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Abstract. Suppose a finite group acts on a scheme X and a finite-dimensional Lie al-
gebra g. The associated equivariant map algebra is the Lie algebra of equivariant regular
maps from X to g. The irreducible finite-dimensional representations of these algebras
were classified in [NSS12], where it was shown that they are all tensor products of eval-
uation representations and one-dimensional representations.

In the current paper, we describe the extensions between irreducible finite-dimensional
representations of an equivariant map algebra in the case that X is an affine scheme of
finite type and g is reductive. This allows us to also describe explicitly the blocks of
the category of finite-dimensional representations in terms of spectral characters, whose
definition we extend to this general setting. Applying our results to the case of generalized
current algebras (the case where the group acting is trivial), we recover known results
but with very different proofs. For (twisted) loop algebras, we recover known results on
block decompositions (again with very different proofs) and new explicit formulas for
extensions. Finally, specializing our results to the case of (twisted) multiloop algebras
and generalized Onsager algebras yields previously unknown results on both extensions
and block decompositions.
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Introduction

Equivariant map algebras are a large class of Lie algebras that include (twisted)
loop or multiloop algebras, generalized current algebras, and generalized Onsager
algebras, among others. Suppose X is a scheme and g is a finite-dimensional Lie
algebra, both defined over an algebraically closed field of characteristic zero, and
that ' is a finite group acting on both X and g by automorphisms. Then the
equivariant map algebra 9 = M (X, g)! is the Lie algebra of equivariant algebraic
maps from X to g. One easily sees that 9 = M(V, g)'' where V = Spec A, and
A is the ring of global functions on X. We will therefore assume throughout the
paper that X is affine.

In [NSS12], the authors, together with P. Senesi, gave a complete classification
of the irreducible finite-dimensional representations of an arbitrary equivariant
map algebra. The main result there was that such representations are all tensor
products of an irreducible evaluation representation and a one-dimensional rep-
resentation. Here by evaluation representation we mean a representation of the
form

M= @, o 2= Endy (0, Vi)

rex T

where x is a finite subset of X,.¢, the set of rational points of X, evy is the map
given by evaluation at the points of x, g* is the subalgebra of g fixed by the isotropy
group of z, and p,, x € x, are finite-dimensional representations g* — Endj V.
When all p,, z € x, are irreducible and no two points of x lie in the same I'-
orbit, the corresponding evaluation representation is irreducible. In many cases,
including the generalized current algebras (for semisimple g), multiloop algebras
and generalized Onsager algebras, all irreducible finite-dimensional representations
are in fact evaluation representations. For generalized current algebras this was
shown in [CFK10], and for multiloop algebras in [Laul0] (different proofs were
given in [NSS12]). The isomorphism classes of irreducible evaluation representa-
tions are naturally parameterized by finitely-supported equivariant maps on X, at
taking values in the set of isomorphism classes of irreducible g*-modules at a point
x € Xiat-

Except in rather trivial cases, the category of finite-dimensional representations
of an equivariant map algebra is not semisimple. It is therefore important to know
the extensions between irreducibles. These have been described for current alge-
bras in [CGO5] and for generalized current algebras in [Kod10]. In the current
paper, we address the question of computing extensions in the general setting of
equivariant map algebras. Precisely, we determine the extensions between irre-
ducible finite-dimensional representations of equivariant map algebras where the
scheme X is of finite type and the Lie algebra g is reductive.

One of our main results is that the problem of computing extensions between
evaluation representations can be reduced to the case of single point evaluation
representations (i.e., the case where x above is a singleton) at the same point (see
Theorem 3.7). We then show that the space of extensions between these single
point evaluation representations is equal to certain spaces of homomorphisms of g*-
modules (see Theorem 3.9). These results generalize formulas previously obtained
in [CGO5], [Kod10], [Senl0].
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Equipped with formulas for the extensions between irreducible objects in the
category of finite-dimensional representations, we are able to determine the block
decomposition of this category. In [CMO04], these blocks were described for loop
algebras in terms of spectral characters. These results were then extended to
the cases of twisted loop algebras in [Senl0] and generalized current algebras in
[Kod10]. In the current paper, we generalize the notion of spectral characters
to the setting of arbitrary equivariant map algebras (X affine of finite type, g
reductive). In keeping with the classification of irreducibles in terms of finitely-
supported equivariant functions on X, in many cases the spectral characters are
finitely-supported equivariant functions on X taking values in certain quotients of
the weight lattice of g* at a point € X, (see Sections 5 and 6).

Our results recover all the known results on extensions and block decomposition
for Lie algebras that can be viewed as equivariant map algebras. However, in
such cases, our method is quite different. Existing proofs in the literature use
the concept of a Weyl module — something which is not currently available for
arbitrary equivariant map algebras. In contrast, our approach uses results on
the cohomology of Lie algebras, most importantly the Hochschild-Serre spectral
sequence — a technique that goes back to the paper [FM94] which studies extensions
between irreducible evaluation modules of the current algebra M (k,g), g simple.
Hence our results give new proofs in the cases where the extensions and block
decompositions were known. In addition, we can describe the extensions between
irreducible finite-dimensional representations and block decompositions for classes
of equivariant map algebras for which these were not previously known. This is
the case, for example, for multiloop algebras and generalized Onsager algebras.

The organization of this paper is as follows. In Section 1 we recall the defini-
tion of equivariant map algebras and the classification of their irreducible finite-
dimensional representations in terms of evaluation representations. In Section 2
we collect some facts about extensions between representations of Lie algebras in
general, and the relation between spaces of extensions and Lie algebra cohomology.
We specialize our discussion to equivariant map algebras in Section 3, where we
prove some of our main results on extensions between irreducible finite-dimensional
representations. In Section 4 we consider the special case where the group T is
abelian, in which case we are able to make our descriptions of extensions more
explicit. We use our results on extensions to describe the blocks of the category
of finite-dimensional representations of an equivariant map algebra in Section 5.
Finally, in Section 6, we specialize our general results to certain equivariant map
algebras of particular interest. In an appendix, we prove some results relating
extensions to the weight lattice of a semisimple Lie algebra. This allows us, in
some cases, to describe the block decomposition in terms of explicit quotients of
the weight lattice.

Notation

Throughout, k is an algebraically closed field of characteristic 0 and all algebras
and tensor products are over k. We denote by X = Spec A the prime spectrum
of a unital associative commutative finitely generated k-algebra A. Equivalently,
X is an affine scheme of finite type. A point x € X is called a rational point if
A/m, =k, where m, is the ideal of A corresponding to x, and we abbreviate the
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subset of rational points of X by X,,;. Since A is finitely generated, the rational
points correspond exactly to the maximal ideals of A. Hence X4 = maxSpec A.

The direct product of two algebras A and B is denoted A H B to distinguish
it from the direct sum of vector spaces. For a Lie algebra L, we denote by L’ =
[L, L] the derived subalgebra and let La, = L/L’ be the abelianization of L; cf.
[Wei94]. Throughout, g will denote a finite-dimensional reductive Lie algebra with
semisimple part gss = g’. We identify g,p with the center of g, so that g = gssHgap.
We will denote the root and weight lattices of gss by @ and P, respectively. The set
of dominant weights with respect to some set of positive roots will be denoted by
Pt and V() is the irreducible finite-dimensional gs-module with highest weight
A € PT. By L¥,, we mean (L,,)* (and similarly for expressions such as g, and
gaab). By the usual abuse of notation, we use the terms module and representation
interchangeably.

For a finite group I' and a I'-module M, we let M' = {m € M : v-m =
m V v € T'} denote the set of elements of M fixed by T'. Similarly, if M is
an L-module, we let MX = {m € M : l-m = Oforalll€ L}. In case M =
Homy, (My, M>) for two L-modules My, Mo, the L-module M* coincides with the
L-module homomorphisms M; — Ms, and we therefore sometimes also employ
the notation (Homy (M7, M3))* = Homp (M, M>).

Acknowledgements. The authors thank V. Chari, G. Fourier, S. Kumar, and
G. Smith for useful discussions. In particular, they thank V. Chari for pointing
out the reference [FM94] and S. Kumar for formulating and proving Proposi-
tion A.1 and providing a more direct proof of (2.12) than their original argument.
The second author would also like to thank the Hausdorff Research Institute for
Mathematics, the Institut de Mathématiques de Jussieu, and the Département de
Mathématiques d’Orsay for their hospitality during his stays there, when some of
the writing of the current paper took place.

1. Equivariant map algebras and their irreducible representations

In this section, we review the definition of equivariant map algebras and the clas-
sification of their irreducible finite-dimensional representations given in [NSS12].
We recall the standing assumptions of this paper: X is an affine k-scheme with
finitely generated coordinate algebra k[X]| = A, g is a reductive Lie k-algebra, and
T is a finite group acting on X (equivalently, on A) and on g by automorphisms.
Let M (X, g) be the Lie k-algebra of regular maps from X to g, which we will often
identify with g ® A. This is a Lie algebra under pointwise multiplication. The
equivariant map algebra M = M (X, g)' is the subalgebra of I'-equivariant maps.
In other words, 9t consists of the I'-fixed points of the canonical (diagonal) action
of T'on M(X,g) =g® A.

For z € X, we let

F,={yeTl:y - z=ux}

be its isotropy group and put

g={ueg:y-u=uforalyel,}.
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Since g is reductive, it is known that all isotropy subalgebras g* are reductive
([Bou75, VII, §1.5, Prop. 14]). We denote by X, the set of finite subsets x C X,
for which I'-zNI"-z’ = @ for distinct z, 2’ € x. For x € X, we define g* = H,cx g°.
The evaluation map

evk : M — g%, evx(a) = (a(x))zex,
is a Lie algebra epimorphism [NSS12, Cor. 4.6] and we set
Ry = Kerevy .

To x € X, and a set {p, : © € x} of (nonzero) representations p, : g* — Endy V,,
we associate the evaluation representation evx(ps)zex of 9, defined as the com-
position

oM 2y gx '——+®Iex P, Endy (Ryex Va) -

TzEX ' T

If all p,, xz € x, are irreducible finite-dimensional representations, then this is also
an irreducible finite-dimensional representation of 9, [NSS12, Prop. 4.9]. In this
paper, we will always implicitly assume that evaluation representations are finite-
dimensional (i.e., the p, are all finite-dimensional). The support of an evaluation
representation V = evyx(ps)zex, abbreviated Supp V, is the union of all Tz, x € x,
for which p, is not the one-dimensional trivial representation of g”. In a slight
abuse of terminology, we will sometimes refer to V' as both a representation of 9t
and of g*.

For x € X,.t, let R, denote the set of isomorphism classes of irreducible finite-
dimensional representations of g%, and put Rx = || R;. Then I' acts on
Rx by

€ Xrat

I'xRx = Rx, (v[p])=v-lpl=[poy '] €Rya,

where [p] € R, denotes the isomorphism class of a representation p of g*. Let &
denote the set of finitely supported I'-equivariant functions ¥ : X,y — Rx such
that ¢ (z) € R,. Here the support Supp of ¢ € £ is the set of all x € X,
for which ¥ (z) # 0, where 0 denotes the isomorphism class of the trivial one-
dimensional representation.

For isomorphic representations p and p’ of g%, the evaluation representations
evg p and evy p’ are isomorphic. Therefore, for [p] € R;, we can define ev[p] to
be the isomorphism class of ev, p, and this is independent of the representative p.
Similarly, for a finite subset x C X, and representations p, of g* for z € x, we
define evy([pz])zex to be the isomorphism class of evy(pz)zex-

For ¢ € &, we define evy, = evx(¥(x))zex where x € X, contains one element of
each T'-orbit in Supp ¢. By [NSS12, Lem. 4.12], evy, is independent of the choice of
x. If ¢ is the map that is identically 0 on X, we define ev,, to be the isomorphism
class of the trivial representation of 9. Thus ¢ — evy defines a map &€ — S,
where S denotes the set of isomorphism classes of irreducible finite-dimensional
representations of 9. This map is injective by [NSS12, Prop. 4.14]. In other
words, £ naturally enumerates the isomorphism classes of irreducible evaluation
representations of 1. We say that an evaluation representation is a single orbit
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evaluation representation if its isomorphism class is evy for some ¢ € £ whose
support is contained in a single I'-orbit.

We recall that the one-dimensional representations of a Lie algebra L can be
identified with the elements of L% = {\ € L* : A\(L") = 0}, where to such a A we
associate the one-dimensional representation on k = ky defined by I -a = A({)a for
leLandack.

Proposition 1.1 ([NSS12, Thm. 5.5]). The map
My xE—=S, M) = ky®@evy, AeMy, ve&,

1s surjective. In particular, all irreducible finite-dimensional representations of M
are tensor products of an irreducible evaluation representation and a one-dimensio-
nal representation.

Remarks 1.2.

(a) In [NSS12, Thm. 5.5], a condition on when pairs (A, ) and (X, 9’) corre-
spond to the same representation is given, thus obtaining an analogue of
Proposition 1.1 where the map is bijective. However, we will not need the
stronger result in the current paper.

(b) By [NSS12, Cor. 5.4], every irreducible finite-dimensional representation of
M can be written as Vi ® k) for Vi an evaluation representation (unique
up to isomorphism) factoring through some g¥ and unique A € M%,.

(¢) The results of [NSS12] apply for an arbitrary finite-dimensional Lie algebra
g. However, in the current paper, we restrict our attention to the case where
g is reductive.

Example 1.3 (Untwisted map algebras). When the group I" is trivial, M (X, g)
is called an untwisted map algebra, or generalized current algebra. These algebras
arise also for a nontrivial group I' acting trivially on g or on X. In the first case
we have M (X, g)'' = M (Spec(A'), g), and in the second M (X, g)" = M(X,g").

Example 1.4 (Multiloop algebras). Fix positive integers n,m1, ..., my. Let

and suppose that I' acts on a semisimple g. Note that this is equivalent to spec-
ifying commuting automorphisms o;, ¢ = 1,...,n, of g such that ¢;"* = Id. For
i=1,...,n, let & be a primitive m;-th root of unity. Let X = (£*)" and define
an action of I' on X by

Yi * (217 ey Zn) = (2’1, ey zi_l,fizi, Zi+1, ey Zn)
Then
M(g,01,...,00,m1,...,my) = M(X,g)" (1.1)
is the multiloop algebra of g relative to (o1,...,0,) and (my,...,my). In this

case, all irreducible finite-dimensional representations are evaluation representa-

tions (see [NSS12, Cor. 6.1] or [Laul0]).
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Example 1.5 (T of order 2). Let 9t = M (X, g)" be an equivariant map algebra
with g simple and I' = {1,0} of order 2, acting nontrivially on g. Thus we have
7./2Z-gradings on g and A, denoted g = go @ g1 and A = Ag ® A; with go = g©
and Ag = AT. Hence

M = (g0 ® Ao) @ (g1 ® Av).

We will use the following facts regarding the structure of g, for which the reader
is referred to [Hel01, Chap. X, §5] and [Kac90, Exercise 8.9].

(a) We have go = [g1, 91], 91 = [go, 91] and go acts faithfully on g; (all of these
claims are immediate from simplicity of g).

(b) The Lie algebra go is reductive, so go = go,ss @ g0,ab, With dim gg ap < 1.

(¢) Suppose dim ggap = 1. Then g; = V1@V_; is a direct sum of two irreducible
dual go-modules V7 and V_; with gg b acting on V44 by £p for some 0 #
P € 8p ap- In particular, [80,ab, 81] = 91. Moreover, also go ¢ acts irreducibly
on Vii, and we have: gi®* =0 <= g # sly(k).

(d) If g = sly(k), then o acts by a Chevalley involution and go = go,ap 7# 0. So
g1 =V1®V_1 asin (c).

(e) If go is semisimple, the go-module g; is irreducible.

In particular, (a) and (b) imply
M’ = (go,ss ® Ao) @ (go,ap @ A7) @ (91 ® A1),  Map, = go,ap @ (Ao /AT).

It is easy to see that the fixed point set XL, = {z € Xya : 0 - & = 2} has the
following description,

erat ={reXm: A1 Cm;}={x € Xar: AT Cm,} foranyne Ny, (1.2)

where m, is the maximal ideal of A corresponding to x.  Hence, if gg.ar # 0,
then 91 has nontrivial one-dimensional representations if and only if 42 C Ay,
which in turn is equivalent to I' acting on X with fixed points. These nontrivial
one-dimensional representations are in general not evaluation representations; see
[NSS12, Ex. 5.21]. However, for the generalized Onsager algebras, which are special
cases of the example here and which we review next, it turns out that all one-
dimensional representations are in fact evaluation representations; see [NSS12,
Prop. 6.2].

Example 1.6 (Generalized Onsager algebras). Let X = k* = Speck[t™!], g be
a simple Lie algebra, and I' = {1,0} be a group of order 2. We suppose that o
acts on g by an automorphism of order 2 and on k[t*!] by o -t = ¢t~!, inducing an
action of I" on X. We define the generalized Onsager algebra to be the equivariant
map algebra M (k*, g)l' associated to these data. The term “generalized Onsager
algebra” was used in [NSS12, Ex. 3.9] in a more restrictive way (o was supposed
to be a Chevalley involution), while the algebra above was considered in [NSS12,
Ex. 3.10] without a name. We have chosen the new definition since all the results
proven in [NSS12] and here are true for the more general notion.

For k = C and o acting by a Chevalley involution, it was shown in [Roa91] that
M (X, sly)T is isomorphic to the usual Onsager algebra.

t:l:l]

We will return to the above examples in Section 6, where we apply our general
results on extensions and block decompositions.
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2. Extensions and Lie algebra cohomology

Our aim in the current paper is to determine extensions between irreducible
finite-dimensional representations of equivariant map algebras. One of our main
tools for computing such extensions will be Lie algebra cohomology. In this section,
we recall some basic facts about extensions between modules for Lie algebras and
collect some results on Lie algebra cohomology that will be used in the sequel.
Throughout this section, L is an arbitrary Lie algebra over k, not necessarily of
finite dimension.

We will use the following easy and well-known lemmas. The second is a straight-
forward consequence of Schur’s Lemma.

Lemma 2.1. Let M, N and P be finite-dimensional L-modules. The following
canonical vector space isomorphisms are in fact L-module isomorphisms:

MNEZNQM, (MQN)"=2M"'®N*,
N = N*  Homyi(M,N)= M"® N,
Homy (M ® N, P) = Homy (M,N* ® P)
=~ Homy (M ® P*,N*) =2 M* ® Homy (N, P).
Lemma 2.2. Let M and N be irreducible finite-dimensional L-modules where L

is an arbitrary Lie algebra. Then dim(M @ N*)I' < 1, and dimy(M @ N*)I' =
1l < M=N.

Extensions of a Lie algebra L can be described in terms of the first cohomology
group H'(L, V), for an L-module V, as we now describe. We first recall the well-
known fact, see for example [Wei94, Thm. 7.4.7], that

H'(L,V) 2 Der(L,V)/IDer(L,V), (2.1)
where

DGI‘(L,V) = {6 S HOHlk(L, V) . 6([[1,[2]) = ll . 3(12) — 12 . 8([1) A ll,lz S L}
denotes the space of all derivations from L to V and

IDer(L,V) = {0, : v € V}, where 9,(I) =1-v V1€ L,

is the subspace of inner derivations. The obvious maps give rise to an exact
sequence of L-modules:

0—VE =V = 1IDer(L,V)—0. (2.2)

For example, if V' is a trivial L-module, then IDer(L, V') = {0}, Der(L,V) = {0 €
Homy (L, V) : (L) = 0} and hence ([Wei94, Cor. 7.4.8])

Hl(L, V) = Homy (Lap, V) (V' a trivial L-module). (2.3)



EXTENSIONS AND BLOCK DECOMPOSITIONS FOR EMAS 191

The set Exti(Vl, V2) of equivalence classes of extensions of Vi by V4 is in bi-
jection with the first cohomology group of L with coefficients in the L-module
Homy, (V1, V2) (see [Sol, Exp. 4], [Fuk86, Chap. 1, §4.5], or [Wei94, Exercise 7.4.5]):

Exty (Vi,Ve) 2 H' (L, Homy(V4,V2)) 2 HY(L, Vy" @ Va), (2.4)

where in the second isomorphism we assume that V7 and V5 are finite-dimensional.
The first isomorphism is induced by assigning to the derivation 0: L —Homy(V7, V)
the extension Vo < U — Vi, where U = V; @& V5 with L-module structure given
by - (v1 ®v2) = (1-v1)® (O()(v1) +1-vg) for l € L, v; € V;, and where Vo — U
and U — Vj are the obvious maps.

Combining (2.4) with Lemma 2.1 yields the following.

Corollary 2.3. For finite-dimensional L-modules M, N, P we have
Ext; (M ® N, P) = Ext} (M, N* ® P) = Ext} (M @ P*, N*).

Lemma 2.4. Suppose L has a one-dimensional representation given by A € L, .
Then
H' (L, ky) = (80/D2)", (2.5)

where
fr=KerA and D) =Span{ADu—[l,u]:] € L,u € K} C Kx.

Furthermore, we have the following.
(a) If A\ =0, then ) = L' 9 L = R and so H'(L, ko) = L?,.
(b) If A#0, let z € L satisfy A\(z) =1. Then

Dy =8\ +{u—[z,u] :ue R} L. (2.6)

Proof. For A = 0 we have D, = L/, so part (a) follows from (2.3). We therefore
assume A # 0 and prove the result using (2.1). First, one easily verifies that
IDer(L, k) = kX and that a linear map ¢ : L — k) is a derivation if and only if
(D) = 0.

Now fix z € L with A(z) = 1. Then any § € Der(L, k) can be written in
the form § = tA 4+ §p with ¢ € k and dp(z) = 0, and we can identify §y with the
restriction of § to 5. Equation (2.5) now follows from (2.1).

For the proof of (b), note that any [ € L can be written in the form I =tz +y
with ¢t € kand y € R\. Then, for u € R, we have A\(\)u—[l, u] = (tu—[z, tu])—[y, ul,
and so D, has the form claimed in (2.6). It is an ideal because, for I,I’ € L and
u € Ry, we have

A = [1ull = A, u] = [ [ u]]) = [[17,1],u] € Dy,
since 8y < L, and therefore [I', u] € K, and since [[I',1],u] € &), C D,. O

With regards to extensions of one-dimensional modules by one-dimensional
modules,
0—=ky—=V—=Fk\—0,

Lemma 2.4 says
Excty (kx, k) = (R-2/Dp-n)" (2.7)
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Corollary 2.5. If L is an abelian Lie algebra and ky, k,, are two one-dimensional
representations, then

0 if A
Exth (kx, k) = PAF

L* if A=p.
Proof. If A # p, it follows easily from (2.6) that ©,_, = K,_ and the result is a
consequence of (2.7). If A = p, the result is simply Lemma 2.4(a). O

To calculate some other cohomology groups of interest here, we will use the exact
sequence of low-degree terms of the Hochschild—Serre spectral sequence ([HS53,
Thm. 6]; see also [Wei94, p. 233]):

0— HY(L/K,VE) 25 HY(L, V)

2.8
S YK, V)EE L 2L/ K, VE) 2 a2 (L, V) 29
whose ingredients we now explain. In this exact sequence K < L is an ideal of L,
V is an L-module and V¥ is considered as L/K-module with the induced action.
The inflation map inf is induced by mapping a derivation 9 : L/K — VX to
todom, where 7 : L — L/K is the canonical quotient map and ¢ : VE — V
is the injection. The map res is given by restriction, and the transgression map
t is induced by the differential defining cohomology. The Lie algebra L acts on
Der(K,V) in the obvious way, such that IDer(K,V) is an L-submodule. Hence
L acts on the quotient Der(K,V)/IDer(K,V) = H'(K,V). The action of K on
H'(K,V) is trivial, so that the action of L factors through L/K.

Proposition 2.6. Let p : L — Endi V' be a finite-dimensional representation of
L, and let K C Ker p be an ideal such that | = L/ K is finite-dimensional reductive.

(a) Suppose that either | is semisimple, or p is completely reducible with p(z)
invertible for some z € l,,. Then

HY(L,V) = Hom(Kap, V), (2.9)

the isomorphism being induced by restricting a derivation 0: L =V to K.
(b) If by, - V =0, we have

HY (1, V) = Homy, (L, V'), (2.10)
induced by restriction, and an eract sequence

inf res

0 — Homy, (Ip, V=) 25 HY(L, V) 2% Homy(Kap, V) & H2(LV) — -+ (2.11)

Proof. (a) Since VX =V hence H' (K, V') = Homy,(Kap, V) by (2.3), the claim is
immediate from the Hochschild-Serre spectral sequence (2.8) as soon as H ([, V) =
0 = H?(I, V). That these last two equations hold if [ semisimple, is the assertion
of Whitehead’s Lemmas (see for example [Wei94, Cors. 7.8.10 and 7.8.12]). But it
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is also known that they hold in the case that p is completely reducible and p(z) is
invertible for some z € I, ([HS53, Thm. 10], or see [Bou7l, §3, Exercise 12j]).

(b) To prove (2.10) we use H'(I, V) = Der(l,V)/IDer(l,V) by (2.1). For a
linear map 9 : [ — V, let Oss and OJ.p denote the restriction to I and [y re-
spectively. Since [, -V = 0, 0 is a derivation if and only if Oy is a deriva-
tion and Oa, € Homg(lap, V). Hence, 8 + Oap is a well-defined linear map
Der(I, V') — Homy (b, V[SS). It is surjective since any linear map f : lap, — V'
extends to a derivation 9 : [ = V with dss = 0. Its kernel is IDer([, V') because
for 9 € Der(l, V) we have 0, = 0 <= 0 = 05 € Der(l, V) = IDer(l, V) and
because the map IDer([, V) — IDer(ly, V'), O — 0Oss, is an isomorphism. The exact
sequence (2.11) is the Hochschild—-Serre sequence (2.8) for (L, K), using K-V =0,
the isomorphism (2.10), and H' (K, V)" 2 Hom(K,p, V) by (2.3). O

We conclude this section with a discussion of the extensions for Lie algebras
that can be decomposed as direct sums.

Proposition 2.7. Let Ly, Ly be Lie algebras. We denote by F1,Fo and F the
category of finite-dimensional representations of L1, Lo and L = L1 H Lo respec-
tively.

(a) FEvery module V in F is a tensor product V.=V ® Va, where V;, i = 1,2,
are modules in F;, uniquely determined up to isomorphism. The module V
is 1rreducible if and only if the V; are irreducible.

(b) Let U;,V; be modules in F; fori=1,2. Then

Ext}, (U1 ® U2, Vi ®@ Vo) = (UF ® V1)¥* @ Exty, (Usz, 12))
& (Exty (U, V1) ® (Us @ Va)™?).

In particular, if U;, Vi, i = 1,2, are irreducible, then

Exty (U; @ Up, Vi @ Vo)

0 ZfUl,\?é‘/h UQ%%)
. ) Extr, (Us, V2) if UL 2V, Uy & Vs,
Extr (U1, V1) if Uy 2 Vi, Uy 2 Vs,

Ext} (U1, Vi) ® Bxty, (U, Va) if Uy 2 Vi, Us 2 Va.
We note that the formula in (b) is mentioned in [CFK10, Prop. 2] for finite-
dimensional Lie algebras and attributed to S. Kumar.

Proof. Part (a) is well known; see for example [NSS12, Prop. 1.1]. For the proof of
(b) we use (2.4) to rewrite the left-hand side as H (L, M, ® My) for My = U @ V3
and My = UJ ® V. Assuming for a moment the formula

H'(L, My ® M) = (M @ H' (L2, Mb)) & (H' (L1, M1) @ My?), (2.12)

we obtain the first formula in (b) by another application of (2.4). The second then
follows from Lemma 2.2.
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We give a proof of (2.12) due to S. Kumar. First recall that M;"* = H°(L;, M;)
by definition. Also, one knows [Kum02, pp. 3.1.9, 3.1.13] that

HP (K, V) = HP (K, V™) 2 (H, (K, V")*
for any finite-dimensional module of a Lie algebra K, relating the cohomology

groups H? with the homology groups H,. The advantage of homology is that it
satisfies the Kiinneth formula

@p+q:r Hp(Ll,Ml) X Hq(LQ,Mg) =~ Hr(Ll [} LQ,Ml 39 Mg) for r e N.

Finally, we recall (V4 ® V1)* = V}* ® V5 if one of the vector spaces V; is finite-
dimensional. With these tools at hand, we can now prove (2.12):

HY(L, My ® M) = H' (L, (M} @ M3)*) = (Hi (L, M; @ M3))"
((Ho(Ll,Mf) ® Hi (Lo, M3)) @ (Hy(Ly, M7) ® Ho(Lz,MS‘)))*

~ ((HO(Ll,Ml*))* ® (Hl(LQ,M;))*) ® ((Hl(Ll,Ml*))* ® (HO(LQ,MQ*))*)
~ (HO(Ly, M) @ H' (Lo, Mo)) @ (H' (L1, My) @ H(Lo, Ms)). O

3. Extensions for equivariant map algebras

In this section we describe extensions of irreducible finite-dimensional modules
of an equivariant map algebra 9t = M (X, g)". The reader is reminded that X is
an affine scheme of finite type (equivalently, A is a finitely generated algebra) and
g is a finite-dimensional reductive Lie algebra.

Let R = k™ (as k-algebras) and let ; be the element (0,...,0,1,0,...,0), where
the 1 appears in the i-th position. Any R-module M is canonically a direct sum
of n uniquely determined submodules,

M=M®&- ---&M, M, =¢eM,

satisfying e;M; = 0 for ¢ # j. Thus every M; is also a k-vector space by identifying
k with the ith coordinate subalgebra of R. Conversely, any direct sum M =
M; ®---& M, of k-vector spaces M; gives rise to an R-module structure on M by
defining the action of the scalars in R in the obvious way.

The description of R-modules immediately extends to the category of R-algeb-
ras. An R-algebra [ is naturally a direct product of ideals, say [ = H}_,[;, where
each [; = ¢;[is a k-algebra. Conversely, any direct product [ = H]", [; of k-algebras
[; can canonically be considered as an R-algebra.

Recall that a module of a Lie R-algebra L is an R-module M together with an
R-bilinear map L x M — M, (I,m) — [ - m satisfying the usual rule for a Lie
algebra action, namely [l1,l3]-m =11 (la-m) —1la-(ly-m) for [; € L and m € M.
The following lemma is immediate from the above.
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Lemma 3.1. Let [ = [1H---HI, be a direct product of Lie k-algebras l;, 1 <1i < n.
As explained above we can view the k-algebra | as an R-algebra for R = k™.

Every module of the Lie R-algebra | is a direct sum of uniquely determined -
submodules M; = ;M such that l;- M; = 0 fori # j. Conversely, given l;-modules
M;, 1 < i < mn, the direct sum M = My @ --- ® M, becomes a module of the
R-algebra | with respect to the obvious operations.

Lemma 3.2. The fized point subalgebra A" is a finitely generated, hence Noethe-
rian, k-algebra. Similarly, A and M are finitely generated, hence Noetherian, A" -
modules.

Proof. Since A is a finitely generated k-algebra, so is AT ([Bou85, V, §1.9, Thm. 2]).
Hence A" is a Noetherian k-algebra. Moreover, the same reference also shows that
A is a finitely generated AT-module, and hence Noetherian. Thus g® A is a finitely
generated, hence Noetherian, AT-module. But every submodule of a Noetherian
module is again Noetherian. [

Since Ry acts trivially on any evaluation representation supported on I' - x, any
extension between two evaluation representations supported on I' - x will factor
through 9/RKL. It is therefore helpful to know the structure of this quotient.

Proposition 3.3 (Structure of M/KRL). For x € X,, define
I = {aGA:a(UwExFoz) =0}, IL =N A", My ={v e R ILv C R }.

Then
R M TR AM

is a sequence of ideals of the A' -algebra M. The quotient Lie algebra 9M/K. has
the following structure.

(a) Rxab = Bx /Ry is an abelian ideal of M/R, and the quotient

(M/R) [ (Rx,ab) = M/ R = g

(b) The adjoint representation of M induces g*-module structures on the quo-
tients M/ Rx and Rx/MNx, and on the ideal Ny /KL of M/ R, In particular,
(i) g* acts on M/ Ry = g* by the adjoint representation and on Rx /Ny
by zero, and
(ii) Nx/Ry = Drex M*, where each M? is a finite-dimensional g*-
module and g* - MY =0 for x # y.
Proof. The set I is a I-invariant ideal of A. Hence IL < A'. The algebra A"
acts naturally on 9, and both & and £, are clearly A'-submodules as well as
ideals of 9. Moreover, the same is true for 9x: If @« € MM and v € YNk then
ILa,v] = [a,ILv] € M, K] C R,. We thus have a chain £, < 9, < 8 of
Alinvariant ideals of 9, and consequently an exact sequence

0— mx/ﬁ;( — ﬁx,ab — ﬁx/mx —0 (31)

of M-modules, each annihilated by £y, i.e., an exact sequence of M/Ryx = g*-
modules. We will analyze this sequence further. First, since IL9t C &, we have
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IL[ON, Bx] = [IL9N, By] C KL, ie., [, By] C MNx. But this says that g* = M/ Ry
acts trivially on Ry /M.

By construction 9y /&, and 90/ Ky are annihilated by I, thus 91, /&, is a mod-
ule of the A" /IL-algebra M/K,. Since AT /IL = kX! (direct product of algebras),
Lemma 3.1 implies that Ny /K, is a direct sum Ny/Ry = P, M*, where each
M? is a g*-module and g*- MY = 0 for x # y. Also, since 9 is an AT-submodule of
the Noetherian AT-module M (Lemma 3.2), Ny is a finitely generated AT-module.
Hence My /R, is a finitely generated EXl-module, i.e., the g*-modules M* are all
finite-dimensional over k. [

Example 3.4. Consider M as in Example 1.5. Let I = Iy = Iy & I where
I; =1INA; for j=0,1. Then

Rx = (80,55 @ Io) @ (go,ab @ o) @ (g1 ® 1),

R = (g0,ss ® (I§ + 17)) @ (90,0 ® I7) @ (g1 ® Io]1), and

Nx = (go,ss ® Iy)® (g0,ab ® J)® (g1 ®1I1), where
J={acly:aly CI}}.

Using the above, one can easily construct examples showing that 8, C 9Mx C & in
general, even examples where £y a1, is infinite-dimensional. We will use the precise
structure of Ry b in the proof of Proposition 3.6.

The following well-known lemma describes the irreducible finite-dimensional
representations of reductive Lie algebras.

Lemma 3.5. Any irreducible finite-dimensional representation of a finite-dimen-
stonal reductive Lie algebra g is a tensor product Vss@Vay, where Vi is an irreducible
representation of the semisimple part gss of g and where Vyy, is an irreducible, hence
one-dimensional, representation of the centre gap of g. Fquivalently, an irreducible
representation of g is an irreducible representation of gss, on which g.y, acts by
some linear form.

Proposition 3.6 (Evaluation representations with disjoint support). If Vi and
Vo are nontrivial irreducible evaluation representations with disjoint support, then

Ext'(V3,Va) = 0.

In the case I' = {1} (so M = g ® A) and g is semisimple, this result is proven
in [Kod10, Lem. 3.3] using the theory of Weyl modules, a technique which is not
currently available for arbitrary equivariant map algebras.

Proof. Choose x; € X, ¢ = 1,2, containing one point in each I'-orbit of the
support of V; and set x = x; UXs5. As in Proposition 3.3, let 91 = My, R = Ky,
and V' = Homy (V;, Vo) 2 V* ® Va. Since Extay (V1, Vo) 2 HY (9N, V), it suffices to
show that H' (9, V) is zero. We know from Section 1 that V can be viewed as a
nontrivial irreducible g*-module that is nontrivial as a g*i-module, i = 1,2 (where
we view V; as a trivial g*-module for i # j).

If V is nontrivial as a g% -module, then Proposition 2.6(a) implies H' (9, V) =
Homgx (Rab, V). On the other hand, if V' is trivial as a g¥ -module (hence nontrivial
as a gX-module), then Proposition 2.6(b) implies that the map res : H* (91, V) —
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Homgx (Ran, V) is injective. Hence, in either case, it suffices to show Homgx (Rap, V)
=0.

We now use the structure of the g*-module &,}, as described in Proposition 3.3.
Suppose f € Homgx(Rap, V). If f(M/R') = 0, then f descends to a g*-module
map £/91 — V. This map must be zero since £/M is a trivial g*-module and V is
a nontrivial irreducible g*-module.

On the other hand, if f does not vanish on 91/8&’, it maps this space onto V,
since V is an irreducible g*-module. It follows that 91/&’ contains a g*-module
M isomorphic to V. Then we must have M C M?® for some z € x. But this
contradicts the fact that V is a nontrivial g*-module, i =1,2. 0O

Theorem 3.7 (Two evaluation representations). Suppose V' and V' are irredu-
cible evaluation representations corresponding to ¥, € &€, respectively. Let V =
Roex Vo and V' = Q. V, for some x € X, where V, V, are (possibly trivial)
wrreducible evaluation modules at the point x € x. Then the following are true.

(a) If ¢ and 4’ differ on more than one T-orbit, then Extyy (V, V') = 0.
(b) If ¢ and ¢’ differ on exactly one orbit T' - xg, xo € x, then
Extiy (V, V') 2 Extiy (Vo , V7).

(¢) If v =4’ (soV =2V'), then

(3,)X71 @ Extay (V. V) = @ e Exton (Va, Vi)

Proof. Suppose ¢(xq) # ¢’ (o) for some xy € x. Then

Ethl)ﬁ (‘/7 Vl) = Ethl)ﬁ (®:c6x Vz’ ®:c6x Vx/)
= EXt%ﬁ ((®z€x, TH#T0 Vz) ® (®z€x, T#£T0 (VI/)*) ’Vll'o ® Vl*o) '

Recall that a tensor product of finite-dimensional completely reducible (e.g., irre-
ducible) modules is again completely reducible. In particular, V; ® V;* is a direct
sum of nontrivial irreducible g*°-modules (hence 9t-modules) by Lemma 2.2, since
V., and V,, are not isomorphic. Using that Ext commutes with finite direct sums
([Wei94, Prop. 3.3.4]), it then follows from Proposition 3.6 that Extay(V, V') = 0

unless (®zex, . V;,;) ® (®w6x7 wél,o(v’,)*) contains a copy of the trivial mod-

x

ule. By Lemma 2.2, this occurs if and only if @,cy vorny Vo = Quex. wotao (Va)™

xr
in which case it contains exactly one copy of the trivial module. By [NSS12,

Prop. 4.14], this is true if and only if V, = V/ for all € x, © # zo. If this
condition is satisfied, we have

Exthy ((@uen, o Vo) @ (®uen, ara (V1)) Vi, ©V2 )
=~ Extyy (ko, Vy, @ Vi) = Extan (Vao, V2, )-

This concludes the proof of parts (a) and (b).
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Now suppose ¢ = ¢)’. Then for each z € x, by Lemma 2.2 we have
Vo Vo' = ko & (eaieJm V;) )
where the V! are nontrivial irreducible g*-modules. Then

Exton(V, V') = Extyy

= Extim

TEX VI’®:CEX )
Ruex (Ve @ V1), ko)
(®.ex (ko @ (Dics, Vi) ko)
= Bxtly (ko © (Bex, ies, V2) Fo)
= Extyy (Ko, ko) ® Dex. ics, Extan (Vi ko) ,

(®
(

= Extm

where, in the second-to-last equality, we used part (a) to conclude that Extgy (Vi ®
Vyj7 ko) =0 for x # vy, i € Jp, j € Jy. On the other hand, we have

D Exton (Ve, V)) = @,y Extay (Vo @ V7, ko)
= @:cEx EXtilm (kO D @ie]m inv kO)
= @CCEX (Ethlm(kO’ ko) & eaieJm EXtilm(V:cia kO)) .

Comparing these expressions, and using (2.4) and Lemma 2.4(a) to replace the
Extay (ko, ko) by 9%, , vields part (c). O

Remark 3.8. The special case of Theorem 3.7 where I is trivial and g is semisimple
was proved by Kodera ([Kod10, Thm. 3.6]). In this case, the term (9%, )*I~1 does
not appear, since M, = 0 in the setting of [Kod10].

Theorem 3.7 reduces the determination of extensions between evaluation mod-
ules to the computation of extensions between single orbit evaluation representa-
tions supported on the same orbit. It is thus important to have an explicit formula
for these.

Theorem 3.9 (Evaluation representations supported on the same orbit). Let V
and V' be two irreducible finite-dimensional single orbit evaluation representations
supported on the same orbit I' - x for some v € X;ar. Suppose that g%, acts on 'V
and V' by linear forms X\ and X\, respectively. Let

3 =evy (ghy) = {a € M: [0, M] C R}

Then
Homge (Ryab, VFQ V') if X# N,

3.2
Homggs (Saz,aba V*® V/) ’Lf A=\, ( )

Extgy (V, V') = {
In particular, if g© is semisimple, then g* = g%, A= XN =0, R, = 3., and

Extan (V, V') 2 Homgs (& ab, V* @ V7). (3.3)
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Proof. Let a € M. Then [o, M] C R, < [a(z),B(z)] =0 for all § € M «—
a(x) € g¥,. This proves the characterization of 3.

We know from (2.4) that Extg,(V,V’) = H' (O, W) for the 9M-module W =
V*® V’. Note that g¥, acts on W by X' — X. By the definition of an evaluation
module, the representation of 9t on W factors through 9t/K, = g®. Hence, in the
case A # X, the isomorphism (3.2) is a special case of (2.9). In the case A = N,
g%, acts trivially on W and the representation of Mt on W factors through 9t/3,.
Since M/3, = gZ,, the isomorphism (3.2) is also a consequence of (2.9). O

Remark 3.10. In fact, the proof of Theorem 3.9 carries through to the case that V'
and V' are supported on multiple orbits and (3.2) remains true in this generality
(with x replaced by x € X,). We choose to present the result in the single orbit
case since Theorem 3.7 tells us that the extensions will be zero if V and V' differ
on more than one orbit.

Since the action of I' leaves gss and g,p invariant and hence also ggs ® A and
gab ® A, we have a decomposition

M(X,9)" = M(X,g.)" BM(X, gap)". (3.4)

The following proposition allows us to reduce to the case where g is semisimple.

Proposition 3.11. Suppose V,V' are irreducible finite-dimensional representa-
tions of M. Write V = Ve ®kx and V' = V. @k for Vis, VI irreducible represen-
tations of M (X, gss)' and ky, kx one-dimensional representations of M (X, gap)" .
(a) If A # N, then Extgy (V, V') = 0.
(b) If X=X, then

EXt}\l(X,gss)F (‘/Ssv ‘/5/5)7 ‘/ss ?/é V.

Ss?

Exthy (x.g.yr (Vas, VL) @ (M(X, gan)")",  Vas 2 VL.

Ss?

Exctan (V, V') = {

where EXt}\/[(X,gss)F (Vis, VL) is described in Theorem 3.7.
Proof. This follows from Proposition 2.7(b) and Corollary 2.5. O

We conclude this section with a discussion of extensions in the case of irreducible
finite-dimensional representations that are not evaluation representations. Since
Corollary 2.3 implies that

Extay (V, V') 2 Extyy (ko, V* @ V'),

our previous results apply if V* ® V’ is an evaluation representation. Thus it
suffices to describe extensions between the trivial representation kg and irreducible
representations which are not evaluation representations.

Fix x € X,, an evaluation representation Vs supported on I' - x with g%, act-
ing trivially, and a one-dimensional representation k) which is not an evaluation
representation. Let

V=Vi®ky, A=K NKy, [=M/RK
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The representations py,, and py of M on Vis and V, respectively, as well as A,
factor through the canonical map p : 91 — [, giving rise to representations A € [*,
pv.. : 1= gl(Vis) and py : [ — gl(V), defined by

A=Xop, pyv,=pyv.op, and py =pyop.

Since A\(8x) # 0 (otherwise A factors through evy and so is an evaluation repre-
sentation), there exists z € Ry \ & such that A\(z) = 1. The canonical image Z € [
of z then has the property that 5\(2) = 1. Since z € Ry, we have evy(z) = 0. Thus
z acts by zero on Vg, and so

pv(z) =1d.

Proposition 3.12. The Lie algebra [ is finite-dimensional reductive. Moreover,
Extoy (ko, V) = HY (O, V) = Homy(Rap, V).

Proof. The first isomorphism is simply (2.4). It is obvious from the description of
[ above that dim [ < oo, that is, f has finite codimension in 9. To show that [ is
reductive, it is equivalent to prove that [’ is semisimple. From the exact sequence

0= K/R— MR- M/R — 0
and A(z) = 1, it follows that we have an exact sequence
0—=kz—>1—g“—0.

The epimorphism [ — g* maps [' onto the semisimple Lie algebra (g*)’. Since the
kernel of the map [ — g* is kZ, it is therefore enough to show that z & I'. We
know that A(9') = 0. Since the epimorphism 9 — [ maps M’ onto I, A(I') =0
follows. But then A(2) = 1 implies z ¢ I'. Thus ' = (g¥)’ = g% is semisimple. The
formula for H* (91, V) is then an application of Proposition 2.6(a). O

Remark 3.13. The above result should be compared to the A # X\ case of (3.2).
Loosely speaking, Proposition 3.12 says that (3.2) continues to hold in the case
that A — )\’ is not an evaluation representation.

4. Abelian group actions

In this section, we focus on the case where the group I' is abelian. In this
context, we are able to give a more explicit description of the extensions between
evaluation representations at a single point z € X, where g* is semisimple.

We know already from (3.3) that Extyy(Vi,Va) = Homge (8 ab, Vi* @ Vi) for
evaluation representations V; and V5 at z. It is therefore crucial to understand
the g”-module structure of R, an. It turns out that rather than dealing with
Ra.ab = Ry /R, itself, a certain quotient R, /Q, of Ry ap is more accessible as a g®-
module and will still provide us with some useful information about Extgay (V1, V2).

Let = be the character group of I'. This is an abelian group, whose group opera-
tion we will write additively. Hence, 0 is the character of the trivial one-dimensional
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representation, and if an irreducible representation affords the character £, then
—¢£ is the character of the dual representation.

If T acts on an algebra B by automorphisms, it is well-known that B = @565 B¢
is a =-grading, where Be is the isotypic component of type £. It follows that 9t
can be written as

m= @geE 9 ® A, (4.1)

since g = P, g¢ and A = P, A¢ are E-graded and (g¢ @ ANt =0if & # €.
The decomposition (4.1) is an algebra Z-grading.

—

If V is any =-graded vector space and H C Z is any subset, we define

Vi = ®§€H Ve.

If B is a =-graded algebra and V' is a E-graded B-module, i.e., B, - Ve C V¢, for
all 7,& € =, then it is clear that if H is a subgroup of =, then By is a subalgebra
of B and

V= @weE/H Vi
is a decomposition of By-modules.
Lemma 4.1. Suppose an abelian group A acts on a set S and let k[A] =@ ;- A kes

be the group algebra of A, with multiplication ese,, = estu, 0,0 € A. Furthermore,
suppose that

(a) I=Dscnls is a A-graded Lie algebra,
(b) U =@P,cqUs is an [-module with (s - Us C Us.s,
(c) V=B,cq Vs is a k[A]-module with es - Vi C V..

Then | acts on W = @, cgUs @ Vs by
Is - (us @vs) = (Is - us) @ (es - vs) (4.2)

forls € ls, us € Us, and vy € V. For every A-orbit O C S the subspace Wo =
D.co Us ® V; is l-invariant. If A acts freely on O = A - s then as [-modules

Wo = (B0 Us) ® Vs, (4.3)

where on the right-hand side [ acts only on the first factor.

Proof. That (4.2) defines an action of [ is easily checked and that Wy is an I-
submodule is obvious. For the proof of the last claim we can use the l-module
isomorphism 1 : Wo — @, Us ® Vi, given by 9(us ® v5) = us ® e_x - vs for
s=A-Sp. O

For x € X,at, let

I'={acA:aly)=0Vyel a}=cr,my,

where we recall that m,, is the maximal ideal corresponding to the rational point
y € X. Clearly I is a I'-invariant ideal of A. Also define

5, = {€ €3 &lr, =0} 2E(I/T,).
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Lemma 4.2. We have an isomorphism of algebras

A/T = @eea (A1) = K[, (4.4)
In particular
5 ¢ = = Af = Ig, (45)
and so
FCCZ{l} <~ A&#I&VEEE. (46)

Proof. It is easy to see that { ¢ =, = A¢ = I. This implies the first equality
n (4.4). Since A/I is the coordinate ring of the finite set of points I' -  on which
I'/T, acts simply transitively, it follows that for each £ € Z, there is a unique
function (more precisely, coset of functions) in (A/I)¢ taking the value one at .
The isomorphism in (4.4) is then given by identifying this function with e¢. From
this isomorphism, (4.5) follows, which in turn implies (4.6). O

Remark 4.3. Lemma 4.2 continues to hold for z € maxSpec A, without the as-
sumption that A is finitely generated. One merely replaces k by A/m, everywhere
in the proof.

We say that I" acts freely on an affine scheme X = Spec A if it acts freely on
maxSpec A. This is the case, for instance, for the multiloop algebras (Example 1.4).

Lemma 4.4. Suppose a finite abelian group I' acts on a unital associative com-
mutative k-algebra A (and hence on X = Spec A) by automorphisms. Let A =
@565 A¢ be the associated grading on A, where = is the character group of I'.
Then the following conditions are equivalent:

(a) T acts freely on X,

(b) AcA_ 5fA0f0rall£€u,

(c) A Ag Ay for all 7,6 € E (i.e., the grading on A is strong),

(d) TT-, = ([")sp ¢ foralln > 1, &,...,¢ € E, and any I'-invariant
ldeal I of A.

Proof. We will use Lemma 4.2 without the assumption that A is finitely generated
(see Remark 4.3).

(a)=(b): Assume I acts freely on X. Towards a contradiction, suppose A¢A_¢
# Ag for some £ € E. Let J = AA¢ be the ideal generated by A¢. Since Ag is
I-invariant, J is a -invariant ideal. Note that Jo = A¢A_¢ # Ap and so J # A.
Thus J is contained in some maximal ideal m,. Since J is I'-invariant, we have
that J is contained in I = (), ¢y, my. So A¢ = J¢ C Ie. Thus I¢ = A¢. By (4.6)
we have T';, # {1}, which contradicts the fact that T" acts freely on X.

(b)=(a): Assume I' does not act freely on X. Then there exists a point © € Xt
such that I'y # {1}. Let I = (), cp,my. By (4.5), we have A¢ = I¢ for all
& € E\ E;. Choose some ¢ € E\ E; (which is possible since I'; # {1}). Then
AeA_e =T A_ C Iy # Ao.

(b)=-(c): Assume (b) is true. Fix 7, € Z. It is clear that A, As C A4, for all
7,€. By (b), we can write

1=37"0 figi, fi€Ag, i € Ae.
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Then, for all p € A;4¢, we have

p=p (i figi) = 21 (pfi)gi € A Ae.

(¢)=>(d): Suppose (c) holds. Let I be a I'-invariant ideal of A and &, ...,&, € =.
Set £ = > &;. It is clear that [[ I, C (I"™)¢ and so it suffices to prove the reverse
inclusion. Since (I™)¢ is the sum of all ]\, I, for which }_ 7, = &, it is enough to
show that []" , I, C [[i-, I, for all 7, ..., 7, € E satisfying Y 7, = £. Tt follows
from (c) that [[}" ; A¢,—r, = Ag. Thus we can write

122;11fi,1"'fi,n7 fi,j eA&j—Tj7 i:17"'7m7 ]:1,,7'L

Then for any p; € I,, 1 <i < n, we have

H?:l bi = (Z:il fi,l T fi,n) H?:l pi = Z;il(plfi,l) T (pnfi,n) € H?:l Ie,.

It is obvious that (d) = (c) and (c) = (b) and so the proof is complete. O

Now

fo={acg@A:a(x) =0} = (@) = Peez 0 @ ¢,
M/ R 2= Deez (96 ® Ae/I-¢) = Deez, 9 © (A/T)—, (4.7)
F = @eez (Ve where () = ¥, cclgr, e @ I, L.
The ideal I? is T-invariant since I is. We define
Q= (00 1°)" = @ee=Qe,  where Q¢ = ge @ (%),
which is a E-graded ideal of 9 containing &,. Thus
R, 99, I/, IM.

Now,

is a E;-graded Lie algebra. We know that g* = /&, acts on £, b, an action
induced by the adjoint action of 9t on the ideal &;. Since Q. is an ideal of I,
the action of 9T on R ap leaves Q. /KR, invariant, so that /K, also acts on the
quotient

ﬁm,ab/QI/R; &R /Qn & @gea 9 ® (I/17%)—¢. (4.9)

The action of g* on K, /Q, is given in terms of the elements e, used in the iso-
morphism (4.4) as follows:

L - (ug @ v_g) = [l ug] @ ey - Vg € Grie @ (I/1°)_(r1), (4.10)

for I, € g%, ue € ge and v_¢ € (I/I%)_¢.
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Lemma 4.5 (Decomposition of the g*-module K;/Q,, I" abelian). We have a de-
composition of g”-modules

ﬁw/gz = @weE/Ez (ﬁz/gz)wv
and
(Re/Qu)w = 00 ® (1/12)—%
as g*-modules, where a,, is any representative of the coset w € Z/=,, and where
g% acts trivially on each (I/1%)_,,. In particular

(Re/Qa)z, = g" @ (I/1%)o
as g*-modules. For every g*-module V we have
Homge (R, /Q,, V) = @weE/Ez Homg= (g, V) @ (I/1%)*,_. (4.11)
Proof. The first part is a direct consequence of Lemma 4.1. Then (4.11) follows
immediately. O

Remark 4.6. Since the space I/I? is finite-dimensional, one could replace (I/1?)*,,
by (I/I?)_q, in (4.11). We choose to keep the dual because of the geometric
interpretation as the tangent space (as opposed to the cotangent space).

The exact sequence

0— Q. /R, — Ruap = £e/Qs — 0
of g”-modules gives rise to the exact sequence of g”-modules
0 — Homge= (8:/Q4, V) — Homg= (R b, V) — Homg= (Q, /8., V) (4.12)
— Extr. (Re/Qe, V) = - '
for any g*-module V.

Proposition 4.7 (T abelian). Let V; and Va be irreducible finite-dimensional eva-
luation representations supported on the orbit I' - x, x € X;at, with g* semisimple.
Then, with the above notation,

Extin (Vi, V2) 2 Homg: (Q, /8., Vi @ Va)
& (@wea/am Homg= (g, V1" ® V2) ® (I/[Q)taw)a
where ay, s any representative of the coset w € Z/=,.

Proof. We abbreviate V = V;* @ V4. Recall from Theorem 3.9 that Extgy (V3, Va)
Homg= (85 ab, V). The claim therefore follows from (4.11) and the exact sequence
(4.12) as soon as we show that Extém (R/Q4, V) = 0. To prove this, we use the
g*-module decomposition of &,/Q, established in Lemma 4.5 and the fact that
Ext commutes with finite sums ([Wei9%4, Prop. 3.3.4]):

Extéz (Re/Q.,V) & @UJEE/EI Extéz (9o @ (I/1%)_a,, V).

The g*-module g, ® (I/I1?)_,, is a direct sum of submodules Mg = g,, for 3 in
some set B. Hence

Extle (g ® (I/1%)—a,, V) 2 @pep Bxtye (g, V) = 0

since Extém (gw, V) = 0 by semisimplicity of g*. O

(4.13)
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Corollary 4.8 (T abelian, I';, trivial). Suppose g is semisimple and x € Xyat is
such that Ty is trivial. Then for any two evaluation modules Vi, Vo with support
contained in I' - x we have

Extyy (V1, V2) = Homg (2 /R, Vi' @ Va) & (Homg (9, V7" @ V2) ® (I/17)5) -
Proof. This is immediate from (4.13) since g* =gand 2, =2. O

The following result generalizes [Kod10, Prop. 3.1], where the case of a trivial
group I is considered.

Proposition 4.9 (I" abelian and acting freely on X). Suppose ' acts freely on X
and g is semisimple. Then for any two evaluation modules V1, Vo at x we have

Exctan (V1, V) = Homg(g, V" @ V2) ® (my/m3)*.

Proof. Let I =)
Then

(R)e = (X lon, 0ea]) @ (I7) e = ge ® (I?) ¢ = Q¢, forallé €=
By Corollary 4.8, we then have
Exctan (V1, V2) = Homg(g, Vi ® Vo) @ (I/1%)5.

yer.e My By Lemma 4.4, we have I I¢ = (I?),1¢ for all 7,£ € E.

Since the group I' acts freely on X, we have

/120 = (Nyerae ™/ Nyera™3) = (Byer o my/m?) = m,/m?
and the result follows. O

Remark 4.10. The proof of Proposition 4.9 shows that R, = 9, when g is semisim-
ple and I I¢ = (I?),4¢ for all 7,& € Z, where I = (,cp, my. Another condition
ensuring that R, = Q, is that the grading on g be strong, that is, [g-, ge] = gr¢
for all 7,& € =. Indeed, if this is the case, then

(Re)e =0 ® (Z# I—;Ju—g) =g ®(I%)_¢ =9 forall€cE.
Note that, since this condition is independent of the point z, it implies that R, =
0, for all x € X,a.

Example 4.11. To show that in general £, C Q, we use Example 3.4. For any
point x € X;,t we have

R, = (80,65 @ (I§ + I7)) @ (90,06 @ I7) @ (91 @ Lo 1),
Qe = (90,55 ® (15 + 112)) S (go,ab ® (I3 + 112)) @ (g1 ® Ipl1), and so
Q. /8, = gob ® (I§ + 1I7) /17

Hence
N, =8 <= goap=00r I CI} < N, = Ky,

where the last equivalence follows from Example 3.4. We note that go ., 7 0 and
I2 ¢ I? in case 9 is the Onsager algebra and = # +1. Indeed, in the notation of
Section 6.3, set a =z + 2~ 1. Then Iy = (2 — a)Ap and I = (z — a)yAy. Hence

It =(z—a)*yAo = (z—a)*(z—2)(z +2)A0 C (z — a)* Ay = I§.
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5. Block decompositions

In this section we investigate the block decomposition of the category of finite-
dimensional representations of an equivariant map algebra. We first recall some
basic facts about block decompositions in general.

Let C be an abelian category in which every object has finite length (for instance,
the category F of finite-dimensional representations of an equivariant map algebra
is such a category). Then it is well known that every object can be written uniquely
(up to isomorphism) as a direct sum of indecomposable objects.

Definition 5.1 (Linked). Two indecomposable objects V; and Va are linked if
there is no decomposition C = C; & Cs as a sum of two abelian subcategories, such
that Vi € Cq, Vo € Cs.

It is easy to see that linkage is an equivalence relation.

Proposition 5.2. Let B be the set of equivalence classes of linked indecomposable
objects. For a € B, let C,, be the full subcategory of C consisting of direct sums of
objects from c. Then C = @5 Ca and this is the unique decomposition of C into
a sum of indecomposable abelian subcategories.

Definition 5.3 (Block decomposition). In the setting of Proposition 5.2, the sub-
categories C,, are called the blocks of C and the decomposition C = @a C. is called
the block decomposition of C.

By the Jordan—Holder Theorem, one can uniquely specify the irreducible objects
(with multiplicity) which occur as constituents of any X € C.

Definition 5.4 (Ext-blocks). On the set of irreducible objects of C, consider the
smallest equivalence relation such that two irreducible objects V, V' are equivalent
whenever they are isomorphic or Exté(V, V') # 0. We call the equivalence classes
for this equivalence relation ezt-blocks and let Bex(C) denote the set of ext-blocks.
For b € Bext(C), let Cp denote the full subcategory of C whose objects are precisely
those objects in C whose constituents all lie in b.

For any object M in C and ext-block b, let M}, denote the sum of all submodules
of M contained in Cp. Note that M, is the largest submodule with this property.

Lemma 5.5. For any objects M, M’ in C, we have

(a) M = @beBext(C) My, and
(b) }IOI?[lgjz(]\f7 M’) = @besext(c) HOIngm(]\fb7 Mé)

Proof. This is proven in [Jan03, p. I1.7.1] in the setting of representations of al-
gebraic groups. The proof there immediately translates to the current setting.
O

Corollary 5.6. The Cpy, b € Bext(C), are the blocks of C.

Proposition 5.7. Let Ly, Lo be Lie algebras. We denote by Fi,F2 and F the
category of finite-dimensional representations of L1, Ly and L = Ly H Lo, respec-
tively. Let B;, i = 1,2, and B be the blocks of the categories F; and F. The map,
which assigns to irreducible L;-modules V; in F; the block of V1 @ Vo in F, induces
a bijection between By x By and B.
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Proof. To describe B it suffices by Corollary 5.6 to describe the ext-blocks of F.
That they are given as stated is immediate from Proposition 2.7. 0O

Example 5.8. We can apply Proposition 5.7 to an equivariant map algebra 9t =
M (X, g)"'. Recall the decomposition (3.4). The finite-dimensional irreducible rep-
resentations of the abelian Lie algebra M (X, g.,)! are all one-dimensional. Corol-
lary 2.5 then shows that the blocks are naturally enumerated by (M (X, gap)")*,
and so by Proposition 5.7 there is a natural bijection

B(M(X,g)") 2 B(M(X,gs)") x (M(X,gab)")", (5.1)

where B(M(X,g)") and B(M(X,gs)") denote the blocks of the categories of
finite-dimensional M (X, g)'-modules and M (X, gss)"-modules, respectively. The
decomposition (3.4) is also helpful in deciding if 9t is extension-local, as defined
below.

Definition 5.9 (Category Feval and spectral characters). Let Joya) be the full sub-
category of F consisting of modules whose constituents are evaluation modules.
For x € Xi;at, we define F, to be the full subcategory of Feva whose objects are
those modules whose constituents are (finite-dimensional) evaluation modules with
support contained in I - x.

Let B, be the set of blocks of the category F,. For v € I', the categories F,
and F,., are the same and so B, = B,.,. We can thus define an action of I' on
Beval 1= leeXrat B, by letting v : By — B.., v € ', be the identification. If x is
a map from X .4 to Beval, mapping x € X;,¢ to an element of B,, we define the
support of x to be

SUPPX = {I € Xrap : X(I) 7é O}a

where here 0 denotes the block of the trivial module. Let By, be the set of finitely
supported equivariant maps from X;.t to Beyal, mapping z € X, to an element
of B,. Adopting terminology from [CMO04] and [Kod10] for the special case where
M =g® A and g is semisimple, we call elements of Beyay spectral characters.

For ¢ € &, define xy € Beval by letting xy(x), £ € X,as, be the block containing
the isomorphism class ¥(z). If V' is an object of Feya such that there exists x €
Beval With the property that x, = x for every (isomorphism class of) irreducible
constituent evy of V, then we say V has spectral character x. For x € Beval, let
FX  be the full subcategory of Feya) containing precisely the objects with spectral

eval
character x.

Lemma 5.10. Two irreducible evaluation modules in Feyal are in the same ext-
block if and only if they have the same spectral character.

Proof. We first prove that any two irreducible evaluation modules with the same
spectral character lie in the same ext-block. Let 9,9’ € £ be such that x, = xu,
and let V, V'’ be evaluation representations corresponding to ,v’, respectively.
Write V' = @, cx Vo and V' = @, Vi for some x € X, (allowing V, or V
to be trivial if necessary). We prove the result by induction on the number n of
points & € Supp ¢ U Supp ¢’ where ¢(x) # ¢'(x). If n =0, then V 2 V' and the
result is clear. Suppose n > 1 and choose a point y € Supp ¥ U Supp ¢’ such that
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Y(y) # ¢¥'(y). Thus V, 2 V. Since xy = Xy, we know that V,, and V] lie in the
same ext-block of F,. Thus there exists a sequence
_ 170 1 0 _ ys!
Vy =V, V...V, =V,
of irreducible objects of F, such that BExtgy (Vi VA # 0 or
Extglm(VZjJrl,V;) £0foralli=0,....,4—1. Fori=0,...,¢, define V? = VZ ®
®.ex\ () Ve By Theorem 3.7, we have Extay (V7, VI+1) # 0 or Exten (V! V) #
0foralli=0,...,0—1. Thus V = V? and V' lie in the same block. If 1" is the
element of £ corresponding to the evaluation representation V!, we have that 1"
and ¢’ differ at n — 1 points. By the inductive hypothesis, V! and V' lie in the
same block. Hence V' and V” lie in the same block, completing the inductive step.
Next we prove that any two irreducible evaluation modules in the same ext-
block have the same spectral character. Let V,V’ be irreducible modules in the
same ext-block corresponding to 1, v’ € &, respectively. It suffices to consider the
case where V 2¢ V' and Extgy(V,V’) # 0. By Theorem 3.7, ¢ and ¢ differ on
exactly one orbit I' - zg and
Extiy (Vao, V7 ) 22 Extan (V, V') # 0.

oy Y xg

Thus V;, and V; lie in the same block of F,, and xy = xy,. O

Proposition 5.11 (Block decomposition of Feyar). The FX

eval? X € DBeval, are the
blocks of Feval. Thus Feval = P FX_is the block decomposition of Fou.

XEDBeval ¥ eva

Proof. This follows immediately from Corollary 5.6 and Lemma 5.10. O

Remark 5.12. Suppose g7 is semisimple for some = € X,,; and fix a triangular de-
composition and a set of simple roots of g*. Then the irreducible finite-dimensional
modules of g* are parameterized (according to their highest weight) by the set P,
of dominant weights of g®. Thus B, is always isomorphic to some quotient P, of
P with respect to the equivalence relation defining ext-blocks. In many specific
examples of equivariant map algebras, we can give a precise description of this
quotient (see Section 6).

Even though B, = B,.; for all z € X,,; and v € I, the isomorphism B, = Pf
depends on z. It is well known that for a semisimple Lie algebra s, Auts =
Int s x Out s, where Int s is the group of inner automorphisms of s and Out s is the
group of diagram automorphisms of s. The diagram automorphisms act naturally
on P, the set of dominant weights of 5. If p is an irreducible representation of s of
highest weight A € P and 7 is an automorphism of s, then po~~1! is the irreducible
representation of s of highest weight vyout - A, where yout is the outer part of the
automorphism ~ (see [Bou75, VIII, §7.2, Rem. 1]). So the group I' acts naturally
on each P via the quotient Auts — Outs. In the case that I' acts freely on X
(so that g* = g for all z € X,a), g is semisimple, and Pt := Pf = P;‘ for all
,y € Xiat, the set Beya can then be identified with the set of finitely-supported
equivariant maps from X to PT. For example, we will see that this is the case
when T is abelian (and acts freely on X), in which case P* = P/Q. In particular,
this holds for untwisted map algebras and multiloop algebras (see Section 6).
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Definition 5.13 (Extension-local). We say an equivariant map algebra 9 is ez-
tension-local if Extyy(V,kx) = 0 whenever V is an irreducible finite-dimensional
evaluation representation and k) is any one-dimensional representation that is
not an evaluation representation. Equivalently, by (2.4), 91 is extension-local if
H' (9, V @ ky) = 0 for V and ky as above.

Remark 5.14. If all irreducible finite-dimensional representations of 9 are evalua-
tion representations, then 97 is extension-local. This is the case, for example, if 9t
is perfect and in all of the main examples of equivariant map algebras, including
untwisted map algebras, multiloop algebras, and generalized Onsager algebras (see
[NSS12] and Section 6). It is also immediate from Corollary 2.5 that an abelian
equivariant map algebra 90 is extension-local. In fact, the authors are not aware
of any equivariant map algebras that are not extension-local.

Lemma 5.15. Let 9t = M HBMs be a direct product of equivariant map algebras,
either of the form M; = M(X;,9)" where X = X U Xy is a disjoint union of
[-invariant affine schemes, or of the form M; = M (X, g;)" where g = g1 @ gz is a
direct product of I'-invariant ideals g;. Then 9N is extension-local if and only if both
My and My are so. In particular, an equivariant map algebra M is extension-local
if and only if M (X, gss)' is extension-local.

Proof. Suppose that M, and My are extension-local, and let V' be an irreducible
finite-dimensional evaluation representation and k) any one-dimensional represen-
tation of M. Obviously, kx = ky, @k, for A; = A|on,. Similarly, it follows from our
assumptions on the M; that V =2 V3 ® Vo where V;, ¢ = 1,2, are evaluation repre-
sentations of ;, respectively. Indeed, in the first case we decompose x = x; LI x5
with x; = xN X; and get g* = g** Hg*2. In the second case, we get g* = gF Hg3.
Hence, by Proposition 2.7(b),
Extin(V, kx) (V) ® kay )™ @ Extay, (Va, ka,))
@ (Extoy, (Vi,kx) @ (Vo @ kay)™).

If Extiy (V. ky) # 0, say (Vi @ ka, )™ @ Extay, (Va, ky,) # 0, then Vi = ky, is an
evaluation representation by Lemma 2.2. Since Extyy, (Va, ka,) # 0, ky, is also an
evaluation representation since 915 is extension-local. But then so is k).

Conversely, assume that 9t is extension-local. By symmetry it is enough to
prove that 2; is also extension-local. Let V; be an evaluation representation
and ky, a one-dimensional representation of 9y that is not an evaluation repre-
sentation. Put Vo = ko and A2 = 0. Then ky = k), ® ky, is not an evaluati-
on representation of M, while V = V; @ V, is so. Hence Extyy(V,ky) = 0
since 9 is extension-local. But then Exty (V1,ky,) = 0 follows from (5.2) since
(V5 @ kag )™ = k% = ko £ 0.

The remaining assertion is immediate from the fact that the abelian algebra
IM(X, gab)' is extension-local. O

(5.2)

Note that under the identification of 9%, with one-dimensional representations

of M, vector addition in I, corresponds to the tensor product of representa-

tions. It follows that the space of one-dimensional evaluation representations is a

vector subspace of 97, which we will denote by 97, ;. We fix a vector space

* * * *
complement M7y | ... S0 that M =My &M

ab,noneval*
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Remark 5.16. Tf the set X = {x € X, : [g%, g%] # g*} is finite, there is a canonical
choice of complement. Namely, fix a set x of points of X,,; containing exactly
one point from each T-orbit in X. Then, by [NSS12, (5.8)], we have 9, =
SUt;b,evalGaglnzb,noneval’ where 9jt:;b,evad = (@zéx gx/[gx’ gx])* and SD,t;b,noneval is the

dual of the kernel of the canonical map /[, M] — P, ., 9%/[g", g"] induced
by evaluation at x.

Definition 5.17 (Spectral characters). Let B = Beyal X My | onevar- Using Re-
mark 1.2(b), every irreducible finite-dimensional representation of 9 can be writ-
ten as Voyal ® ky for Voyal € Feval (unique up to isomorphism and corresponding
to some ¢ € £) and unique A € M, .. Note that this factorization depends
on the choice of the complement szl;’noneval. For such a representation, we define
Xox = (Xp,A) € B. If V is an object of F such that there exists x € B with the
property that x, » = x for every (isomorphism class of) irreducible constituent
evy ®A of V', we say V has spectral character x. Under the natural embedding of
Beval into B via x — (x,0), this definition of spectral character restricts to the
previous one (Definition 5.9). For x € 9B, let FX be the full subcategory of F

containing precisely the objects with spectral character y.

We note that the decomposition B = Beyal X My}, | opevar Of Definition 5.17 is
different from the one in (5.1).

Lemma 5.18. If M is extension-local, then two irreducible modules in F are in
the same ext-block if and only if they have the same spectral character.

Proof. We first prove that any two irreducible modules with the same spectral
character lie in the same ext-block. Suppose V ® kj and V' ® ky, have the same
spectral character for some V, V' € Feva and A, XN € D5, - It follows from
Definition 5.17 that V and V' also have the same spectral character and that \ =
A, Thus, by Lemma 5.10, V and V' are in the same ext-block of Feya. Therefore,
there exists a sequence V = VO V1 ... V! = V' such that Extilm(Vi, Vit £ 0
or Extgy (ViF1, V) #£ 0 for 0 < i < £. Then, for 0 <i < ¢,

Exton (VE @ ky, VT @ ky) = Extan (VL VIH) £ 0, or
Exton (VI @ kv, V@ ky) = Extan (VL V) £ 0.

Thus V ® ky and V' ® k) lie in the same ext-block.
Next we prove that any two irreducible modules in the same ext-block have

the same spectral character. Let V ® k) and V' ® k) be two irreducible modu-
les in the same ext-block with V, V' € Foya and A\, N € IM* Then there

ab,noneval*
exist sequences V = VO VI .. V! =V'in Fopa and A = X0, XL, ... N = X in
M nonevar SUCh that Extan (VI@kye, VI ®@kyier) # 0 or Exton (VI @kyien, Vi@
Eyi) # 0 for 0 < i < £. Thus Exty (Vi @ (V) kyisi_xi) # 0 or Extgy (VT @
(V)* kyi_yit1) # 0 for 0 < i < £. Since M is extension-local, this implies that
kxi+1_xi is an evaluation module for each 0 < i < £. But then A"*' =\ € M7,
and so X*t1 — \* = 0. Therefore A = A\ = Al = ... = X = X. This in turn implies
that Extgy (V?, Vit1) #£ 0 or Extgy (Vi1 V%) # 0 for 0 < i < £. Therefore V and
V' are in the same ext-block of Fe.a and so have the same spectral character by
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Lemma 5.10. It follows that V ® ky and V' ® k), have the same spectral character.
O

Theorem 5.19 (Block decomposition of F). For an extension-local equivariant
map algebra M, the FX, x € Bx, are the blocks of F. Thus F = @XE,BX FX
is the block decomposition of F.

Proof. This follows immediately from Corollary 5.6 and Lemma 5.18. O

6. Applications

In this section, we apply our results on extensions and block decompositions
to various specific examples of equivariant map algebras which have a prominent
place in the literature.

6.1. Free abelian group actions and multiloop algebras

Suppose that the group I' is abelian and acts freely on X. As noted in Section 4,
we have a decomposition

M= @gea 9 @ Ag,
where = is the character group of I'. Since the action of I' must preserve g, and
gss, we also have decompositions g., = ED&E gab,e and gss = @565 ¥ss,¢. Using
Lemma 4.4, we have
m' = @g,fez[gﬁvgf] ®A ¢ r= @563 (Gafea[grag&r]) ®A_¢
= @565 Pss,e ® A—& = (gss & A)F = M(X7 gss)r~

Therefore
Map, = Piecz Gabe @ A—g = (gab @ A)T = M(X, gap)"
We thus have
M = M H My,

where M’ is perfect (i.e., M’ = M), as is easily seen by computations similar to
the above.

Lemma 6.1. If 9 is an equivariant map algebra with g semisimple and T' abelian
and acting freely on X, then M is perfect. Thus M has no nontrivial one-
dimensional representations and all irreducible finite-dimensional representations
of M are evaluation representations.

Proof. The first statement follows immediately from the above discussion. The
second is then a result of Proposition 1.1. [

Corollary 6.2. If T" is abelian and acts freely on X, then M is extension-local.
Proof. This follows easily from Lemmas 5.15 and Lemma 6.1. [J

By the above discussion and Proposition 3.11, to describe the extensions be-
tween irreducibles, it suffices to consider the case where g is semisimple, and hence
M is perfect.
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Proposition 6.3 (Extensions for I" abelian and acting freely on X). Suppose g
is semisimple and V,V' are irreducible finite-dimensional representations of 9.
Write V = Q) cx Ve and V' = @, o, Vil for some x € X, and evaluation represen-
tations V, V. at © € x. Then we have the following description of the extensions
of V.by V',

(a) If V, 2 V! for more than one x € x, then Extay, (V,V') = 0.

(b) If Voo 2V, for some xo € X, and V, =V, for all x € x\ {z0}, then

Extan (V, V') = Homyg(g, Vo @V, ) ® (Mg, /mio)*.
(¢) If V=V, then
Extin(V, V') = @, Homg(g, V; ® V) @ (my/m2)*.

Proof. Parts (a) and (b) follow from Theorem 3.7 and Proposition 4.9. Part (c) is a
consequence of Proposition 4.9 and Theorem 3.7(c), where we note that 9., = 0.
]

Because of their prominence in the literature, we state for reference the special
case where 9 is a multiloop algebra.

Corollary 6.4 (Extensions for multiloop algebras). Suppose
M= (g,01,...,0n, M1,...,My)

s a multiloop algebra as in Example 1.4, and V,V' are irreducible finite-dimensio-
nal representations of M. Write V = Q ey Vo, V' = Q,cx Vi for some x € X,

and (possibly trivial) evaluation representations Vy, V) at x € x.

(a) If V, 2 V! for more than one x € x, then Extay, (V,V') = 0.
(b) If Voo 2V, for some g € X, and V, =V, for all x € x\ {z0}, then

Extgy (V, V') 2 Homg (g, V), @ V) @ k"
(¢) If V=V, then

Exton(V,V) 2 @, ., Homg(g, V; @ V) @ k™.

TEX

Proof. In the case of the multiloop algebra, we have (m,/m2)* = k" for all x €
Xyat- The result then follows from Proposition 6.3. [

Remark 6.5 (Extensions for untwisted map algebras). Note that Proposition 6.3
also describes the extensions for untwisted map algebras since for these the group
I' = {1} clearly acts freely on X. In this case, Proposition 6.3 specializes to
[Kod10, Thm. 3.6] (see also [CGO05, §3.8]).

Proposition 6.6 (Block decompositions for I" abelian and acting freely on X).
Suppose that for all € Xyar, the tangent space (m,/m2)* # 0. For example,
assume that X is an irreducible algebraic variety of positive dimension. Then the
blocks of 9 are naturally enumerated by B> x (M(X7 gab)r)*, where B is the set
of spectral characters for M (X, gs)*, which can be identified with the set of finitely-
supported equivariant maps X,ar — P/Q (see Remark 5.12 for a description of the
action of T’ on P/Q).
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Proof. By Example 5.8, it suffices to consider the case where g is semisimple. Then
Proposition 4.9 implies that for V, V"’ irreducible evaluation modules at z € X4,
we have

Extyn (V, V') #0 <= Homg(g® V,V’) # 0.

Thus, the conditions for a non-vanishing Ext-group are the same as for the un-
twisted map algebra. The fact that B, = P/Q then follows from [CM04, Prop. 1.2]
(or from Corollary A.4 with U = g, hence Span, wtU = @). The remainder of
the statement is an immediate consequence of Theorem 5.19 (or Proposition 5.11)
and the fact that 901 is perfect and hence has no nontrivial one-dimensional repre-
sentations. [

Corollary 6.7 (Blocks for multiloop algebras). The blocks of the category F of
finite-dimensional representations of the multiloop algebra

M(g,01,...,0n,m1,...,my),

g semisimple, are naturally enumerated by finitely-supported equivariant maps from

X to P/Q.
Proof. This follows immediately from Proposition 6.6 since g is semisimple. O

Remark 6.8. A special case of multiloop algebras are the untwisted and twisted
loop algebras. For them, block decompositions were described in [CM04] and
[Sen10], respectively.

Corollary 6.9 (Blocks for untwisted map algebras). Suppose that,  for all
r € Xyap, the tangent space (my/m2)* # 0. For ezample, assume that X is an
wrreducible algebraic variety of positive dimension. Then the blocks of the category
F of finite-dimensional representations of an untwisted map algebra g® A are nat-
urally enumerated by B> X (gap, @ A)* where B is the set of finitely-supported
maps from X to P/Q.

Proof. This is an immediate consequence of Proposition 6.6. [

6.2. Order two groups

With an aim towards describing extensions and block decompositions for the gen-
eralized Onsager algebras, we consider in this subsection the case where the group
T is of order two (see Example 1.5).

Let M = M(X,g)" be an equivariant map algebra with I' = {1,0} a group
of order two, and g reductive. By Proposition 3.11, the extensions between ir-
reducible finite-dimensional representations of )1 are determined by extensions
between representations of M (X, gss)'. By Example 5.8, the same is true for the
blocks of F.

A simple ideal s of g is either invariant under the action of ¢ or is mapped onto
another simple ideal. In the latter case, (s @ 0(s),0) = (s Bs, ex) as algebras with
involutions, where ex is the exchange involution of sHs defined by ex(u, v) = (v, u).
Therefore, M is a direct product of equivariant map algebras of type M (X, )" with
[ simple or with [ = s Hs and o acting by ex. In view of Propositions 2.7 and 5.7
it is therefore enough to consider these two cases separately.
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Lemma 6.10. Suppose M = M (X, g)" where g = s B s for a simple Lie algebra
s and o acting on g by the exchange involution. Then I is perfect, and for two
evaluation representations V, V' with support in T -z, we have

Homgy(g, V'@ V') ® (I1/1?)s, =¢ XL,
Hom, (s, V* @ V') @ (I/1%)*, =€ X[

rat’

Extayn (V, V') = {

where I = {a € A:a(l-z) =0} and XL, = {x € Xya : 0 -7 = x} is the set of
I-fixed points of X at.

Proof. Tt is easy to see that g = go @ g1 is a strong grading. Thus 9 is perfect
and, by Remark 4.10, &, = Q, for all © € X,,;. The formula for the extensions
then follows from Proposition 4.7. O

Lemma 6.11. Suppose M = M (X, g)" where g = s Bs for a simple Lie algebra
s and o acting on g by the exchange involution. Furthermore, suppose that for
all ¥ € X,a4, the tangent space (m,/m2)* # 0. Then the set of blocks B, of the
category Fy is

~ ) P/Q, x ¢ X,
v Po/Qo, IEXrl;t,

where Py and Qg are the weight and root lattices of s, respectively. Furthermore,
the blocks of F are naturally enumerated by the set of finitely supported equivariant
maps

Xiat = (P/Q) U (Po/Qo)
such that x is mapped to P/Q if x ¢ XL and to (Py/Qo) if v € XL,.

Proof. Let I = {a € A:a(l-2) =0}. Ifz € XL, then I = m, and I/I? =

rat’
m,/m2 # 0, hence (I/I?)* # 0. On the other hand, if + ¢ XL, then I =
m; Nmy., and I/1? =2 (m,/m2) & (m,.,/m2 ), with o acting by interchanging
the two summands. Thus (I/1?)§ # 0. The description of B, then follows from
Lemma 6.10 and [CM04, Prop. 1.2] (or Corollary A.4). Since 9 is perfect (hence
extension-local) by Lemma 6.10, the description of the blocks is a consequence of

Theorem 5.19 (or Proposition 5.11). O

We now turn our attention to the remaining case where g is simple. Note that
if go is semisimple, one easily sees that 9 is perfect. For a point z € X.u, let
mz = m; N Ay denote the maximal ideal of Ay corresponding to the image T of x
in the quotient X //T' = Spec Ay = Spec AT

Lemma 6.12. If g is simple and T" is of order two, then M is extension-local.

Proof. Suppose A is a one-dimensional representation that is not an evaluation
representation. We have

M= (go ® Ao) @ (g1 ® A1), M = (90,58 ® Ao) D (Go,ab @ AT) ® (g1 ® A1).

Therefore, since A is nontrivial, we must have go.ap # 0 (so dim gg ap = 1) and Ky
must be of the form

£ = (90,5s @ Ao) ® (90,ab @ U) ® (g1 ® Ar)
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for some subspace U of codimension one in A such that A2 C U C Ag. Let V

be an evaluation representation, with support contained in I" - x for some x € X,
and let I = I. Then

Ax = (g0®10)®(g1®11), K= R\NKx = (0,5s®10) D (g0,ab @UNI) B (g1 @ 11).
Thus

R = (go,ss @ (I + 17)) & (90,0b @ I7) & ([90,s5 91] ® ToI1 + g1 ® (U N Io)11)
O (goss ® ([g + [12)) ® (g0,ab ® 112) ® (g1 ®JI),

where J = Ag(U N Ip) is the ideal of Ay generated by U NI and we have used the
fact that [go,ab, 91] = g1 (see Example 1.5(c)).

Since k) is not an evaluation representation, we have Rx ¢ K). Thus we can
choose z € goab @ lo such that A\(z) = 1. Then z acts as the identity on V' ® k.
From the above we see that, for m > 1,

zmﬁgzmﬁxggl(glgnll,

where 2™ -« denotes z - (z-...(z-«@)...), with z acting m times.

For a subset B C Ap, let Z(B) = {Z € maxSpecA4y : f(z) = 0V f € B}
denote the zero set of B. So Z(Ip) = X, where X = {Z : € x}. We claim that
Z(U N 1Iy) =x. Tt is clear that Z(U N Iy) 2 Z(Iy), and so it remains to show the
reverse inclusion. Note first that Iy = (.4 mz. Suppose there exists § € Z(UNIy)
such that § ¢ %. Since the quotient map X — XTI is open and surjective, g is
the image in X /T of some point y € Xyat. Thus

fxugyy = (B0 @ 1) @ (91 ® (It Nmy)), where ['=my ][5 ma.

Because ky is not an evaluation representation, fxugyy € & and so I’ Z U. Fix
a nonzero p € I’ \ U. Since U has codimension one in Ay, we have U @ kp = Ag.
Choose f € Ag such that f(z) =0 for all z € x and f(y) = 1. Then f = fy + ap
for some fy € U and a € k. It follows that fy(z) =0 for all z € x and fy(y) = 1.
Hence fy e UNIy and y ¢ Z(U N Iy). This contradiction proves our claim.

Since I is a radical ideal, it follows from [AM69, Prop. 7.14] that J contains
some power IJ" of Iy. Thus 2z - & C R. Hence z acts nilpotently on R, and so

H' (9N, V ® ky) = Hom((Rap,, V @ ky) = 0,
where the first equality holds by Proposition 3.12. O

Proposition 6.13. An arbitrary equivariant map algebra M (X, g)' with g reduc-
tive and T' of order two is extension-local.

Proof. By Lemma 5.15, it suffices to show M (X, gs)!' is extension-local. The same
lemma, together with the discussion at the beginning of this subsection, shows
that it suffices to consider the cases where g is simple or (g,0) = (s Hs, ex) with s
simple. Thus the result follows from Lemmas 6.10 (since perfect Lie algebras are
extension-local) and 6.12. [

The following lemma will allow us to give an explicit description of the block
decompositions for generalized Onsager algebras in Section 6.3.
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Lemma 6.14. Let M be an equivariant map algebra as in Example 1.5, i.e., g is
simple and T' has order 2 acting nontrivially on g. Assume further that ky is a
nontrivial one-dimensional representation. Then one of the following holds:
(a) HY (O, ky) =0, or
(b) g = sla(k), ky is an evaluation representation at some x € XL, uniquely
determined by A, and A = pioev,, where p, € g§ is one of the two irreducible
subrepresentations of the go-module g1. In this case,

Hl(ﬁ)’t7 ]C)\) = (Al/miAl)*

In particular, if A is a domain and T' acts montrivially on A, then
HY(9M, ky) # 0. In the case of the (usual) Onsager algebra, © = +1 and
HY (9, ky) is one-dimensional.

Proof. Since A\ # 0, we have Map, = goan @ (Ao/AT) # 0, and we can choose
Z € go,ab @ Ap satisfying A(z) = 1. Because go ab is one-dimensional, there exists
a codimension one subspace B) C Ag such that

£ = (80,ss @ Ao) @ (g0,ab @ Br) @ (g1 ® A1),
£ = (90,55 ® Ao) ® (go,ab @ AT) @ ([g0,55, 91] ® A1 + [90,ab, 91] @ BrA1).

Suppose g # sla(k). It then follows from Example 1.5(c) that g1 = [go,ss, 81]-
Hence g1 ® A1 € R, C ®,. Since z is central in go ® Ay, formula (2.6) shows
90,ab ® By € Dy, whence D) = Ry, i.e, Hl(im, kx) =0.

Let now g = sla(k). From Example 1.5(d) we know that then go = go,ab,
g1 = V1 ®V_1, and there exists 0 # p € g such that gy acts on Vi; by +p. Hence

= (g0 ®B)) ® (91 ® A1), £\ = (g0 ® A7) ® (91 ® Bady).

We can write z in the form z = 2y ® z4 with z4 € A and zy € g satisfying
p(z0) = 1. Since [z,g0 ® By] =0, we get from (2.6) that

Dx= (90 ®@Bx) @ (Vi ® (BaxA1 + (1 — 24)A1)) & (Vo1 @ (BaAy + (14 24)A1)).

If B) is not an ideal of Ag, we obtain ByA; = ByAgA; = AgA; = Ay, so that
D, = R, and then H' (O, k) = 0 follows.

We are therefore left with the case that B) is an ideal of Ay. Being of codi-
mension one, there exists a unique Z € maxSpec(Ag) such that By = mz. From
go ® A2 C 9 C K, it follows that A2 C By, so By ® A; = m, for a unique
x € XL, by (1.2). Hence &) = Kerev, and thus A\ = p, o ev, for some p, € g. If
1—2z4 €mg, ie, pp =p, weget 1+ 24 € mz and 8)/D\ Z V1 @ (41/mzA1)
Ay /mzA; follows. Similarly, in case 14 z4 € mz, we have p, = —p and £)/D
V_1 X (Al/miAl) = Al/miAl. Finally, if 14 ZA ¢ mz, then ﬁk/@,\ =0.

By Lemma 3.2, A is a Noetherian Ag-module and so A; is a finitely generated
Ag-module. If A; = mzA;, then by Nakayama’s Lemma there exists ag € mz such
that agA; = 0. If T' acts nontrivially on A, then A; # 0. Thus A is not a domain.

For the Onsager algebra one knows (see for example the proof of [NSS12,
Prop. 6.2]) that A; is a free Ay module of rank 1, whence A;/mzA4; = Ag/mz
is one-dimensional. [

1R
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One could continue to work in the generality of equivariant map algebras asso-
ciated to groups of order two and deduce the extensions and block decompositions
in the case where g is simple. However, in the interest of making the exposition
easier to follow and of obtaining explicit formulas, we will instead now focus on the
case of the generalized Onsager algebras, which we treat in the next subsection.
6.3. Generalized Onsager algebras

We now apply our results to generalized Onsager algebras (see Example 1.6). By
Theorem 3.7, to describe arbitrary extensions between irreducible finite-dimensio-
nal representations, it suffices to give explicit formulas for the extensions between
single orbit evaluation representations supported on the same orbit, which are
described in Theorem 3.9.

Note that Ay is a polynomial algebra (in the variable z = t+¢~1) and A; = y Ay,
where y =t — t~!. We have

V=t —t)2 =t 24172 =22 —4=(2-2)(2+2)
where the points z = +2 correspond to the images in X /T of the points +1 € X.
Thus
AT =y*Ag =mm_,.
Suppose z € X. Let
[:{fEA‘f‘FIZO}, IOZIﬂAo, L =1NA;.

Then, as in Example 3.4,

R = (90 ® Io) ® (g1 ® Ih),
&= (00, @ (I§ +17)) @ (90,00 ® I7) @ (91 ® In]1).

Now, suppose first that & # £1, so that T',, = {1} and g® = g. Then

Iy =mgz, I =yms.

Thus
I} = y*m; = mym_ m2,
and so
&, = (g0.ss ®m2) © (go,ab @ mm_ym2) @ (g1 @ ym?) .
Therefore

ﬁm7ab = (gO,SS & mf/m%) © (gO,ab ® mz/mim_lm%) © (91 ® ymf/ymg)
= (90 & mi/m%)@(go,ab ® Ag/my)® (go,ab ® Ao/m_l)@ (91 ® ymi/ym%) .

Indeed, by [Bou61, Chap. II, §1.2, Prop. 5 and Prop. 6],

mz/mim_ym3 = (mgz/mymz) B (mz/m_;mz) B (mz/m?)
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and mz/m, mz = Ag/m_, since the canonical map mz — Ag/m,, is surjective.
Thus, as g = 9t/ R,-modules, we have

Roob = (g@mz/m2) D ko © ko, x#+1. (6.1)
Now suppose x = +1, so that I', =T and g®” = go. Then
Iy =mgz, I)=A;=yA.

Thus
2
Il = mimfp

and so
R, = (go,ss ® Mz) B (go,ab @Mym_;) & (g1 ® ymyz)

where we have used the fact that m2 + mim_, = m; for z = 1. Therefore,

Raz,ab = (G0,ab @ Mz/mim_,) @ (g1 ® yAo/ymz) .

We then have the following isomorphism of go-modules:

1

g1 b ]Co if dim 90,ab = 17
Rt1,ab

a1 if dim g0,ab = 0.

Now

3. =evi Hg%) = ey (80.ab) = (G0, @Mz) @ (80,00 @ Ao) @ (g1 © yAo).

Thus

3 = (g0.s @M7 + go @ mym_y) & ([g0,ab, 91] @ yAo + [go,ss, 91] ® ymz)
> (90,55 @ Mz) © (go,ab @ MM _;) D (g1 @ ymz + [go,an, §1] ® yAo),

where we have again used the fact that m2 + mym_; = m; for x = 1 and some
results from Example 1.5. Therefore

3z,ab = (80,ab®A0/m7)B(g0,abQAo/m_1)B(g1®yA0)/ (g1 @ymz+[go,ab, 91| ®YAo).

If goab = 0 then 3 a1 (g1 ® yAo)/(g1 ® ymz) = gi. On the other hand,
if go,ab 7# 0, the first two terms are isomorphic to ko as go-modules. Moreover,
in this case g1 = [go,ab, 91] by Example 1.5(c). Therefore the last term in the
description of 3; ab, vanishes. To summarize, we have the following isomorphism
of go-modules.

ko @ ko if dimgoan = 1,
N{o@ o 1 dimgo.ab (6.3)

Satan = o if dim go.ap = 0.
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Proposition 6.15 (Extensions for generalized Onsager algebras). Suppose V, V'
are irreducible finite-dimensional evaluation representations at the same point © €
Xyat- If ¢ # £1, then

Homg (g, V* @ V') fV 2V,

Exti, (V, V') =
xtan(V V') {Homg(g,V*®V’)@k2 VeV,

If x = £1, then

Homyg, (g1, V* @ V") V2V,

Exti, (V, V') = .
Xl ) {Homgo(gh‘/* @ V') @ kP2dimgoas  f | 27

Proof. Suppose that g%, actson V, V' by A\, X' € (g7,,)*, respectively. First consider
the case z # +1. Then g* = g is simple and so A = ' = 0. By Theorem 3.9 and
(6.1), we have

Extn (V, V') = Homg((g ® mz/m2) © ko ® ko, V* @ V7).

Since dim X /T = 1 and 7 is a smooth point, mz/m2 = k. The result then follows
from Lemma 2.2.

Now suppose z = £1. If A # X, then dim ggap = 1 and by Theorem 3.9 and
(6.2), we have

Extoy (V, V') 2 Homyg, (g1 © ko, V* @ V') = Homyg, (g1, V* @ V'),

where the second isomorphism holds by Lemma 2.2.
If A= X and V 2 V', by Theorem 3.9, (6.3), and Lemma 2.2, we have

Extyy (V, V') = Homg, . (ko ® ko,V* @ V)
=0 =Homg, (g1, V*®@ V') if dimggan =1,
Extglm(V, V') = Homyg, __(g1,V* ® V') = Homyg, (g1, V* ® V') if dimgo,ab =0,

where the last equality in the first line holds because go,ap acts trivially on V*@V’,
but nontrivially on g; = [go,ab, 1] by Example 1.5(c).
Finally, if V' 2 V', then by Theorem 3.9 and (6.3) we have

Extyy (V. V') & Homg, ., (7 @ kg """ V" @ V'),

where we recall that g?“’ab = 0 if go,ap # 0. Since goap acts trivially on V* @ V7,
we have

Homgo,ss (gfo’ab’ Ve ® V/) = Homgo (91’ v ® V/)’
and Homg, _ (ko,V* ® V') =2 k, by Lemma 2.2. The result follows. [

Specializing the proof above to the various cases leads to the following more
explicit formula.
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Corollary 6.16 (Extensions for generalized Onsager algebras). Suppose Vand V'
are irreducible finite-dimensional evaluation representations at the same point x =
+1, on which go.ab acts by A\, X, respectively. Then

Homgo (gla V'® VI) Zf)‘ 7é N or Zf)\ = )‘lv go,ab = 0,
Extiy(V, V') =240 ifA=N, goab #0, VEV,
k2 Zf 90,ab 7£ 07 Vv

We now turn our attention to giving an explicit description of the block de-
composition of the category F of irreducible finite-dimensional representations.
Since M is extension-local by Lemma 6.12, we can apply the results of Section 5.
Because all irreducible finite-dimensional representations are evaluation represen-
tations, we have Feval = F, Boval = B, and Theorem 5.19 (or Proposition 5.11)
tells us that the block decomposition is given by F = ®x6‘3 FX. It remains to
describe B, for x € X,.t.

If © # £1, then by Proposition 6.15 and [CMO04, Prop. 1.2] (or Corollary A.4),
we have B, 2 P/Q. So in the following, we fix x = £1. Let Py and Qg be the
weight and root lattices of go s, respectively. For a finite-dimensional gg ss-module
W, we let Span, wt(W) C Py be the Z-span of the weights of W. If g, a1, = 0,
then Corollary A.4 implies (see Remark A.5) that B, = Py/Spang wt(gi). It
remains to consider the case gz ab # 0, in which case we know that g, ap = k (see
Example 1.5(b)). The one-dimensional evaluation representations are thus of the
form k, where a € g} ., = k.

By Example 1.5(c), we have

01 =2 (Veok)d (V" ®k_1) (as go-modules)

for some irreducible go ss-module V. So V = V(v), the irreducible gg ss-module of
highest weight v for some v € POJr , the set of dominant integral weights of g ss. We
have chosen the isomorphism g}, ;, = k so that the one-dimensional representations
appearing in the above decomposition are ky;. The irreducible objects of F, are
of the form V(A) ® kg, for a € g ,;, = k. They are thus enumerated by Py x k.
We would like to find an explicit description of the equivalence relation on this set
that describes the ext-blocks.

By Corollary 6.16, we have

Exton(V(A) @ ko, V() @ ky) =0 if a=0band X\ # p.

Additionally,
Homyg, (g1, V(A)* @ V (k) =0

since go.ap acts on each irreducible summand of g; nontrivially but on V(A)* ®
V() trivially. Therefore, the relation on Py~ x k describing the ext-blocks is the
equivalence relation generated by

(A, a) ~ (u,b) if  Homyg, (g1, V(A)" @ V(1) ® kp—a) # 0.

We denote this equivalence relation again by ~.
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Lemma 6.17. The equivalence relation ~ is the equivalence relation generated by
(Aa) ~ (p,b) if Homg,(V®@k1, VA" @V (1) ® ky—q) # 0. (6.4)

Proof. Let = be the equivalence relation generated by (6.4). Since g; = (V®k;1)®
(V*®k_1), it is clear that ~ is contained in ~ (i.e., if two elements are equivalent
with respect to &, then they are equivalent with respect to ~). Now fix (A, a) and
(u,b) with Homg, (g1, V(A)* ® V(1) ® kp—q) # 0. Then we have

0 # Homyg, (g1, V(A)* @ V(1) ® kp—a)
= Homg, (V ® ki, V()" @ V(1) ® ko)
@ Homy,(V* @ k_1,VIN)* @ V(1) ® kp—a).

Therefore, one of the above summands must be nonzero. If the first summand is
nonzero, then (A, a) = (u,b). If the second summand is nonzero, then

0 # Homgy, (V*®@k_1, V(N @V (1) ®kp—q) = Homg, (V ()" @V (N) @kq—p, VQk1).

Now, since both arguments are completely reducible gg-modules, the nonvanishing
of the above Hom-space implies that there is an irreducible go-module that is a
summand of both arguments. But this implies that

Homg, (V @ k1, V()" @ V(X) @ ka—p) # 0,

and so (u,b) = (A, a). Thus ~ is contained in &, completing the proof. O
Lemma 6.18. We have Span, wt(V ® V*) = Q.

Proof. By Example 1.5(a), goss acts faithfully on V. It follows that goss acts
faithfully on V' ® V* and so Q¢ C Spany wt(V ® V*) (see, for example, [Hum72,
Exercise 21.5]). On the other hand, the weights of V' ® V* are of the form v —
wo (v) —w, where wy is the longest element of the Weyl group of go ss and w € Q.
Since v — wo(v) € Qo ([Bou8l, VI, §1.9, Prop. 27]), all the weights of V @ V* lie
in Qo. O

Lemma 6.19. For all a € g ), we have (A, a) ~ (u, a) if and only if p— X\ € Qo.

Proof. First suppose that (A, a) ~ (i, a). Then there exists a sequence
(>‘a a) = ()‘Ov aO)v (/\17 0,1)7 B (Anv an) = (,L"7 b)
such that for each 0 <7 < n, we have

Homg, (V ®@ k1, V(XN)* @ V(Xig1) @ kayyy—a;) # 0, (6.5)
or Homgo(V ® klv V(AiJrl)* ® V(Ai) ® kaz‘*az‘ﬂ) 7é 0. (6'6)

Now (6.5) implies that a;11 = a;+1 and (6.6) implies a;11 = a;—1. Since ag = a =
an, we must have that n is even and we can partition the set {0,1,2,...,n—1} =
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J1 U Jo, with |Ji| = |Jz|, such that (6.5) holds for ¢ € J; and (6.6) holds for ¢ € Js.
This implies that

Homg, (V,V(Xi)* @ V(Xit1)) #0 for i€ Jy,
Homgo (V*a V()‘z)* ® V()\H-l)) 7é 0 for i€ JQ.

By Lemma A.3 (with s = go ss), we have that

Ai+1 — >\z € Wt(V) + Qo for i€ Jl,
)‘i+1 -\ E wt(V*) + Qo for i€ Ja,

where wt(W) denotes the set of weights of a go ss-module W. Thus

p=A=An = An—1) + (Anm1 = Ap—2) + -4+ (A1 — Ao)
ewt(V)+ -+ wt(V)+wt(V*) + - + wt(V*) +Qo

~ ~ -
n/2 terms n/2 terms

=wt((V & V*)®"2) + Qo = Qu,

by Lemma 6.18.
Now suppose 4t — A € Qo = Span, wt(V ® V*). Since V ® V* is a faithful
go,ss-module, it follows from Corollary A.4 that there exists a sequence

)‘:)\O;)‘la"'))\n::u’

such that
}IOIIlg(J (V V*® V()\l), V()‘H—l)) #0, 0<i<n.

This implies that
}IOIIlg(J (V ® k1, (V()\l) (9 k’a)* ® (V()\i-i-l) RV ® k‘a+1)) # 0.

Thus (A\;,a) ~ (d,a + 1) for some irreducible summand V(J) of V(Aiy1) ® V.
Therefore

0 # Homg, (V(8),V(Ni+1) ® V) =2 Homg, (V(Xit1)* @ V(8), V).
This implies that V' is an irreducible summand of V/(A;11)* ® V(). But then
0 # Homg, (V, V/(Xit1)* @V (9)) = Homg, (V@ k1, (V(Air1) ©ka)* @ (V(8) @Fat1)),

and 80 (Aj+1,a) ~ (6,a+ 1). Hence (A, a) ~ (Aiy1,a) for all 0 <i < n. It follows
that (A\,a) ~ (g,a). O

Proposition 6.20. We have (A, a) ~ (u,b) if and only if there exists an n € Z
such that
p+Qo=A+nvr+Qo and b=a+n. (6.7)
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Proof. The relation (6.7) is the equivalence relation generated by the relation >
defined by

(M) o< (p,b) if p+Qo=A+v+Qo, b=a+1.

To show that (6.7) implies (A, a) ~ (u,b), it therefore suffices to show that (A, a)
(1, b) implies (A\;a) ~ (u,b). Thus assume p = A + v + w for some w € Qg
and b = a+ 1. Since (u,b) ~ (¢ — w,b) by Lemma 6.19, it is enough to prove
(A a) ~ (p—w,b). In other words, we can assume = A+ v, b =a+ 1. But then

Homg, (V @ k1, (V(A) ® ka)* ® (V (1) ® kp)) = Homg, (V(v) ® V(X), V(1)) # 0,

since the tensor product V(v) @ V()
V(A+v)=V(u). Thus (A, a) ~ (u,d).
For the other direction, assume (A, a) ~ (u,b). It suffices to consider the case

)

has an irreducible summand isomorphic to

0 7 Homg, (V @ k1, (V(A) @ ka)” © (V(1) ® kp)) = Homg, (V(v) @ VI(A), V(n)),

where the equality follows from the fact that we must have b = a + 1, which
is immediate by considering the action of goan,. Thus V(v) ® V(X) contains an
irreducible summand isomorphic to V(u) and so g = A + v — w for some w € Q.
Hence A\ + v+ Qo=p+Qo. U

Corollary 6.21. We have B, = (Py/Qo) x (k/Z), v = +1.

Proof. Fix a set of representatives for k/Z. By Proposition 6.20, we have a well-
defined and injective map that associates to the equivalence class of (), a) in (P x
k)/ ~ the element (A + nv + Qo,a + n + Z) € (Py/Qo) X (k/Z), where n is the
unique integer such that a + n is one of these chosen representatives for k/Z. It is
surjective since every class in Py/Qp is represented by some \ € P0+ .o

Proposition 6.22 (Blocks for generalized Onsager algebras). The blocks of the
category of finite-dimensional representations of a generalized Onsager algebra are
naturally enumerated by the set of finitely supported equivariant maps

Xrar = (P/Q) U ((Po/Qo) x (k/Z))

such that x is mapped to P/Q if x # +1 and to (Py/Qo) X (k/Z) if x = £1.

Proof. This follows from Theorem 5.19 (or Proposition 5.11) and the above com-
putations of the B,, z € X;at. O

Corollary 6.23. If MM is the usual Onsager algebra, then the blocks of the cate-
gory of finite-dimensional representations can be naturally identified with the set
of finitely supported equivariant functions x from Xiax to (P/Q) U (C/Z) where
x(x) € P/Q for x # +1 and x(x) € C/Z for x = £1.

Proof. This follows immediately from Proposition 6.22 and the fact that £k = C
and goss = 0. O
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A. Extensions and the weight lattice

We present here some useful results of independent interest that allow us, in
certain cases, to give a simple explicit description of the block decomposition of the
category F of finite-dimensional representations of an equivariant map algebra.

The following proposition and its proof were explained to us by S. Kumar.

Proposition A.1. Let G be a semisimple algebraic group over k and let p: G —
SL(U) be a faithful finite-dimensional rational G-module. Then, for any irreducible
finite-dimensional G-module V', there exists m € N such that V is isomorphic to
an irreducible submodule of U®™.

Proof. Let p : G — SLg(U) be the corresponding representation. Besides p we
will use the trivial G-module structure on the underlying vector space of U,
denoted U'V. Observe that the canonical G-module structure on End(U) =
Homy (U, U) satisfies (g - f)(u) = g- f(u) for g € G, f € Homy (U™, U), and
u € U. Let § : G — Homy (U™, U) be the composition of p and the canonical in-
jection SL(U) — Homy (U™, U). It is easily seen that 6 is an injective G-module
map, where G acts on itself by left multiplication. We therefore get a surjective
G-module map of the coordinate algebras of the corresponding algebraic varieties,

0* : k[Hom (U™, U)] - k[G].
As G-modules,
Hom, (U™, U) 2 (U™ U 2U"VeU=Ug---&U,
with the last direct sum having dim U summands. Therefore, again as G-modules,
k[Hom(U™,U)] = Sym*(U* @ --- @ U*) = Sym*(U*) © - -- @ Sym*(U*),

where Sym®(-) is the symmetric algebra. We compose the G-module map 6* with
the canonical G-module epimorphism

T*U")® - @T*(U*) » Sym*(U") ®--- ® Sym*(U™)
from the tensor product of the tensor algebras, to get a G-module epimorphism
T*(U")®---@T*(U*) - k[G].

It now follows that for any irreducible finite-dimensional G-submodule W C k[G],
there exist natural numbers nq,...,ns, s = dim U, such that

Tm(U*) R Tns(U*) W
is a G-module epimorphism. But clearly,
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as G-modules, yielding a G-module epimorphism T™(U*) — W. By complete
reducibility, this means that W is isomorphic to an irreducible component of
T™(U*). But then W* is isomorphic to an irreducible component of (T™(U*))* =
T™(U**) = T™(U). Finally, we apply the algebraic version of the Peter—Weyl
Theorem, which says that every finite-dimensional representation of G occurs as a
submodule of k[G], [GW09, Cor. 4.2.8]. Since V is irreducible if and only if V* is
so, we can apply the above argument to W = V* and in this way finish the proof
of the theorem. [

The following lemma is a generalization of the second part of the proof of [CMO04,
Prop. 1.2].

Lemma A.2. Let | be a finite-dimensional Lie algebra. Let U, VW be finite-di-
mensional [-modules with U completely reducible and V,W irreducible with
Hom((U®™ @ V,W) # 0 for some m € N,. Then there exists a finite sequence
V=V, Vi,..., Vi =V of irreducible finite-dimensional [-modules such that

Hom(U @ V;,Viy1) 20 for 0 <i < m.

Proof. We prove the result by induction on m € N, the case m = 1 being obvious.
For m > 1 we have

0 # Hom (U®™ @ V, W) = Hom(U®™=V @ V,U* @ W).

Since both U®™~1@V and U*®@W are completely reducible by [Bou71, §6.5, Cor. 1
du Th. 4], the above implies that there exists an irreducible finite-dimensional [-
module X which is an [-submodule of both U®(™~1) @ V and U* ® W. But then
Hom((U®(m=Y @ V,X) # 0 and Hom((X,U* ® W) = Hom(U ® X,W) # 0.
Applying the induction hypothesis to Hom((U®("™~1) @ V, X) # 0 and putting
X = Vip—1, finishes the proof. O

For the remainder of the appendix, let s be a semisimple finite-dimensional
Lie algebra with weight lattice, root lattice and set of dominant integral weights
P,Q, P, respectively. Let W(s) be the Weyl group of 5. Recall that for a finite-
dimensional s-module U, wt(U) denotes the set of weights of U.

Lemma A.3. Suppose U is a finite-dimensional s-module and \,u € PT such
that Homg (U @ V(A),V(u)) # 0. Then u— wo(A) and o — X are both elements of
wt(U) + Q.

Proof. First recall that V/(A\)* is an irreducible s-module of highest weight —wg(A),
where wy is the longest element in W (s). Since

Hom, (U, V(A)" @ V(u)) = Homs (U @ V(A), V() # 0,

we have p — wo(A) —w € wt(U) for some w € Q. Thus g — wo(N) € wt(U) + Q.
Furthermore,

p—A=(n—wo(N)+ (wo(A) = X) e wt(U) + Q,

since w(§)—¢ € Q for all ¢ € P and w € W(s) by [Bou81, Chap. VI, §1.9, Prop. 27].
O
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Corollary A.4. Let U be a finite-dimensional faithful s-module. Then Q C
Spany wt(U) C P. Furthermore, for A\, u € PT, the following two conditions
are equivalent:
(a) There exists a sequence A = Ao, A1,...,An = p of weights \; € Pt such
that
Hom, (U@ V(Xi), V(Xig1)) 0 for 0 <i <n.

(b) u— A € Spang wt(U).

Proof. That @ C Spany, wt(U) C P is known; see for example [Hum72, Exer-
cise 21.5]. Assume (a). By Lemma A.3, we have

—wo(A) + (A1 —wo(A1)) + -+ 4+ (Anm1 —wo(An—1)) + 1
= (M —wo(Xo)) + (A2 —wo(A1)) ++ -+ (An —wo(An—1)) € Spany wt(U)+Q.

Now using that £ — wé € Q for £ € P and w € W(s) ([Bou81, Chap. VI, §1.9,
Prop. 27]), we see that u—wo(\) € Spany wt(U) + Q. But this is equivalent to (b)
since g — A = (u — wo(A)) + (wo(A) — A) and wo(A) — A € Q.

To prove that (b) implies (a), we will use some standard facts from the theory
of Chevalley groups, for which the reader is referred to [Ste68]. Assume (b) is true
and let G be the Chevalley group corresponding to the representation U of s. This
is a semisimple algebraic k-group ([Ste68, Thm. 6]), whose weight lattice (group of
characters of a maximal torus) is Span, wt(U) ([Ste68, p. 60]). The s-module U is
canonically a faithful rational G-module, also denoted U. The s-module V(\)* ®
V' (u) contains a highest weight vector of weight p—wg(A), hence also an irreducible
s-module X of highest weight u—wo()\) € (Spany, wt(U))NP*. It integrates to an
irreducible G-module of highest weight u—wg(X), also denoted X ([Ste68, Thm. 39]
and the remark on p. 211 of loc. cit.). We can now apply Theorem A.1 and conclude
that there exists m € N such that X is isomorphic to an irreducible G-submodule
of U®™ i.e., Homg(U®™, X) # 0. Since Homg(U®™, X) = Hom,(U®™, X), we
have Homg (U®™ @V (), V(1)) = Homg(U®™, V(A\)*@V (1)) # 0. Now (a) follows
from Lemma A.2. O

Remark A.5. The special case U = s (so Spany, wt(U) = Q) of Corollary A.4 is
proven in [CMO04, Prop. 1.2], using a result of Kostant’s instead of Theorem A.1.

Note that Corollary A.4 applies in the following setting: g a simple finite-
dimensional Lie algebra with an automorphism of order 2, g = go & g1 the cor-
responding eigenspace decomposition, s = go semisimple (see [Hel01, Chapter X,
§5, Table II] for a list of the cases in which this condition is fulfilled) and U = g1,
which is a faithful s-module (see Example 1.5(a)).
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