thus recover [1, Prop. 6.1 (i)] where this was 
proven by a different method.

19 Even though it is not needed for this work, we remind the reader that g can be chosen in the image 
of a natural map G̃(R) → AutR(L) where G̃ is a simple simply connected group scheme over R with Lie 
algebra L.
20 We leave to the reader to check that (E, fg(H′)) has a natural EALA structure. For example if (·|·)′
was the invariant bilinear form of (E, H′) then on (E, φ(H′) we use ((·|·)′ ◦ (f−1 × f−1).
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(c) We can be more precise about the automorphism f needed for conjugacy in The-
orem 7.6. Namely, let resD : Autk(E) → Autk(E/Ec) � Autk(D) be the canonical map. 
Then the conjugating automorphism f can be chosen in the normal subgroup

G = Ker(resD) ∩ res−1
c

(
AutR(Ecc)

)

of Autk(E). Indeed, the automorphism f of the proof of Theorem 7.6 has the form 
f = f ′ ◦ fg where f ′ ∈ Ker(resc) and thus f ′ ∈ G by Proposition 3.5 (b). Moreover, fg is 
a certain lift of g ∈ AutR(Ecc). That resD(fg) = 1 follows from the proof of Theorem 5.2, 
Proposition 1.6 (iii) and Lemma 4.7.
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