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DERIVATIONS AND INVARIANT FORMS
OF JORDAN AND ALTERNATIVE TORI

ERHARD NEHER AND YOJI YOSHII

Dedicated to Holger Petersson

Abstract. Jordan and alternative tori are the coordinate algebras of extended
affine Lie algebras of types A1 and A2. In this paper we show that the deriva-
tion algebra of a Jordan torus is a semidirect product of the ideal of inner
derivations and the subalgebra of central derivations. In the course of prov-
ing this result, we investigate derivations of the more general class of division
graded Jordan and alternative algebras. We also describe invariant forms of
these algebras.

Introduction

This paper provides a detailed description of the derivation algebra DerJ of
a Jordan torus J . In particular, our main result, Theorem 4.11, says that the
derivation algebra Der J of a Jordan torus J is a semidirect product,

(1) Der J = IDer J o CDer J,

of the ideal IDerJ of inner derivations and the subalgebra CDerJ of central deriva-
tions of J .

Let us explain the concepts involved in the statement above. We consider (linear)
unital Jordan algebras J over a field F of characteristic 6= 2. All our algebras are
G-graded, i.e., J =

⊕
g∈G Jg, JgJg′ ⊂ Jg+g′ , where G is an abelian group. We

call J division graded if every 0 6= xg ∈ Jg is invertible. A division graded J is a
Jordan G-torus if dimJg ≤ 1 for all g ∈ G, and is simply called a Jordan torus if
G = Zn. Examples of Jordan tori are the plus algebras of quantum tori (see section
4.2), which recently have gained a lot of interest. Jordan tori have recently been
classified in [31].

Perhaps even more important than the decomposition (1) itself is, in our opinion,
the concept of central derivations. In general, for a nonassociativeG-graded algebra
A =

⊕
g∈GAg with centre Z a central derivation ∂Θ is associated to any group

homomorphism Θ : G → (Z,+) by defining ∂Θ(ag) = Θ(g)ag for ag ∈ Ag. We
denote by CDer J the subalgebra of all central derivations.

We learned the concept of central derivations from the paper [24] by Osborn and
Passman where they have been introduced for twisted group algebras and where
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(1) is proven for these algebras. That the derivation algebra is a semidirect product
of the ideal of inner derivations and a subalgebra had been proven before in [4] for
quantum tori and in [5] for Cayley tori, see section 4.3. One of the novelties of this
paper is that we provide a conceptual description of this subalgebra as the algebra
of central derivations.

Although our main motivation is Jordan tori, in the body of the paper we are
considering more general algebras, namely Jordan or alternative division graded
algebras in §2 and the corresponding G-tori in §3. We do so since the methods
and results needed for the Jordan torus case easily generalize to the more general
settings, essentially without any extra cost, and since we believe that the corre-
sponding Lie algebras, studied in [32] and [29], are an interesting class of algebras.
Therefore, our paper also provides information on DerT for any G-torus T ; see,
for example, Theorem 3.2 where a version of (1) is proven for G-tori satisfying an
additional condition. In §4 we then prove (1) for all Jordan tori, by making use of
their classification ([31]). As already mentioned, (1) has been proven for associa-
tive tori in [4] and for nonassociative alternative tori in [5]. Our paper provides a
slightly more conceptual proof in the latter case. It is included here since it can
be done without any extra cost. Besides the decomposition (1), we also determine
the precise structure of CDerT and IDerT . For example, we show that if G is
finitely generated and A is division graded, then CDerA is a generalized Witt alge-
bra (Proposition 2.9), more precisely a generalization of the recent generalization
of Witt algebras by Doković and Zhao [7].

Our interest in Jordan tori and their derivations comes from the theory of ex-
tended affine Lie algebras: it is shown in [31] that the centreless cores of extended
affine Lie algebras of type A1 are precisely the Tits-Kantor-Koecher algebras of
Jordan tori. Moreover, it is proven in the recent paper [2] by Allison and Gao
that special classes of Jordan tori enter in the description of the centreless cores
of extended affine Lie algebras of reduced non-simply-laced types. In the spirit of
the paper [4] by Berman, Gao and Krylyuk on extended affine Lie algebras of type
Al, l ≥ 3 (or [5] for type A2) the description (1) is an essential ingredient in the
classification of all tame extended affine Lie algebras of type A1 and other types.
Another ingredient in the construction of extended affine Lie algebras of type A1 is
invariant forms. It is well known that invariant forms are determined by invariant
forms on the corresponding coordinate algebras; see, for example, Koecher’s work
[17] dealing with Tits-Kantor-Koecher algebras or Benkart’s more recent paper [3]
for root-graded Lie algebras. We prove in Proposition 4.9 that for Jordan tori there
exists, up to scalar multiples, only one nondegenerate graded invariant form. The
consequences of our paper for extended affine Lie algebras will be elaborated upon
in a sequel to this paper.

This paper generalizes results contained in the second author’s Ph.D. thesis
written at the University of Ottawa under the supervision of the first author.

1. Basic definitions and notation

In this section we will review some basic concepts. Unless specified otherwise,
we will consider nonassociative (= not necessarily associative) algebras over some
field F of arbitrary characteristic, denoted ch.F . Our primary interest is in unital
alternative and Jordan algebras. Whenever we consider Jordan algebras we will
assume that ch.F 6= 2, unless explicitly stated otherwise.
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1.1. Preliminaries. Let A be a nonassociative algebra with product written as
ab, a, b ∈ A. For a, b, c ∈ A we define the commutator as [a, b] = ab− ba = (ad a)(b)
and the associator as (a, b, c) = (ab)c − a(bc). The span of all commutators and
associators will be denoted [A,A], respectively (A,A,A).

The centre Z = Z(A) of A is defined as Z(A) = {z ∈ A | [z,A] = 0 = (z,A,A) =
(A, z,A)}. If A is unital, Z(A) is a unital associative commutative subalgebra of A
and A is canonically an algebra over Z. The interplay between the F -algebra and
Z-algebra structure will be an important feature of this paper. We have Z(A) =
{z ∈ A | [z,A] = 0 = (z,A,A)} if A is alternative (but see 2.5) and Z(A) = {z ∈
A | (z,A,A) = 0} if A is Jordan.

An F -linear map d : A→ A is called a derivation of A if d(xy) = d(x)y + xd(y)
for all x, y ∈ A. With the usual commutator, the set of all derivations of A is a Lie
algebra denoted DerF A, or DerA if F is clear from the context. Any d ∈ DerF A
leaves the centre Z = Z(A) invariant and hence d|Z ∈ DerF Z for d ∈ DerF A.
Moreover, we note that zd is a derivation for any z ∈ Z and d ∈ DerF A.

The definition of a derivation of course makes sense if A is an algebra over a
unital commutative associative ring, for example a unital F -algebra considered as
an algebra over its centre Z. The Lie algebra of Z-linear derivations will be denoted
DerZ A. Note that for d ∈ DerF A, we have d ∈ DerZ A ⇔ d|Z = 0. It is then
easily seen that DerZ A is an ideal of DerF A.

1.2. Central closure. Let A be a unital algebra such that its centre Z = Z(A)
does not contain any zero divisors of A, i.e., the Z-module A is torsion-free. An
example of such an algebra is a division G-graded algebra where G is an ordered
abelian group (2.3(d)). Let Z be the field of fractions of the integral domain Z.
The central closure of A is defined as A = Z⊗ZA, which we consider as an algebra
over Z. We note the following facts [33]:

(i) x 7→ 1⊗ x is an embedding of A into A;
(ii) A is central over Z, i.e., the centre of A is Z;
(iii) A is prime (resp. a domain) ⇔ A is prime (resp. a domain).

Let
DerZ A := Z ⊗Z DerZ A,

which we consider as a Lie algebra over Z. There is a canonical map

(1.2.1) DerZ A→ DerZ A : u⊗ d 7→ lu ⊗ d,
where lu⊗ d acts on Z ⊗A via (lu⊗ d)(v⊗ a) = uv⊗ d(a). Using the fact that any
element in DerZ A has the form 1

z ⊗ d for some 0 6= z ∈ Z and d ∈ DerZ A, it is
easily seen that this map is injective. Similarly, DerZ A embeds into DerZ A. After
an identification we therefore have

(1.2.2) DerZ A < DerZ A < DerZ A,

where < indicates a subalgebra. Also, we note:

(1.2.3) If A is a finitely generated algebra over Z, then DerZ A = DerZ A.

Indeed, let {ai | 1 ≤ i ≤ n} be a generating set of the Z-algebra A. For d ∈ DerZ A
we have d(1 ⊗ ai) = (1/zi) ⊗ bi for some 0 6= zi ∈ Z and bi ∈ A. Thus, putting
z =

∏
i zi, we obtain zd(1 ⊗ ai) ∈ 1 ⊗ A. Since zd is Z-linear, it follows that

zd(1 ⊗ A) ⊂ 1 ⊗ A. So zd|1⊗A =: d0 ∈ DerZ A and d = 1
zd0 ∈ DerZ A, proving

(1.2.3).
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For an associative algebra A, we denote by A+ the Jordan algebra defined on A
with U -operatorUxy = xyx. The bilinear product ofA+ is given by a.b = 1

2 (ab+ba),
where on the right side we have the associative product of A. Any subalgebra of A+

is then also a Jordan algebra; in particular, this is so for H(A, ∗) := {a ∈ A | a∗ =
a}, where ∗ is an involution of A.

1.3. Lemma. Let A be an associative algebra with involution ∗. We abbreviate
J = H(A, ∗) and consider J as a Jordan algebra. We assume that

(i) A is a torsion-free Z(A)-module
and

(ii) Z(J) = Z(A) ∩ J .
We let A, respectively J , be the central closures of A and J .

Then ∗ extends uniquely to an involution ∗ of A such that H(A, ∗) ∼= J over the
field of fractions L of Z(J) and L = H(A, ∗) ∩ K for K the field of fractions of
Z(A).

Proof. The involution ∗ on A is given by (1
z ⊗ a)∗ = 1

z∗ ⊗ a∗ for 0 6= z ∈ Z(A) and
a ∈ A. Since Z(J) ⊂ Z(A), we have a well-defined L-linear map

ϕ : J = L⊗Z(J) J → A = K ⊗Z(A) A : 1
z ⊗Z(J) x 7→ 1

z ⊗Z(A) x.

By construction, its image is contained in H(A, ∗). We claim that, in fact, ϕ(J) =
H(A, ∗), Indeed, let 1

z ⊗Z(A) a ∈ H(A, ∗), with 0 6= z ∈ Z(A) and a ∈ A. Then
z∗a = za∗ holds in A; hence za∗ ∈ H(A, ∗) = J . Since also z∗z ∈ Z(A)∩J = Z(J),
it now follows that 1

z ⊗Z(A) a = z
z∗z ⊗Z(A) a

∗ = 1
z∗z ⊗Z(A) za

∗ ∈ ϕ(J). �

1.4. Inner derivations. For an associative algebra A and any x ∈ A, the map
adx : A → A : y 7→ [x, y] is a so-called inner derivation. More generally, for an
alternative algebra A over a field F with ch.F 6= 2, the inner derivations are sums
of the derivations ∆a,b = R[a,b] − L[a,b] − 3[La, Rb], where L and R denote the left,
respectively right, multiplication in A. For a Jordan algebra J , the inner derivations
are sums of the derivations ∆a,b = [La, Lb], a, b ∈ J (see, e.g., [14, p. 35 and p.
300]).

For the classes of algebras considered above, the set of all inner derivations will
be denoted by IDerA. It is easily seen that IDerA is an ideal of the Lie algebra
DerF A, and any inner derivation is Z-linear for Z = Z(A):

(1.4.1) IDerA /DerZ A.

Moreover, for any z ∈ Z(A), we have z∆a,b = ∆za,b = ∆a,zb, from which it easily
follows that

(1.4.2) Z ⊗Z IDerA = IDerA,

where we used the identification (1.2.2).

Example. When A is an associative algebra, any derivation of A is clearly a
derivation of the Jordan algebra A+. The inner derivations of A+ are also inner
derivations of A since

(1.4.3) [Lu, Lv] = 4 ad[u, v];

whence over a base field containing 1
2 ,

(1.4.4) DerA ⊂ DerA+ and [A,A]/(Z(A) ∩ [A,A]) ∼= IDerA+ ⊂ IDerA
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(see (2.10.2) and Proposition 3.5 for equality).

1.5. Graded algebras. Let G be an abelian group, written additively, and assume
that A is G-graded, i.e., A =

⊕
g∈GAg and AgAh ⊂ Ag+h for all g, h ∈ G. In this

paper we will only consider algebras graded by an abelian group, although some
results hold for nonabelian groups. For a ∈ A, written in the form a =

∑
g∈G ag

with ag ∈ Ag, the ag will be referred to as the homogeneous components and any
a ∈

⋃
g∈GAg will be called homogeneous. The support of A is suppA := {g ∈

G | Ag 6= (0)}. A subspace B of A is graded if B =
⊕

g∈G(B∩Ag) in which case we
put Bg = B ∩ Ag. Examples of graded subspaces are [A,A], (A,A,A), and Z(A).
The subgroup of G generated by suppZ, Z = Z(A), is called the central grading
group. If H is this group, then the Z-algebra A is G/H-graded:

A =
⊕

g∈G/H
Ag for Ag =

⊕
g∈g

Ag.

1.6. Derivations of graded algebras. Let A =
⊕

g∈GAg be a G-graded algebra.
For g ∈ G define

(DerF A)g = {d ∈ DerF A | d(Ah) ⊂ Ag+h for all h ∈ G}
and

grDerF A =
⊕
g∈G

(DerF A)g.

It is easily seen that grDerF A is a subalgebra of DerF A,

(1.6.1) grDerF A < DerF A,

called the subalgebra of graded derivations. It is well known that

(1.6.2) grDerF A = DerF A if A is a finitely generated F -algebra

(see, for example, [11, Prop. 1], where this is proven for Lie algebras). For Z the
centre of A we put

grDerZ A =
⊕
g∈G

(DerZ A)g, where (DerZ A)g = (DerF A)g ∩DerZ A.

It is easy to prove that

(1.6.3) grDerF A ∩DerZ A = grDerZ A.

Let H be a subgroup of G (later this will be the grading group of Z) and put
G = G/H . We then have a G-grading of A (see section 1.5) and analogously a
G-grading of grDerF A:

grDerF A =
⊕
g∈G

(grDerF A)g,

where

(grDerF A)g =
⊕
g′∈g

(grDerF A)g′

= {d ∈ grDerF A | d(Aa) ⊂ Ag+a for all a ∈ G}.
We will put

(grDerF A)H := (grDerF A)0 =
⊕
h∈H

(DerF A)h.
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Concerning inner derivations of G-graded alternative or Jordan algebras A, we have

(1.6.4) IDerA =
⊕
g∈G

(IDerA)g,

where (IDerA)g = (DerA)g ∩ IDerA. In particular, by (1.4.1),

(1.6.5) IDerA ⊂ grDerZ A.

1.7. Example of a leftsymmetric algebra. The algebra and its graded subal-
gebra, introduced in this subsection, will be used in section 1.8 to define special
types of derivations.

Let G be an abelian group and let Z =
⊕

g∈G Zg be a commutative associative
G-graded algebra (later this will be the centre of a nonassociative algebra). We
denote by HomZ(G,Z) the F -vector space of abelian group homomorphisms from
G into the additive group (Z,+). Of course, HomZ(G,Z) also carries a Z-module
structure which, however, will not be important in the following. We define an
F -algebra on HomZ(G,Z) by assigning to Θ,Φ ∈ HomZ(G,Z) the product Θ ∗ Φ,
given by

(1.7.1) (Θ ∗ Φ)(g) =
∑
h∈G

Θ(h)Φ(g)h.

Note that this is well defined since Φ(g)h 6= 0 for finitely many h ∈ G only. A
straightforward calculation shows that the associator with respect to ∗ satisfies

(1.7.2) (Θ,Φ,Ψ)(g) = −
∑
h∈G

Θ(h)Φ(h)Ψ(g)h.

Therefore, (HomZ(G,Z), ∗) if a leftsymmetric algebra, i.e., (Θ,Φ,Ψ) = (Φ,Θ,Ψ)
holds for all Θ, φ,Ψ ∈ HomZ(G,Z). Leftsymmetric algebras, rather their oppo-
site algebras have recently been studied in [10] and [9], where the reader can also
find references to previous investigations. In particular, these two papers consider
examples of rightsymmetric algebras closely related to the example above.

It is well known and easily checked that for any leftsymmetric algebra, the com-
mutator defines a Lie algebra. It will follow from the results in 1.8, 1.9 and Proposi-
tion 2.9 that the Lie algebra (HomZ(G,Z), [·, ·]) can be considered a generalization
of the Witt algebra.

We denote by HomZ(G,Z)fin the Z-submodule of all Θ for which Θ(G) is con-
tained in the sum of finitely many Zg’s and by HomZ(G,Zg) the F -subspace of
those Θ ∈ HomZ(G,Z) with Θ(G) ⊂ Zg, g ∈ G. It is easily seen that

HomZ(G,Z)fin =
⊕
g∈G

HomZ(G,Zg) (for all G)(1.7.3)

= HomZ(G,Z) if G is finitely generated.(1.7.4)

We have HomZ(G,Zg1) ∗HomZ(G,Zg1 ) ⊂ HomZ(G,Zg1+g2) since

(1.7.5) Θ ∗ Φ = Θ(g2)Φ for Θ ∈ HomZ(G,Z),Φ ∈ HomZ(G,Zg2 ).

Hence HomZ(G,Z)fin is a subalgebra of (HomZ(G,Z), ∗), which is G-graded by
(1.7.3). We note

(1.7.6) Hom(G,Z) ∗Hom(G,Z0) = 0.
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1.8. Central derivations. Let A be a G-graded unital algebra over F with centre
Z =

⊕
h∈H Zh and central grading group H . For the sake of uniqueness

(1.8.1) we assume in this subsection that suppA spans G as an abelian group.

In order to apply the results of section 1.7, we will also consider Z as a G-graded
algebra. Any Θ ∈ HomZ(G,Z) gives rise to an F -linear derivation ∂Θ of A, defined
on Ag by

(1.8.2) ∂Θ(ag) = Θ(g)ag (ag ∈ Ag)
and called a central derivation (see [24, section 2], where this concept has been
introduced for the case of twisted group algebras). We denote by CDerF A the
space of central derivations. The formula

(1.8.3) [∂Θ, ∂Φ] = ∂Θ∗Φ−Φ∗Θ

shows that CDerF A is a subalgebra of the Lie algebra DerF A and that

(1.8.4) ∂ : HomZ(G,Z)→ CDerF A

is an epimorphism of Lie algebras. It maps the subalgebra HomZ(G,Z)fin of
(HomZ(G,Z), [·, ·]) onto the graded subalgebra

(CDerF A)fin := ∂(HomZ(G,Z)fin) =
⊕
h∈H

(CDerF A)h

of grDerF A, where

∂(HomZ(G,Zh)) =: (CDerF A)h ⊂ (DerF A)h.

The derivations in

(1.8.5) D := {∂Θ | Θ ∈ HomZ(G,Z0)}
will be called degree derivations. By (1.7.6), D is always abelian.

1.9. Generalized Witt algebras. Central derivations are related to a generaliza-
tion of the Witt algebra. This Lie algebra can naturally be defined in the following
setting:

(i) K is an associative commutative unital ring, H is an abelian group;
(ii) Z =

⊕
h∈H Zh is an associative commutative H-graded algebra over K

(later this will be a twisted group ring Kt[H ] of H over K, or even the
group algebra K[H ]);

(iii) D is a K-module; and
(iv) p : D × H → K : (d, h) 7→ d(h) is a pairing that is K-linear in the first

variable and additive in the second.
We define

W := W (Z,D, p) := Z ⊗K D =
⊕
h∈H

Zh ⊗K D

and use the abbreviation zhd = zh ⊗K d for zh ∈ Zh, d ∈ D. There exists a unique
K-algebra product ∗ on W such that (zhd1)∗ (zid2) = zhd1(i)zid2 for homogeneous
zh, zi ∈ Z, h, i ∈ H and d1, d2 ∈ D. It is easily seen that (W, ∗) is a leftsymmetric
algebra. Hence W together with the commutator is a Lie algebra, which we call
the generalized Witt algebra associated to (Z,D, p). Thus, the Lie algebra product
of W is given by

(1.9.1) [zhd1, zid2] = zhzi(d1(i)d2 − d2(h)d1).
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For the special case of the group algebra Z = K[H ], this Lie algebra has been
introduced in [7], where the reader can also find some background information and
examples, justifying the terminology. Another special case has been considered in
[26] and [28].

In the setting above, the left and right kernel of p are

DH := {d ∈ D : d(H) = 0} (left kernel),

HD := {h ∈ H : p(D,h) = 0} (right kernel).

Example. In the setting of section 1.8, we let K = Z0, H the central grading
group of Z = Z(A), D = HomZ(G,Z0) and

(1.9.2) p : HomZ(G,Z0)×H → Z0 : (ϕ, h) 7→ ϕ(h)

the canonical pairing. In this case, DH = {ϕ ∈ HomZ(G,Z0) | ϕ(H) = 0}, which
is in general nonzero, e.g., for quantum tori. It follows from (1.7.5) that

(1.9.3) µ : W (Z,HomZ(G,Z0), p)→ HomZ(G,Z)fin : zh ⊗ ϕ 7→ zhϕ

is a homomorphism of leftsymmetric algebras, hence also for the associated Lie alge-
bras. Note that we now have constructed the following Lie algebra homomorphism:

(1.9.4) W (Z,HomZ(G,Z0), p)
µ−→ HomZ(G,Z)fin

∂−→ (CDerF A)fin.

We will show in Proposition 2.9 that for so-called division graded algebras, both
maps µ and ∂ are isomorphisms.

1.10. Lemma. Let W = W (Z,D, p) be a generalized Witt algebra as in section 1.9
above.

(a) Any K-module D′ of D gives rise to a subalgebra Z ⊗K D′ of W . Moreover,

(1.10.1) Y := Z ⊗K DH

is an abelian ideal of W . If D = D′ ⊕DH is a direct sum of K-modules, e.g., if K
is a field, the generalized Witt algebra W is a semidirect product,

(1.10.2) W = X n Y for X := Z ⊗K D′

of an abelian ideal Y and a subalgebra X, which is again a generalized Witt algebra,
namely X = W (Z,D′, p′), where p′ = p|D′ ×H has zero left kernel.

(b) If K is a field of characteristic 6= 2 and p 6= 0, then W is perfect.

Proof. (a) is easy. For (b) we observe that

[z0d, zhd] = z0zhd(h)d ∈ Kzhd

for h ∈ H and any d ∈ D. Hence Zd ⊂ [W,W ] for any d /∈ DH . But for d ∈ DH

and any d1 ∈ D, we have [zhd1, zid] = zhzid1(i)d. Since p 6= 0, there exist d1 and
i ∈ H such that d1(i) 6= 0 and so zkd ∈ [W,W ] for any k ∈ H .

Remark. For the special case that K is a field of characteristic zero and Z is the
group algebra of H , the structure of W is determined in [16]. In particular, a more
precise version of (1.10.2) is shown there: W is a semidirect product of the abelian
ideal Y and a simple subalgebra X , which is again a generalized Witt algebra. We
will prove an analogue in our setting in Theorem 4.12.
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1.11. Example: H(A, ∗) for ∗ of second kind. Let A =
⊕

g∈GAg be a unital
associative G-graded algebra over a field E of ch.E 6= 2 and suppose ∗ is a graded
involution of A, i.e., A∗g = Ag for all g ∈ G, which is of second kind in the sense
that E.1 = (E.1)∗ 6⊂ H(A, ∗). For simpler notation let us put

H := H(A, ∗) and S := S(A, ∗) = {a ∈ A | a∗ = −a}.

We identify E = E.1. With F = E ∩H we have that E/F is a Galois extension of
degree 2; so E = F [s] for some s = −s∗ ∈ E. Then

(1.11.1) A = H ⊕ sH, where sH = S

as G-graded spaces. It follows that the supports of the associative algebra A and
the Jordan algebras A+ and H all coincide:

(1.11.2) suppA = suppA+ = suppH.

Since [a, b]∗ = −[a∗, b∗] and the Lie product [·, ·] is E-linear, (1.11.1) implies

(1.11.3) [A,A] = [H,H ]⊕ [H,S] with [A,A] ∩ S = [H,H ] = [S, S]

and [A,A] ∩H = [H,S] = s[H,H ]. We have the general formula

(1.11.4) A 3 [x, [y, z]] = 4(y, x, z) ∈ A+,

where the left and right side are calculated in A and A+, respectively. Hence the
centres of the Jordan algebras A+ and H are given by

(1.11.5)
Z(A+) = {z ∈ A | [A, [A, z]] = 0},

Z(H) = {z ∈ H | [H, [H, z]] = 0} = Z(A+) ∩H,

where the second equality in (1.11.5) follows from the E-linearity of [·, ·].

Let us now consider derivations. The involution ∗ induces a Lie algebra au-
tomorphism DerE A+ → DerE A+ : d 7→ d∗ of order 2, where d∗ is defined by
d∗(a) = d(a∗)∗. Hence, with obvious notation,

DerE A+ = H(DerE A+, ∗)⊕ S(DerE A+, ∗).

Any d ∈ H(DerE A+, ∗) leaves H invariant. Hence we have a well-defined map

Ψ : H(DerE A+, ∗)→ DerF H : d 7→ d|H .

In fact, Ψ is an isomorphism. Injectivity of Ψ follows from (1.11.1) and for surjec-
tivity one notes that any d ∈ DerF H extends to a d̃ ∈ DerE A+ with d̃∗ = d̃ by
defining d̃(h+ sh′) = d(h) + sd(h′) for h, h′ ∈ H . In the following we will identify
DerF H = H(DerE A+, ∗) via Ψ. We then have

(1.11.6) DerE A+ = DerF H ⊕ sDerF H,

where sDerF H = S(DerE A+, ∗). By construction, Ψ preserves the homogeneous
spaces. Hence (DerF H)g is the fixed point space of the automorphism ∗, and
because of (1.11.6) we then have

(1.11.7) dimE(DerE A+)g = dimF (DerF H)g

for all g ∈ G. For inner derivations, (1.4.3) implies

IDerA+ = ad[A,A] = ad[H,H ]⊕ ad[H,S] = ad[H,H ]⊕ s ad[H,H ],
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where the second equality follows from (1.11.3) and (ada)∗ = ad(−a∗). Hence
again by (1.4.3),

(1.11.8) IDerH = ad[H,H ] = IDerA+ ∩DerF H

so that (1.11.7) also holds for inner derivations. For a central derivation ∂Θ

of A+ we have (∂Θ)∗ = ∂Θ∗ for Θ∗(g) = (Θ(g))∗. The map Θ 7→ Θ∗ leaves
HomZ(G,Z(A+)) invariant. By (1.11.5), any Θ with Θ∗ = Θ maps G into Z(H)
and hence HomZ(G,Z(A+)) = HomZ(G,Z(H))⊕ sHomZ(G,Z(H)), which implies

(1.11.9) CDerE A+ = CDerF H ⊕ sCDerF H.

Therefore, CDerF H = CDerE A+ ∩ DerF H and (1.11.7) also holds for central
derivations.

1.12. Graded invariant forms. A graded invariant form on a G-graded F -alge-
bra A =

⊕
g∈GAg is a symmetric bilinear form (·|·) : A×A→ F satisfying

(i) (Ag|Ah) = 0 for g + h 6= 0,

and

(ii) (ab|c) = (a|bc) for all a, b, c ∈ A.

The F -vector space of all graded invariant forms on A will be denoted GIF(A). It
is described in the following Lemma 1.13 whose proof will be left to the reader.

We will say that a graded invariant form (·|·) is nondegenerate if its radical
rad(·|·) = {a ∈ A|(a|A) = 0} vanishes. Clearly, rad(·|·) is a graded ideal. Hence, if
A is graded-simple, i.e., A does not have nonzero graded ideals, then any nonzero
graded invariant form is nondegenerate.

1.13. Lemma (graded invariant forms). Let A be a G-graded algebra over a field F ,
put GIF(A) = A0/([A,A]0+(A,A,A)0) and denote by π the map A→ GIF(A) : a =∑
g∈G ag 7→ a0, where a0 is the image of a0 ∈ A0 under the canonical projection of

A0 onto GIF(A). Then every linear form f ∈ GIF(A)∗ = HomF (GIF(A), F ) gives
rise to a graded invariant form (·|·)f defined by (a|b)f = f(π(ab)). The map

(1.13.1) GIF(A)∗ → GIF(A) : f 7→ (·|·)f
is F -linear, and is an isomorphism if A is unital. In particular,

(1.13.2) [A,A]0 = 0 = (A,A,A)0 and A unital ⇒ GIF(A) ∼= A∗0.

1.14. Skew derivations. Let again A be a G-graded F -algebra and let (·|·) be
a graded invariant form. A derivation D is called a skew derivation if (d(a)|b) +
(a|d(b)) = 0 for all a, b ∈ A. The set of all skew derivations is a subalgebra of
DerF A, denoted SDerF A. It is straightforward to check that

(1.14.1) IDerF A ⊂ SDerF A for A alternative or Jordan, ch.F 6= 2.

It is also easily seen that a graded derivation is skew if and only if every homoge-
neous component is skew. Thus we have

(1.14.2) grSDerF A := grDerF A ∩ SDerF A =
⊕
g∈G

(SDerF A)g,



JORDAN AND ALTERNATIVE TORI 1089

where (SDerF A)g := SDerF A ∩ (DerF A)g. Assume A is unital and let Z =⊕
h∈H Zh be the centre of A. Then for any h ∈ H ,

CDerF A ∩ (SDerF A)h = {∂Θ | Θ ∈ HomZ(G,Zh),Θ(h) = 0}
if (·|·) is nondegenerate and A is unital.(1.14.3)

Indeed, if Θ ∈ HomZ(G,Zh), then ∂Θ ∈ SDerF A if and only if for all g ∈ G and
ag ∈ Ag, b−g−h ∈ A−g−h we have 0 = (Θ(g)ag|b−g−h) + (ag|Θ(−g − h)b−g−h) =
−(abg−g−h|Θ(h)). Since A is unital and (·|·) is nondegenerate, this is equivalent to
Θ(h) = 0.

2. Division graded algebras

We specialize the setup of the previous section 1 and consider a class of unital
G-graded algebras, which we assume to be alternative or Jordan. In the latter case,
we will suppose that ch.F 6= 2, unless explicitly stated otherwise. We begin with a
result on reflection spaces, which naturally arise as the support of division graded
algebras.

2.1. Reflection spaces. A set M together with an operation M × M → M :
(m,n) 7→ m ·n is a reflection space in the sense of Loos ([19]) if it satisfies the three
axioms m ·m = m,m ·(m ·n) = n and m ·(n ·p) = (m ·n) ·(m ·p) for all m,n, p ∈M .
A homomorphism between reflection spaces is a map preserving the products.

Now let G be an abelian group. With respect to the operation g · h = 2g − h,
the set G becomes a reflection space. It has a distinguished base point, the zero
element 0 of G. The following formulas hold in G:

(2.1.1) 0 · g = −g
and

g1 · (g2 · (· · · (gm−1 · gm) · · · ))
= 2(g1 − g2 + g3 − · · ·+ (−1)mgm−1) + (−1)m+1gm.(2.1.2)

For a subset S of G, we denote by 〈S〉 the subgroup spanned by S. The following
conditions are equivalent for S ⊂ G:

(i) 0 ∈ S and S · S ⊂ S;
(ii) 2〈S〉 ⊂ S and 2〈S〉+ S ⊂ S;
(iii) S is a union of cosets modulo 2〈S〉 including the trivial coset 2〈S〉.

Indeed, if (i) holds we have −S = S by (2.1.1) and hence every g ∈ 〈S〉 can be
written in the form g = s1−s2 +s3−· · ·+(−1)n+1sn for suitable si ∈ S and n ≥ 1.
For arbitrary s ∈ S, we then obtain 2g+s ∈ S from (2.1.2); thus, 2〈S〉+S ⊂ S and,
in particular, 2〈S〉 ⊂ S since 0 ∈ S. The implications (ii)⇒ (iii) and (iii)⇒ (i) are
immediate.

A subset S satisfying the equivalent conditions (i)–(iii) above will be called a
reflection subspace of G. The special case of S ⊂ G = (Zn,+) and 〈S〉 = Zn has
been treated in [1, Ch. II, §1] where S was called a semilattice. The description of
reflection subspaces above is, in fact, a straightforward generalization of [1, Ch. II,
Prop. 1.4 and Remark 1.6].

2.2. Proposition. Let S ⊂ G be a reflection subspace.
(a) If G is finitely generated as an abelian group, then S is finitely generated as

a reflection space.
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(b) Let H be an abelian group without 2-torsion. Then any homomorphism
ϕ : S → H of reflection spaces preserving the base points uniquely extends to a
group homomorphism Φ : 〈S〉 → H.

Proof. (a) Since a subgroup of a finitely generated group is again finitely generated,
we may assume 〈S〉 = G. The quotient G/2G is a finitely spanned Z/2Z-vector
space, hence finite. It therefore follows from section 2.1 that S is the union of a
finite number of cosets modulo 2G, say τi + 2G, 0 ≤ i ≤ n, where we can assume
τ0 = 0.

We next note that S contains a finite generating set of the abelian group G.
Indeed, by assumption, there exist finitely many elements x1, x2, . . . , xm ∈ G span-
ning G. But since G = 〈S〉 and S = −S, any xi is a finite sum of elements of S,
say xi =

∑
j σij with σij ∈ S. Hence the collection of all {σij} is a finite generating

set of G contained in S.
Let X = {σij} ∪ {τ0, . . . , τn} and denote by S′ the reflection space generated by

X . By 2.1(ii) applied to S′, we have Zy ⊂ S′ for any y ∈ S′. Hence, by choosing
appropriate gi in

⋃
i Zσij ∪ {±τi} ⊂ S′, (2.1.2) shows that 2g + τi ∈ S′ for every

g ∈ G and τi, 0 ≤ i ≤ n, proving S′ = S.
(b) We may again assume 〈S〉 = G. Since ϕ(0) = 0 by assumption, we have

ϕ(−s) = ϕ(0·s) = 0·ϕ(s) = −ϕ(s) for every s ∈ S and also ϕ(2s) = ϕ(s·0) = 2ϕ(s).
Now for any g ∈ G, s ∈ S we obtain ϕ(2s − 2g) = ϕ(s · 2g) = ϕ(s) · ϕ(2g) =
2ϕ(s) − ϕ(2g). Hence, if ϕ(2g) ∈ 2H , so is ϕ(2(s − g)). Since any g ∈ G can be
written in the form g = s1 − s2 + s3 − · · ·+ (−1)n+1sn, it follows by induction on
n that ϕ(2g) ∈ 2H . We define Φ : G → H by Φ(g) = 1

2ϕ(2g). Then Φ extends ϕ,
and for s ∈ S and g ∈ G we have

2Φ(s+ g) = ϕ(2s+ 2g) = ϕ(s · (−2g))

= ϕ(s) · ϕ(−2g) = 2ϕ(s) + ϕ(2g) = 2(Φ(s) + Φ(g)),

whence Φ(s + g) = Φ(s) + Φ(g). Since any g ∈ G is a finite sum of elements in S,
this implies, by induction, that Φ is a group homomorphism. �

2.3. Strongly graded and division graded algebras. From now on we will
assume that A is a unital alternative or a unital Jordan algebra over F . Unless
specified otherwise, we will assume that ch.F 6= 2 if A is Jordan.

We will say that a G-graded algebra A is strongly graded or that A has a G-
grading of strong type if AgAh = Ag+h for all g, h ∈ G. The algebra A is called a
division G-graded algebra if all nonzero homogeneous elements are invertible. We
list some known properties of division graded algebras.

(a) In any alternative algebra, an element a is invertible if and only if the left
multiplication La is invertible, and in this case (La)−1 = La−1 . Moreover, if a, b
are invertible, then so is their product ab, and then (ab)−1 = b−1a−1. This easily
implies that a division G-graded alternative algebra is strongly graded and that its
support is a subgroup of G ([29] or [23, I.4.5] for the case of associative algebras).

A division G-graded associative algebra, sometimes also called a graded division
ring [23], is a crossed product algebra D∗G of G over an associative division algebra
D, and conversely [25, Ch. I §2]. The classification of division Zn-graded alternative
algebras is given in [29].

(b) For a Jordan algebra A, we denote by Ua the U -operator of a Jordan algebra,
i.e., Uab = 2a(ab) − a2b. Since A is supposed to have a unit element 1, one can
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recover the bilinear product from the U -operator in view of the formula 2ab =
(Ua+b − Ua − Ub)1. An element a ∈ A is invertible if and only if Ua is invertible.

Let A be a division graded Jordan algebra and denote by S = suppA its support.
Then UAgAh = A2g+h for all g, h ∈ S. Hence S is a reflection subspace of G. We
note that, in general, S is not a subgroup of G (see, for example, section 4.4).

(c) ([29] or [23, I.4.2] for associative algebras) For a totally ordered abelian
group G, e.g. G = Zn, any division G-graded algebra A is a domain in the sense
that xy = 0⇒ x = 0 or y = 0 if A is alternative, and Uxy = 0⇒ x = 0 or y = 0 if
A is Jordan. We recall that any domain is strongly prime, meaning nondegenerate
and prime.

(d) The centre Z of a division G-graded algebra A is again division graded. In
particular, Z0 is a field and Z = Zt0[H ] is a twisted group algebra where H is the
central grading group. Moreover, A is a division G-graded algebra over Z0. If G is
totally ordered, Z is an integral domain.

(e) Since A is graded-simple, any nonzero graded invariant form on A is non-
degenerate. For the existence of such forms see section 1.13, Proposition 3.3, and
Proposition 4.9.

We next present some preliminary results on division graded algebras.

2.4. Lemma. Let A be a division G-graded algebra such that

(i) G is finitely generated and
(ii) dimF Ag <∞ for all g ∈ G.

Then A is finitely generated as an algebra.

Proof. Let X ⊂ S = suppA be a finite generating set of the reflection space S
and let Y be the union of vector space bases of all Ag, g ∈ X . The subalgebra A′

generated by Y is graded and has support S, in view of section 2.1 and (a), (b) of
section 2.3. By induction on the number of generators needed to express s ∈ S as
a product of factors from X , one shows A′s = As for all s ∈ S, hence A′ = A. �

2.5. Lemma. If A is an alternative division graded algebra, then

(2.5.1) Z(A) = {a ∈ A | [a,A] = 0}.

Proof. It suffices to show that any homogeneous a ∈ A satisfying [a,A] = 0 lies in
the centre of A. It is proven in McCrimmon’s unpublished book [20, III, Lemma
4.1] that (a,A,A)2 = 0 for all a ∈ A with [a,A] = 0. In particular, for homogeneous
b, c ∈ A, the equation (a, b, c)2 = 0 forces (a, b, c) = 0. Since [20] is not published,
we mention that, for the special case of a prime alternative algebra over a field of
characteristic 6= 3, the lemma follows from results in [33]. Indeed, for the proof of
(2.5.1) we may assume that A is not associative. Then A is nondegenerate ([33,
9, Thm. 5]), hence its central closure A is a simple alternative algebra (proof of
[33, 9, Thm. 9]) and (2.5.1) holds for A by [33, 7, Cor. of Lemma 7 and 7, Cor. 1
of Lemma 1]. In particular, any a ∈ A that commutes with A and hence with A
associates with everything of A ⊂ A proving (2.5.1). �

2.6. Lemma. Let A be a division G-graded algebra whose central closure A exists
(for example, this holds by 2.3(c) if G is ordered) and has only inner derivations.
Then IDerA = grDerZ A.
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Proof. By (1.6.5), we only need to prove grDerZ A ⊂ IDerA. So let 0 6= d ∈
grDerZ A. We may assume that d is homogeneous. By (1.2.2), we have the deriva-
tion d̃ = Id⊗d of A which, by assumption and (1.4.2), has the form d̃ = 1

z∆ for
some 0 6= z ∈ Z and some ∆ ∈ IDerA. Hence zd̃ = ∆ on A and so, by restric-
tion, zd = ∆ on A. Considering the homogeneous components of this equation, we
obtain a nonzero homogeneous z′ ∈ Z and a homogeneous ∆′ ∈ IDerA such that
z′d = ∆′. Since z′ is invertible, it follows that d = 1

z′∆
′ ∈ IDerA. �

2.7. Graded modules. Let A =
⊕

g∈GA be an associative division G-graded
algebra over F . Suppose that the group G acts on a set S. A left A-module M is
called a graded A-module of type S if M =

⊕
s∈SMs and AgMs ⊂ Mg.s for each

g ∈ G and s ∈ S. In this case, we let s := G.s ∈ S/G be the G-orbit of s and put
Ms :=

⊕
g∈GMg.s. Obviously, M =

⊕
s∈S/GMs.

The following lemma is easy to prove. For related results see, for example, [6,
Thm. 3], [23, I.3.4] and [31, Lemma 3.6].

2.8. Lemma. Let A =
⊕

g∈GAg be an associative division G-graded algebra and
M =

⊕
s∈SMs a graded A-module of type S. Then:

(a) Mg.s = agMs = AgMs for all g ∈ G, s ∈ S and any 0 6= ag ∈ Ag. Hence
AMs = Ms.

(b) Suppose that G acts freely on S, i.e., g.s = s for some g ∈ G and s ∈ S
implies g = 0. Then Ms is a free A-module; namely, any A0-basis of the A0-
vector space Ms is also an A-basis of Ms. Hence rankAMs = dimA0 Ms′ for all
s′ ∈ s. Moreover, M is a free A-module, there exists an A-basis of M consisting of
homogeneous elements and M ∼= A⊗A0 N for a suitable A0-module N .

(c) Suppose that G and S are totally ordered and that the action preserves the
order, i.e., g < g′ and s < s′ implies g.s < g′.s′. Then any graded submodule N of
M is saturated in the sense that N = {m ∈ M | am ∈ N for some 0 6= a ∈ A}.
Hence, for any multiplicatively closed subset B of A we have B−1M = B−1N ⇔
M = N .

2.9. Proposition. Let A be a division graded algebra with G = 〈suppA〉, and Z =⊕
h∈H Zh the centre of A with central grading group H. We choose 0 6= zh ∈ Zh

for all h ∈ H. Recall that D denotes the degree derivations as defined in (1.8.5).
Then the maps µ and ∂ of (1.9.4),

W (Z,HomZ(G,Z0), p)
µ−→ HomZ(G,Z)fin

∂−→ (CDerF A)fin

are isomorphisms of Lie algebras. Moreover,

HomZ(G,Z)fin =
⊕
h∈H

zh HomZ(G,Z0) ∼= Z ⊗Z0 HomZ(G,Z0),(2.9.1)

(CDerF A)fin =
⊕
h∈H

zhD = Z ⊗Z0 D, and(2.9.2)

SDerF A ∩ (CDerF A)fin =
⊕
h∈H

zh{∂Θ ∈ D : Θ(h) = 0}(2.9.3)

with respect to any nondegenerate graded invariant form on A.

Proof. Equations (2.9.1) and (2.9.2) are immediate from Lemma 2.8, while (2.9.3)
follows from (1.14.3). In particular, (2.9.1) implies that µ is an isomorphism. To
show that ∂ is an isomorphism it suffices in view of (1.8.3) to prove injectivity.
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Assume therefore that zh∂ϕ = 0 for ϕ ∈ HomZ(G,Z0). Then ϕ|suppA = 0 follows
and hence ϕ = 0 because of our assumption G = 〈suppA〉. �

In the remainder of this section we will introduce division graded versions of the
standard examples of Jordan algebras.

2.10. Proposition. Let A be a division graded associative algebra over a field F of
ch.F 6= 2.

(a) Any graded subalgebra J of A+ is a division G-graded Jordan algebra as soon
as x−1 ∈ J for any nonzero homogeneous x ∈ J . In particular, A+ itself is division
G-graded.

(b) If A is associatively generated by a division graded subalgebra J of A+, then

(2.10.1) Z(J) = Z(A) ∩ J.
(c) For J = A+ we have

DerF A = DerF A+, Z(A) = Z(A+)(2.10.2)

and

CDerF A = CDerF A+.(2.10.3)

If A is semiprime, then (b) follows from [22, Thm. 3.3]. However, A is in general
not semiprime. For example, even a group algebra over a field need not be semiprime
(see [18, (10.17)]). Also, for an arbitrary prime algebra A, the equality DerF A =
DerF A+ follows from [13, Thm. 3.3]. Although A is in general not prime, we can
nevertheless use some of the methods of Herstein’s proof. In particular, the crucial
formula (2.10.4) below is taken from [13].

Proof. (a) follows from the fact that invertibility in A and A+ are the same. For
(b), the inclusion Z(A) ∩ J ⊂ Z(J) is obvious from (1.11.4). To prove the other
inclusion, we may assume that 0 6= z ∈ Z(J) is a homogeneous element. For any
x ∈ J we then have [x, z]2 = 2x.Uzx − Uxz

2 − Uzx
2 = 0 since z ∈ Z(J). If

z /∈ Z(A), then [x, z] 6= 0 for some homogeneous x ∈ J and hence [x, z] is invertible,
contradicting [x, z]2 = 0.

(c) It is clear that DerA ⊂ DerA+. So, let d ∈ DerA+ and put ab = d(ab) −
d(a)b − ad(b) for a, b ∈ A. By calculating d((ab)ab+ ba(ab)) in two different ways,
one obtains [13, Lemma 3.6]

(2.10.4) ab[a, b] = 0.

Linearizing in b gives

(2.10.5) ab[a, c] + ac[a, b] = 0.

It suffices to prove ab = 0 for all homogeneous a, b ∈ A. We will do so by distin-
guishing four cases.

Case 1) a, b ∈ Z(A): Then d(ab) = d(a.b) = d(a).b+ a.d(b) = d(a)b+ ad(b), i.e.,
ab = 0. Case 2) a /∈ Z(A), b ∈ Z(A): By (2.10.5) we then have ab[a, c] = 0 for all
c ∈ A. Since a is homogeneous, there exists a homogeneous c such that [a, c] 6= 0
and hence [a, c] is invertible, forcing ab = 0. Case 3) a ∈ Z(A), b /∈ Z(A): Since
ab = −ba, this case follows from the previous one. Case 4) a, b /∈ Z(A): If [a, b] 6= 0
we obtain ab = 0 from (2.10.4). Otherwise, we get ab[a, c] = 0 from (2.10.5) for all
c ∈ A, and again ab = 0 follows.
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Thus DerF A = DerF A+. That Z(A) = Z(A+) follows from (2.10.1) and then
CDerF A = CDerF A+ by definition. �

2.11. Quadratic form Jordan algebras. Let Φ be an associative commutative
ring, M a Φ-module and q : M → Φ a quadratic form with base point, i.e., q(1) = 1
for some 1 ∈ M . We let q(x, y) = q(x + y) − q(x) − q(y) be the polar of q, and
define x = q(x, 1)1 − x and Uxy = q(x, y)x − q(x)y. Then M together with the
quadratic operator U is a (quadratic) Jordan algebra denoted by J over Φ. We will
often confuse J with M . It is well known that any x ∈ M with invertible q(x) is
invertible in J . Indeed, its inverse is x−1 = 1

q(x)x.
Suppose Φ is G-graded, M is a graded module of type G and q : M → Φ is

graded in the sense that q(Mg) ⊂ Φ2g, q(Mg,Mh) ⊂ Φg+h for g, h ∈ G and 1 ∈M0.
The corresponding Jordan algebra J is then G-graded, i.e., UJgJh ⊂ J2g+h and
{JgJhJi} ⊂ Jg+h+i where {· · · } is the Jordan triple product of J . Moreover, J is
division G-graded if q is anisotropic graded in the sense that q(mg) is invertible for
any 0 6= mg ∈Mg = Jg.

If 1
2 ∈ Φ we have J = Φ.1⊕ V for V = {x ∈ M | q(x, 1) = 0} and with respect

to this decomposition the bilinear product of J satisfies

(2.11.1) (s11⊕ v1)(s21⊕ v2) = (s1s2 + f(v1, v2))1 ⊕ (s1v2 + s2v1)

for f = − 1
2q(·, ·)|V×V . In this case, the associator of xi = si.1⊕ vi is, with obvious

notation,

(2.11.2) (s1 ⊕ v1, s2 ⊕ v2, s3 ⊕ v3) = f(v1, v2)v3 − f(v3, v2)v1 ∈ V.
Hence Φ.1 ⊂ Z(J) and (J, J, J) ⊂ V . We note that J always has a nonzero invariant
form, namely (x|y) = q(xy, 1) is such a form. But in general this form is not graded.
We now describe special classes of quadratic form algebras.

2.12. Lemma. Let J be a quadratic form algebra over a G-graded Φ containing
1
2 , and decompose the underlying module M = Φ.1 ⊕ V as in section 2.11 above.
Suppose that V is an orthogonal sum of nonzero G-graded Φ-modules V (i), i ∈ I
with |I| ≥ 2 such that each q|V (i) is anisotropic graded (hence the type Si of V (i)

is contained in G). We extend the grading of V to M in the canonical way, so that
J is a G-graded algebra.

(a) Then Z(J) = Φ.1 and (J, J, J) = V ; hence J = Z(J)⊕ (J, J, J).
(b) Let o(f) = {d ∈ EndΦ V | f(du, v) + f(u, dv) = 0 for all u, v ∈ V } be

the orthogonal Lie algebra associated to f and let eo(f) be the ideal spanned by
all elementary orthogonal transformations Eu,v, u, v ∈ V , given by Eu,v(w) =
f(u,w)v − f(v, w)u = (u,w, v) = ∆v,u(w). Then

(2.12.1) DerΦ J → o(f) : d 7→ d|V
is an isomorphism of Lie algebras mapping IDer J onto eo(f).

(c) Suppose Φ is division graded, so that by Lemma 2.8 every V (i) is free and has
a homogeneous Φ-basis. Assume that V has finite rank with a homogeneous Φ-basis
{v1, . . . , vn} satisfying f(vi, vj) = 0 for i 6= j. Then o(f) = eo(f), and hence all
Φ-linear derivations are inner. Moreover, {Evi,vj | 1 ≤ i < j ≤ n} is a Φ-basis of
o(f).

Proof. At least in special cases, this result is known to the experts. For the conve-
nience of the reader we include a short proof.
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(a) Let z ∈ Z(J) ∩ V . By (2.11.2) we then have 0 = (z, u, v) = f(z, u)v for
any u, v in different submodules V (i). Considering homogeneous components then
forces z = 0. Hence Z(J) = Φ.1. If u, v belong to the same V (i) but w belongs to a
different V (j), we get (u, v, w) = f(u, v)w. Since f(u, v) for suitable choices of u, v
is invertible, this shows that w ∈ (V, V, V ), and then V = (J, J, J) follows.

(b) Any Φ-linear derivation d annihilates 1 ∈ J and leaves V = (J, J, J) invariant.
That d|V ∈ o(f) is immediate from the product formula (2.11.1). Thus the map
(2.12.1) is well-defined and injective. That it is also surjective is an easy exercise.
In case Φ is a field, (c) is well known. In the setting of this lemma, it is proven in
[8].

2.13. Construction of a division graded quadratic form Jordan algebra.
For easier reference we describe a special case of the situation considered in Lemma
2.12. This setting will be specialized in section 4.5 to define Clifford tori. Our
construction uses the following data:

(i) Φ is a division graded commutative associative ring with grading group
H = supp Φ and 1

2 ∈ Φ0;
(ii) H is a subgroup of an abelian group G such that G/H is a 2-group, i.e.,

any element of G/H has order ≤ 2;
(iii) I ⊂ G is a set of representatives of some cosets of G modulo H different

from H , with at least two elements;
(iv) (zi)i∈I is a family of nonzero (hence invertible) elements zi ∈ Φ2i.

Assuming these data, we put z0 = 1 ∈ Φ0 and let V (i), i ∈ I ∪ {0}, be the
graded Φ-module of type i + H and rank 1 with basis vi ∈ V

(i)
i = Φ0vi where

v0 = z0 = 1 ∈ Φ0. Thus

V (i) =
⊕
h∈H

V
(i)
i+h with V

(i)
i+h = Φhvi.

For i ∈ I ∪ {0} we let q(i) : V (i) → Φ be the Φ-quadratic form given by q(i)(vi) =
zi ∈ Φ2i. We then have a G-graded Φ-module M =

⊕
i∈I∪{0} V

(i) =
⊕

g∈GMg,
where

Mg =

{
V

(i)
i+h if g = i+ h for i ∈ I ∪ {0}, h ∈ H,

0 otherwise

with an anisotropic graded quadratic form q =
⊕

i∈I∪{0} q
(i), the orthogonal sum

of the quadratic forms q(i). Hence the corresponding quadratic form Jordan algebra
J , considered as an algebra over F = Φ0, is division G-graded with suppJ = I+H .
Moreover, Lemma 2.12 applies. In particular, it follows from (1.13.2) and 2.12(a)
that

(2.13.1) dimF GIF(J) = 1.

Since by construction ∆vi,vj ∈ (IDer J)i+j we obtain, using Lemma 2.8, the follow-
ing more precise description of the inner derivation algebra.

2.14. Lemma. In the setting of section 2.13 suppose I is finite, and let < be a
well-ordering on I. Also, denote by g the canonical image of g in G/H.

Then {∆vi,vj | i, j ∈ I, i < j} is a Φ-basis of IDer J = DerΦ J , and {∆vi,vj : i, j ∈
I, i < j, i+ j = g} is a Φ-basis of

⊕
h∈H(IDer J)g+h = (IDer J)g. In particular,

(2.14.1) dimF (IDer J)g = |{{i, j} : i, j ∈ I, i 6= j, i+ j = g}|.
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In a special case, these dimensions have been calculated in [27, Lemma 2.4].

2.15. Graded Albert algebras. Let A be a prime associative algebra over F
whose central closure A has (generic) degree 3, and let µ ∈ Z = Z(A) be invertible.
Assume that tr(A) ⊂ Z where tr is the generic trace of A. Then, the subset
J = (A, µ) := A⊕A⊕ A of the first Tits construction (A, µ) = A⊕A⊕ A is a Z-
subalgebra such that (A, µ) = (A, µ) ([31, Lemma 6.5]). Hence J and J are Albert
algebras in the sense of [21]. Since J = (A, µ) has degree 3, Schafer’s theorem [14,
Exercise 1, p. 319] implies J = Z ⊕ (J, J, J) if ch.F 6= 3.

To obtain a grading on J we assume the following data:

(i) A =
⊕

g∈GAg is a G-graded prime associative algebra with centre Z;
(ii) |G/S| = 3 where S = suppA;
(iii) µ ∈ Z3g0 for some g0 ∈ G \ S;
(iv) tr is G-graded, i.e., tr(Ag) ⊂ Zg for all g ∈ G.

Then J = (A, µ) is G-graded with homogeneous spaces defined as follows:

Jg :=


Ag ⊕ 0⊕ 0 if g ∈ S,
0⊕Ag−g0 ⊕ 0 if g − g0 ∈ S,
0⊕ 0⊕ Ag+g0 if g + g0 ∈ S.

Moreover, J is division graded if A is so. If, in addition, G is totally ordered and
ch.F 6= 3, then J = Z ⊕ (J, J, J). Indeed, since (J, J, J) = Z ⊗Z (J, J, J), this
follows from Schafer’s Theorem and 2.8(c) applied to the Z-modules Z + (J, J, J)
and Z ∩ (J, J, J).

3. G-tori

In this section we will introduce a special class of division graded algebras, so-
called G-tori. Our main interest will be the study of their derivation algebras.
The basic assumptions of the previous sections remain in place: we consider unital
alternative and Jordan algebras over a field F , which in the case of Jordan algebras
will be assumed to have ch.F 6= 2.

3.1. G-tori. Let G be an abelian group. A division G-graded algebra T =
⊕

g∈G Tg
over F is called a G-torus if

(i) dimF Tg ≤ 1 for all g ∈ G, and
(ii) suppT generates G as an abelian group.

If the G-torus is associative, alternative or Jordan, it is called an associative, an
alternative or a Jordan G-torus. We will frequently identify T0 = F . We say
that a G-torus is of strong type if T is strongly graded. In this case, the support
suppT is a subgroup of G. By 2.3(a), any alternative G-torus is of strong type.
An associative G-torus is the same as a twisted group algebra F t[G]. In particular,
if T is a G-torus and H its central grading group, the centre Z(T ) is a twisted
group algebra of H . An example of a Jordan G-torus is the quadratic form Jordan
algebra of section 2.13, viewed as an algebra over F = Φ0.
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3.2. Theorem. Let T be a G-torus with central grading group H. Recall that D
denotes the degree derivations of T ; see (1.8.5). Then:

(DerF T )0 = D,(3.2.1)

(CDerF T )fin =
⊕
h∈H

(DerF T )h = (grDerF T )H ,(3.2.2)

IDerT ⊂
⊕
g/∈H

(DerF T )g,(3.2.3)

(CDerF T )fin ∩ IDerT = 0.(3.2.4)

If G is finitely generated, then so is T , and hence DerF T = grDerF T . In this
case we also have CDerF T = (CDerF T )fin, which is a generalized Witt algebra by
Proposition 2.9.

Proof. Let d ∈ (DerF T )0 and define scalars ϕg for g ∈ S = suppT by d(tg) = ϕgtg,
tg ∈ Tg. The fact that d is a derivation means

(3.2.5) ϕg + ϕh = ϕg+h for g, h ∈ S with TgTh 6= 0.

In particular, if T is alternative, it is a torus of strong type with S = G and we
have ϕ ∈ HomZ(G,Z0), which means that d is a degree derivation. For a Jordan
torus T we have dUx = Udx,x + Uxd for x ∈ T , which implies

(3.2.6) ϕ2g+h = 2ϕg + ϕh for g, h ∈ S.

Since ϕ0 = 0, it follows from (3.2.5) that ϕ−h = −ϕh and then (3.2.6) shows that
ϕ : S → F is a homomorphism of reflection spaces preserving the base points. By
Proposition 2.2(b), ϕ extends uniquely to a group homomorphism Φ : G→ F and
so d is a degree derivation also in this case. This implies (3.2.1) and then (3.2.2) is
immediate from (2.9.2) and the definition of (grDerF T )H .

Since IDerT is G-graded, it suffices to show that IDer T ∩ (DerF T )h = 0 for all
h ∈ H . Suppose there exists a nonzero d ∈ (DerF T )h for some h ∈ H . If T is
Jordan, we can assume that d = [Lx, Ly], where x ∈ Tg, y ∈ Tg′ and g + g′ = h.
Hence y = zx−1 for some nonzero z ∈ Zh. But then [Lx, Ly] = [Lx, Lzx−1] =
Lz[Lx, L−1

x ] = 0, a contradiction. The proof for alternative algebras is similar,
using the form of inner derivations (see section 1.4). Thus (3.2.3) holds, and this
implies (3.2.4). The last statement follows from Lemma 2.4, (1.6.2), and (1.7.4). �

Remark. We have

grDerF T = IDerT o (CDerF T )fin

as soon as any Z-linear derivation is inner.(3.2.7)

Indeed, by the result above, we only have to show (DerF T )g ⊂ IDerT for g /∈ H .
But any d ∈ (DerF T )g has d(Z) ⊂ Z∩

⊕
g′∈g+H(DerF T )g′ = 0, and so is Z-linear.

By Lemma 2.12 the criterion (3.2.7) is fulfilled for the G-torus of section 2.13
with a finite I. This result is generalized in [8]. Other examples of G-tori satis-
fying (3.2.7) will be discussed in Proposition 3.5. In the next section, we will use
this criterion to establish DerF T = IDerT o CDerF T for Jordan Zn-tori, even if
IDerT = DerZ T is not always true there.
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3.3. Proposition. Let T be an alternative G-torus with central grading group H.
Then

(3.3.1) (T, T, T ) ⊂ [T, T ] =
⊕
g/∈H

Tg;

hence

(3.3.2) T = Z(T )⊕ [T, T ] and GIF(T ) ∼= T ∗0

is 1-dimensional. If T is associative, we have

(3.3.3) IDerF T = IDerF T+ ∼=
⊕
g/∈H

Tg.

Proof. For easier notation we putB =
⊕

g/∈H Tg. We will first prove that (T, T, T ) ⊂
B. Observe that (T, T, T ) is G-graded and invariant under Z = Z(T ). Hence, ei-
ther (T, T, T ) ⊂ B or there exist homogeneous a, b, c ∈ T such that 1 = (a, b, c).
Then (ab)−1 and c have the same degree, and therefore c = z(ab)−1 = zb−1a−1 for
some nonzero z ∈ T0 = Z0 by Lemma 2.8(a). But then we obtain the contradiction
1 = z(ab)(ab)−1−za(b(b−1a−1)) = z−z = 0. Similarly, if [T, T ] is not contained in
B, we have 1 = [a, b] for suitable homogeneous a, b ∈ T , where b = z′a−1 for some
z′ ∈ Z0. Then 1 = [a, a−1]z′ = 0 gives a contradiction.

For (3.3.1) it remains to prove that B ⊂ [T, T ]. By Lemma 2.5, any nonzero a ∈
B satisfies [a, T ] 6= 0. It is of course not harmful to assume that a is homogeneous.
Then there exists a homogeneous b ∈ T such that 0 6= ab− ba = ab− (ba)(b−1b) =
ab − (b(ab−1))b (by the Moufang identity) = (a − b(ab−1))b. Since b is invertible,
it follows that 0 6= a− b(ab−1) = za for some 0 6= z ∈ Z0. But then [ab−1, z−1b] =
z−1((ab−1)b − b(ab−1)) = z−1(za) = a ∈ [T, T ] proving our result.

The first equation in (3.3.2) is obvious, and the second follows from (1.13.2).
For an associative T we always have IDerT = adT ∼= T/Z(T ) and IDerT+ =
ad[T, T ] ∼= T/(Z(T ) ∩ [T, T ]). �
3.4. Corollary. Let A be an associative G-torus over a field F of ch.F 6= 2 and let
∗ be a graded F -linear involution of A such that J := H(A, ∗) is a generating set of
the associative algebra A. Denote by H the central grading group of A. Then there
is a graded isomorphism of Lie algebras

(3.4.1) IDer J ∼= [J, J ] =
⊕

g∈G\(H∪supp J)

Ag (graded isomorphism)

and hence for all g ∈ G,

(3.4.2) dimF (IDer J)g =

{
0 if g ∈ H ∪ supp J,
1 otherwise.

Proof. Because of (1.4.3) we have an epimorphism

(3.4.3) [J, J ]→ IDer J : x 7→ adx|J
of graded Lie algebras. Its kernel consists of all x ∈ [J, J ] that commute with J
and hence also with A. But then x ∈ Z(A) so that (3.3.2) shows that x = 0.
Hence (3.4.3) is an isomorphism. For the proof of the second part of (3.4.1) let
S(A, ∗) = {a ∈ A | a∗ = −a}. Then A = J ⊕ S(A, ∗) and [J, J ] ⊂ S(A, ∗) =⊕

g/∈supp J Ag follows. By (3.3.2) we also have [J, J ] ⊂
⊕

g/∈H Ag. Conversely, for
g /∈ (H ∪ supp J) and 0 6= y ∈ Ag we get [y, x] 6= 0 for some x ∈ Jj = Aj because
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[y, J ] = 0 would imply y ∈ Z(A) =
⊕

h∈H Ah. Observe that [y, x] ∈ J and hence
g + j ∈ suppJ . Because supp J is a reflection subspace of G, we then obtain
g − j = 0 · (j · (g + j)) ∈ supp J (of course, this can also be seen directly). But
[y, x] 6= 0 implies [yx−1, x] 6= 0. So yx−1 ∈ Jg−j and 0 6= [yx−1, x] ∈ Ag ⊂ [J, J ]
follows. Finally, (3.4.2) follows immediately from (3.4.1). �
3.5. Proposition. Let T be an associative G-torus where G is finitely generated
and let H be the central grading group.

(a) (Osborn–Passman [24, Cor. 2.3]) The derivation algebra of T is a semidirect
product

(3.5.1) DerF T = IDerT o CDerT,

where
CDerF T = (CDerF T )fin = (grDerF T )H =

⊕
h∈H

(DerF T )h

and
IDerT =

⊕
g/∈H

(DerF T )g ∼=
⊕
g/∈H

Tg.

(b) For the associated Jordan algebra T+ we have Z(T ) = Z(T+),

CDerF T+ = CDerF T and IDerT+ = IDerT,

and hence also DerF T+ = IDerT+ o CDerT+ is a semidirect product.

Proof. (a) Equation (3.5.1) is proven in [24, loc. cit.]. The remaining equations
follow from (1.7.4), (3.2.2) and (3.2.3).

(b) is a corollary to (a), (2.10.2) and (3.3.3).

3.6. Proposition. Let T be an associative G-torus over a field E with ch.E 6= 2
and let H be the central grading group of T . Let J =

⊕
g∈G Jg ⊂ T+ be a Jordan G-

torus over a subfield F of E, and assume that J is a generating set of the associative
algebra T . Then Z(J) = Z(T ) ∩ J =

⊕
h∈H Jh and (J, J, J) =

⊕
h/∈H Jh. In

particular,
J = Z(J)⊕ (J, J, J) and GIF(J) ∼= J0.

Proof. By Proposition 3.3 we have
⊕

g/∈H Tg = [T, T ] = [T, Z(T ) + [T, T ]] =
[T, [T, T ]]. Because of (1.11.4) this implies (J, J, J) ⊂ J ∩ [T, T ] =

⊕
g/∈H Jg. For

the other inclusion, let 0 6= x ∈ Jg, g /∈ H . Then x /∈ Z(T ) and there exists a
homogeneous y ∈ J such that [x, y] 6= 0. Hence, yx = zxy for some 0 6= z ∈ E.
Then (x, y, y−1) = 1

4 (2 + z + z−1)x ∈ Jg, i.e., (x, y, y−1) = tx for some nonzero
t ∈ F , whence x ∈ (J, J, J). �
3.7. Corollary. Let A be an associative G-torus over a field E of ch.E 6= 2. Suppose
that G is finitely generated and that ∗ is a graded involution of the second kind. With
the notation of Example 1.11, we then have for the Jordan G-torus H = H(A, ∗)
over F :

(a) H = Z(H)⊕ (H,H,H);
(b) DerF H = IDerH o CDerH.

Proof. (a) is a special case of Proposition 3.6. For (b) we have DerE A+ = IDerA+o
CDerA+ by Proposition 3.5, and both summands are left invariant under the au-
tomorphism d 7→ d∗ of DerE A+. By (1.11.9) and (1.11.7) the fixed point spaces
under ∗ are the corresponding subalgebras for H , whence the result. �
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4. Zn-tori

4.1. Tori. A Zn-torus will be called an n-torus or simply a torus. Hence an n-
torus is a division Zn-graded algebra T =

⊕
α∈Zn Tα such that dimF Tα ≤ 1 for

all α ∈ Zn and suppT generates Zn. The reader is reminded that all algebras
considered here are alternative or Jordan over a field F of ch.F 6= 2 if T is Jordan.
In the following, the notion “torus” will always mean an alternative or a Jordan
torus.

Let T =
⊕

α∈Zn Tα and T ′ =
⊕

α∈Zn T
′
α be two n-tori. We will say that T and

T ′ are graded isomorphic, abbreviated as T ∼=Zn T ′, if there exists an isomorphism
ϕ : T → T ′ such that ϕ(Tα) = T ′α for all α ∈ Zn.

We recall from section 2.3 that suppT = Zn if T is alternative and that suppT
is a semilattice in Zn if T is Jordan. Also, by Lemma 2.4,

(4.1.1) any torus is finitely generated,

and any torus is a domain, and hence strongly prime (2.3(c)).
The structure of alternative tori has been determined up to graded isomorphism

in [5, Thm. 1.25] and in improved form in [29, 4.11]. Besides the associative tori, see
section 4.2 below, there is one more type, the so-called Cayley torus in ch.F 6= 2;
see (4.3.1).

4.2. Associative tori. An n× n matrix q = (qij) over a field F satisfying qii = 1
and qji = q−1

ij is called a quantum matrix. For a quantum matrix q the associated
quantum torus Fq = Fq[t±1

1 , . . . , t±1
n ] is the associative algebra over F with 2n

generators t±1
1 , . . . , t±1

n , and relations tit−1
i = t−1

i ti = 1 and tjti = qijtitj for
all 1 ≤ i, j ≤ n. Note that Fq is commutative if and only if q = 1 where 1 is
the quantum matrix whose entries are all 1. In this case, the quantum torus F1

becomes the algebra of Laurent polynomials F [t±1
1 , . . . , t±1

n ] in n variables.
Let 〈σ1, . . . , σn〉 be a basis of Zn, and define the degree of tα := tα1

1 · · · tαnn , where
α = α1σ1 + · · · + αnσn ∈ Zn, to be α. Then Fq =

⊕
α∈Zn Ftα is an n-torus. We

call this grading a toral Zn-grading of Fq, or, if one needs to specify a basis of Zn,
a 〈σ1, . . . , σn〉-grading of Fq.

It is shown in [5, 1.8] that any associative torus is graded isomorphic to some
Fq with a suitable toral grading. Any commutative associative torus is graded
isomorphic to a Laurent polynomial ring F1 = F [t±1

1 , . . . , t±1
n ].

4.3. Alternative tori. Suppose ch.F 6= 2. For n ≥ 3 the Cayley n-torus

Ot = (F [t±1
1 , . . . , t±1

n ], t1, t2, t3)

is the F -algebra obtained by the Cayley–Dickson process over the Laurent polyno-
mial ring F [t±1

1 , . . . , t±1
n ], using the structure constants t1, t2 and t3. This becomes

an alternative torus with suppOt = Zn and centre F [t±1
1 , . . . , t±1

n ] graded by

(4.3.1) 2Zσ1 + 2Zσ2 + 2Zσ3 + Zσ4 + · · ·+ Zσn,

for a basis 〈σ1, . . . , σn〉 of Zn with deg ti = 2σi for i = 1, 2, 3 and deg ti = σi for
i = 4, . . . , n.

We will next describe Jordan tori. For details, see [31].
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4.4. Jordan tori of Hermitian type. Let ε = (εij) be an elementary quantum
matrix, i.e., a quantum matrix with all εij = 1 or −1. On the quantum torus
Fε = Fε[t±1

1 , . . . , t±1
n ], there exists a unique involution ∗ such that t∗i = ti for all i.

The symmetric elements H(Fε, ∗) form a Jordan torus with respect to the grading
induced from a toral grading of Fε. One can show that suppH(Fε, ∗) = Zn if and
only if q = 1 if and only if H(Fε, ∗) is of strong type. If q 6= 1, the central grading
group of H(Fε, ∗) is

(4.4.1) 2Zσ1 + · · ·+ 2Zσm + Zσm+1 + · · ·+ Zσn,
for a suitable toral 〈σ1, . . . , σn〉-grading of Fε and 2 ≤ m ≤ n ([30, 2.5] and (2.10.1)),
while by [30, 1.8] the central grading group of Fε is always of type

(4.4.2) 2Zσ1 + · · ·+ 2Zσ2l + Zσ2l+1 + · · ·+ Zσn.
Let E be a quadratic field extension of F . Let σE be the nontrivial Galois

automorphism of E over F (recall that we assume ch.F 6= 2 for Jordan tori). Let
ξ = (ξij) be a quantum matrix over E such that σE(ξij)ξij = 1, or, equivalently,
σE(ξij) = ξji for all i, j. On the quantum torus Eξ = Eξ[t±1

1 , . . . , t±1
n ] over E,

there exists a unique σE-semilinear involution σ such that σ(ti) = ti for all i.
The symmetric elements H(Eξ, σ) form a Jordan torus over F with respect to the
grading induced from a toral grading of Eξ. We always have suppH(Eξ, σ) = Zn,
and the central grading groups of H(Eξ, σ) and Eξ coincide.

4.5. Jordan tori of Clifford type. Let 2 ≤ m ≤ n and let S(m) be a semilattice
in Zm. We consider the following data:

(i) Φ is the Laurent polynomial ring Φ = F [t±1
1 , . . . , t±1

n ], which we view as
a division Zn-graded algebra of supp Φ = 2Zm ⊕ Zn−m with respect to
the canonical grading assigning ti the degree (0, . . . , 0, 2, 0, . . . , 0) with 2
in the ith component in case 1 ≤ i ≤ m and degree (0, . . . , 0, 1, 0, . . . , 0)
for i > m;

(ii) I ⊂ Zm ⊂ Zm ⊕ Zn−m = Zn is a set of representatives of S(m)/2Zm,
excluding the class 2Zm;

(iii) (zi)i∈I is a family of nonzero elements in Φ2i.

The Clifford torus J(S(m), (zi)i∈I) is the quadratic form Jordan algebra constructed
in section 2.13 using the data above. In particular, the results mentioned in Lemma
2.12, section 2.13, and Lemma 2.14 hold.

4.6. The Albert torus. Let n ≥ 3. We assume that F contains a primitive 3rd
root of unity ω, in particular ch.F 6= 3, and denote by w the quantum (n × n)-
matrix with (1, 2)-entry equal to ω, (2, 1)-entry equal to ω−1 and all other entries
equal to 1.

Let Fw = Fw [u±1
1 , . . . , u±1

n ] be the quantum torus determined by w, and let
Z = Z(Fw) be the centre of Fw. One finds Z = F [u±3

1 , u±3
2 , u±1

3 , . . . , u±1
n ], the

algebra of Laurent polynomials in the variables u3
1, u

3
2, u3, . . . , un. Let 〈σ1, . . . , σn〉

be a basis of Zn and put

S := Zσ1 + Zσ2 + 3Zσ3 + Zσ4 + · · ·+ Zσn.
We give Fw a toral S-grading, i.e., Fw =

⊕
σ∈S Fuσ, where

uσ = um1
1 · · ·umnn for σ = m1σ1 +m2σ2 + 3m3σ3 +m4σ4 + · · ·+mnσn.
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One knows ([31]) that A = Fw fulfills the assumptions of section 2.15 for G = Zn
and S as above. The exceptional Jordan algebra At = (Fw , u3) of section 2.15 is
called the Albert torus. The grading of At defined in section 2.15 is called the toral
grading. We note that

(4.6.1) At is of strong type.

4.7. Classification of Jordan tori [31]. Let ch.F 6= 2. Then any Jordan torus is
graded isomorphic to one of the five tori

F+
q , H(Fε, ∗), H(Eξ, σ), J(S(m), (zi)i∈I) or At

endowed with suitable toral gradings.

4.8. Central closures of tori. By section 2.3(d), the centre Z of a torus T is an
integral domain, so that we can form the central closure T of T (see section 1.2).
It follows that T is always a central domain. By [31, 3.9], T is a Zn/H-torus over
Z, where H denotes the central grading group. Moreover, we have

(4.8.1) T is a division algebra ⇔ T is finite-dimensional.

Since both Jordan and alternative algebras are power associative, the implication
⇐ is a special case of the general fact that a power associative finite-dimensional
domain is a division algebra. To prove this general result, we consider the sub-
algebra generated by a single element and are then reduced to showing that a
finite-dimensional associative domain is a division algebra. This is of course well
known. It is, for example, an immediate consequence of Wedderburn’s Structure
Theorem. For the other direction, suppose that T is infinite-dimensional. Then the
rank of the central grading group H of T is less than n. Hence the Zn/H-torus T
contains a subalgebra which is a 1-torus. But a 1-torus is not a division algebra
by [31, 3.6] for Jordan tori and [29, §2] in the alternative case, and then T is not a
division algebra either.

We list here the central closures of Jordan tori and of the Cayley torus:
(a) The central closure of F+

q is the +-algebra of Fq, i.e., F+
q = Fq

+
. (This holds

for any prime associative A by [22, Cor. 3.4]).
(b) By Lemma 1.3, the central closures of the Hermitian tori H(Fε, ∗) and

H(Eξ, σ) are H(Fε, ∗) and H(Eξ, σ) respectively. Here H(Fε, ∗) is a finite-dimen-
sional central Jordan division algebra of degree 2m for a suitable m. Indeed, by
(4.4.2) and (4.8.1), Fε is a central-simple division algebra of dimension 22l, hence
of degree 2l. By the discussion in [14, p. 209] the degree of H(Fε, ∗) is therefore
either 2l or 2l−1.

(c) The central closure of a Clifford torus J(S(m), (zi)i∈I) is an (|I|+1)-dimension-
al Jordan division algebra of a symmetric bilinear form.

(d) The central closure of an Albert torus is a 27-dimensional Albert division
algebra over a field of characteristic 6= 2, 3. Similarly, the central closure of the
Cayley torus is an 8-dimensional octonion algebra over a field of characteristic 6= 2,
hence a division algebra by (4.8.1).

As a consequence of the above, we have

(4.8.2) dimZ T <∞ for T = H(Fε, ∗), J(S(m), (zi)i∈I),Ot and At.

We note that the central closures of Fq, F+
q and H(Eξ, σ) are, in general, not finite-

dimensional over Z.
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4.9. Proposition. For a Jordan torus J over F with ch.F 6= 3 in case J is an
Albert torus, we have J = Z(J)⊕ (J, J, J). Hence GIF(J) ∼= F1 is 1-dimensional.

Proof. This follows from (1.13.2) and the classification of Jordan tori in section
4.7, using Proposition 3.6 for J = F+

q , H(Fε, ∗), Corollary 3.7 for J = H(Eξ, σ),
(2.13.1) for J = J(S(m), (zi)i∈I) and section 2.15 for J = At. �

The analogous result for alternative G-tori is proven without classification in
Proposition 3.3.

4.10. Lemma. Let T be a Jordan torus but not of type F+
q or H(Eξ, σ) or let T

be a Cayley torus over a field F of ch.F 6= 2, 3. Then IDerT = DerZ T .

Proof. For a Clifford torus this is a special case of Lemma 2.12(c). For the remaining
cases we use (1.6.1) and Lemma 2.6. So it suffices to show that T has only inner
derivations. Given the structure of T described above, this is known. Indeed, for
T = H(Fε, ∗) we can use [14, Exercise 1, p. 258] for algebras of degree 2 and [14,
Theorem 9, p. 254] for algebras of degree ≥ 3, for the Albert torus this follows from
[14, Theorem 17, p. 408] and for the Cayley torus this is a consequence of [14, p.
301, Lemma 3] (see also [5, Lemma 1.39(b)]). �

If Fq, T = F+
q or H(Eξ, σ), then IDerT = DerZ T is not true in general. For

example, if T is simple, then DerZ T = DerF T because Z = F in this case.
We are now ready to prove our main result.

4.11. Theorem. Let T be an n-torus over a field F and assume that ch.F 6= 2 if
T is a Jordan torus and that ch.F 6= 2, 3 if T is a Cayley torus or an Albert torus.
Then

(4.11.1) DerT = IDerT o CDerT.

With respect to any nondegenerate graded invariant form we have

(4.11.2) SDerT = IDerT o (SDerT ∩ CDerT ).

If H ⊂ Zn is the central grading group of T , then

(4.11.3) IDerT =
⊕

α∈Zn\H
(DerF T )α and CDerT =

⊕
α∈H

(DerF T )α.

Proof. For T ∼=Zn Fq and T ∼=Zn F+
q , (4.11.1) has been proven in Proposition

3.5 and for T ∼=Zn H(Eξ, σ) in Corollary 3.7. The remaining cases follow from
(3.2.7) and Lemma 4.10 keeping in mind that grDerF T = DerF T since T is finitely
generated. The structure of SDerT is immediate from section 1.14, and (4.11.3)
follows from Theorem 3.2. �

Remarks. For an alternative torus, (4.11.1) was known before. Indeed, an alterna-
tive torus is either a quantum torus, in which case this was proven in [4, Lemma
2.48, p. 364] for the field F = C of complex numbers, but the proof works over
any field or a Cayley torus, in which case (4.11.1) was proven for ch.F 6= 2, 3 in
[5, Theorem 1.40]. We have reproven the result here to show how it fits in the
more general framework of tori considered in this paper, and also because it can be
done without extra effort. Since (4.11.1) holds for Jordan and alternative tori, it is
natural to conjecture that it also holds for structurable tori.
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The ideal IDerT will be described in more detail in section 4.13, Lemma 4.14,
and Theorem 4.15 below. The structure of the central derivation algebra CDerT
is determined in Theorem 4.12. Concerning SDerT ∩ CDerT , see section 1.14.

4.12. Theorem. Let T be an n-torus with centre Z and central grading group H
of rank r. Then the central derivations CDerT are isomorphic to the generalized
Witt algebra associated to Z = F [H ],D ∼= HomZ(Zn, F ) and the canonical pairing
p : HomZ(Zn, F )×H → F : (Φ, h) 7→ Φ(h). Moreover,

(4.12.1) CDerT ∼= DerF Z n Y,

where
(i) Z ⊗F HomZ(H,F ) ∼= DerF Z ∼= DerF [z±1

1 , . . . , z±1
r ] is a generalized Witt

algebra and
(ii) Y ∼= Z ⊗F HomZ(Zn/H, F ) is an abelian ideal.

If r ≥ 1 and ch.F 6= 2, then CDerT is a perfect Lie algebra.

Proof. Since CDerTfin = CDerT by Theorem 3.2, it follows from Proposition 2.9
that CDerT is a generalized Witt algebra. Note that in our case the centre Z is
actually isomorphic to the group algebra of H with a suitable grading. The splitting
(4.12.1) will be a consequence of

(4.12.2) HomZ(Zn, F ) = HomZ(H,F )⊕HomZ(Zn/H, F ).

To establish (4.12.2), we consider the canonical sequence of F -linear maps

(4.12.3) 0→ HomZ(Zn/H, F ) ι−→ HomZ(Zn, F )
%−→ HomZ(H,F )→ 0.

The imbedding ι is given by ϕ 7→ ϕ ◦ π, where π : Zn → Zn/H is the canonical
epimorphism. The map % is the restriction map. Obviously, the image of ι equals
the kernel of %. We write H = m1Zε1 + · · ·+mnZεn, where 〈ε1, . . . , εn〉 is a Z-basis
of Zn and where m1, . . . ,mn ≥ 0. Then surjectivity of % will follow from

(4.12.4) ch.F does not divide mi for any nonzero mi.

Indeed, for a Cayley torus or H(Fε, ∗) or a Clifford torus, all mi = 1 or 2, and
ch.F 6= 2 in these cases (see (4.3.1), (4.4.1), Lemma 2.12 and section 4.5). For an
Albert torus, all mi = 1 or 3, but also ch.F 6= 3 in this case (see section 4.6). Thus
we are left with Fq, F

+
q and H(Eξ, σ). Since the central grading groups of Fq and

F+
q , and the central grading groups of Eξ and H(Eξ, σ) coincide, we only need to

consider the case Fq = Fq[t±1
1 , . . . , t±1

n ]. In this case, the result is proven in [12,
Lemma 3.6]. We include a short proof for the convenience of the reader. Suppose
that p := ch.F divides mk 6= 0 for some k and let q = (qij). Then tmkk ∈ Z, and
so tmkk tj = tjt

mk
k = qmkkj t

mk
k tj, whence qmkkj = 1 for all j. Since mk = plk for some

lk ≥ 1 and ch.F = p, we have qlkkj = 1 for all j. Hence tlkk commutes with all tj ,
and we get tlkk ∈ Z, but lkεk /∈ H , a contradiction.

Thus (4.12.4) holds and % is surjective. Hence (4.12.3) is exact and so (4.12.2)
holds. By Lemma 1.10 we then have a decomposition

CDerT = (Z ⊗F HomZ(H,F ))n (Z ⊗F HomZ(Zn/H, F ))

keeping in mind that D ∼= HomZ(Zn, F ) and hence DH ∼= HomZ(Zn/H, F ). The
structure of Z ⊗F HomZ(H,F ) follows from Propositions 3.5(a) and 2.9.
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Since HomZ(Zn, F ) ∼= Fn, the right kernel of p is trivial, and hence p 6= 0 as
soon as r ≥ 1. In particular, by 1.10(b), CDerT is a perfect Lie algebra in this
case. �

We now turn to the description of IDerT . As one can see from [4] and [5], the
knowledge of IDerT will be useful in the classification of the extended affine Lie
algebras with coordinate algebras T . For the convenience of the reader we first give
a summary of the results on IDerT obtained so far.

4.13. Summary of results on IDerT . Throughout, we let T be an n-torus over
a field F satisfying the assumptions of Theorem 4.11. We denote by Z the centre
of T and by H the central grading group. We have seen in (4.11.3) that

(4.13.1) IDerT =
⊕

α∈Zn\H
(IDerF T )α.

Concerning the Lie algebra structure, we note that by (1.4.2) the Lie algebra IDerT
is a Z-form of IDer T , where T is the central closure of T .

(a) Specializing Proposition 3.5, Corollary 3.7 and (1.11.7) we know that

(4.13.2) dimF (IDerT )α = 1 for all α ∈ Zn \H and T = Fq, F
+
q or H(Eξ, σ).

Note that for T = F+
q and T = H(Eξ, σ), the central grading groupH of T coincides

with the central grading group of Fq and Eξ, respectively. Of course, (4.13.2) for
T = Fq is already contained in [4, 2.55].

(b) By Corollary 3.4 we have a similar result for T = H(Fε, ∗). Denoting by Hε

the central grading group of the quantum torus Fε we have

(4.13.3) dimF (IDerH(Fε, ∗))α =

{
1 α ∈ Zn \ (Hε ∪ suppH(Fε, ∗)),
0 otherwise.

We note that H = Hε ∩ suppH(Fε, ∗) by (2.10.1) but Hε 6⊂ suppH(Fε, ∗) in
general.

(c) For the Cayley torus Ot where ch.F 6= 3, one knows from [5, Theorem 1.40,
p. 4328] that

(4.13.4) dimF (IDerOt)α = 2 for all α ∈ Zn \H.
(d) The dimensions of (IDerT )α in the case of a Clifford torus follow from the

general formula (2.14.1). In particular, it is interesting to note that contrary to
all other cases, the dimension varies with α and it can also get arbitrarily large.
For example, in the setting of section 4.5, assume that I = {σ1, σ2}. Then
dim(IDerT )σi = 0 while dim(IDerT )σ1+σ2 = 1 (see [27, Lamma 2.4]). Or, if I
is maximal, i.e., I represents all nonzero classes in Zn/(2Zm ⊕ Zn) ∼= Zm2 , we get
dimF (IDerT )α = 2m−1 − 1 for all α ∈ Zn \H .

It remains to consider the Albert torus. Our analysis will be based on the
following general lemma.

4.14. Lemma. Let G = Z3 ⊕ · · · ⊕ Z3 with r ≥ 1 factors and let J =
⊕

g∈G Jg
be a Jordan G-torus over F which is of strong type. For an F -vector space V we
consider an F -bilinear map {·, ·} : J × J → V satisfying

(i) {xy, z}+ {yz, x}+ {zx, y} = 0
and

(ii) {x, y}+ {y, x} = 0.
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For g ∈ G denote {J, J}g =
∑

g=e+f{Je, Jf}. Then

(4.14.1) dimF {J, J}g ≤ r − 1 for g 6= 0.

Proof. We choose 0 6= tg ∈ Jg and note that then tgth = stg+h for some 0 6= s ∈ F .
It will be convenient to use the abbreviation {x : y} in case {x : y} = s{x, y} for
some 0 6= s ∈ F . Then

(4.14.2) {tng , th} = n{tg : t(n−1)g+h} for 0 ≤ n ≤ 2.

Indeed, {1, J} = 0 by (i) and for n = 2 we have {t2g, th} = 2{tg, tgth} = 2{tg : tg+h}.
Next, we let εi = 0 ⊕ · · · ⊕ 1 ⊕ · · · ⊕ 0 with 1 ∈ Z3 at the ith position and put
ti := tεi . We claim that for g = e+ f, e =

∑
i eiεi with 0 ≤ ei < 3 we have

(4.14.3) {te, tf} =
r∑
i=1

{teii : tg−eiεi}.

To prove (4.14.3) we observe that in general by (i), (ii) and commutativity of J , we
have {xy, z} = {x, yz}+ {y, xz}. Hence

{te, tf} = {te11 (te22 (· · · terr ) · · · ) : tr}
= {te11 : (te22 (· · · terr ) · · · )tr}+ {(te22 (· · · terr ) · · · ) : te11 tr}
= {te11 : te−e1ε1}+ {(te22 (· · · terr ) · · · ) : te−e1ε1}.

Continuing similarly with the second term proves (4.14.3). From (4.14.3) and
(4.14.2) we then obtain

(4.14.4) {te, tf} =
r∑
i=1

ei{ti : tg−εi}.

Now consider g =
∑r
i=1 giεi 6= 0. Applying (4.14.4) yields

{t1, tg−ε1} = −{tg−ε1 , t1}
= −(g1 − 1){t1 : tg−ε1} − g2{t2 : tg−ε2} − g3{t3 : tg−ε3} − · · · ,

whence 0 =
∑r

i=1 gi{ti : tg−εi}, which gives a nontrivial relation among the
{ti, tg−εi}, i = 1, . . . , r. �

4.15. Theorem. For the Albert torus At we have

dimF (IDerAt)α = 2 for all α ∈ Zn \H.

Proof. We apply Lemma 4.14 to the central closure J = At of At. By [31] we know
that J =

⊕
α∈Z3

3
Jα is a Z3

3-torus with Jα = Z ⊗Z Z(At)α. Also, we let {x, y} :=
[Lx, Ly] for x, y ∈ J . Since {J, J}α = (IDer J)α, we get dimZ(IDer J)α ≤ 2 for
α 6= 0 by Lemma 4.14 while (IDer J)0 = Z ⊗ (IDerAt)H = 0 by (1.4.2). On the
other side, one knows that DerZ J = IDerJ is a simple Lie algebra of type F4 (see
[15, p. 21]), and so dimZ Der J = 52. Hence

52 = dimZ IDer J =
∑
α6=0

dimZ(IDerJ)α ≤ 26 · 2 = 52,

and so dimF (IDerAt)α = dimZ(IDer J)α = 2. �
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170. MR 35:3608
20. K. McCrimmon, Alternative algebras, (unpublished book).
21. , Zelmanov’s prime theorem for quadratic Jordan algebras, J. Algebra 76 (1982), 297–

326. MR 83h:17019
22. , Jordan centroids, Comm. Algebra 27, no. 2 (1999), 933–954. MR 2000b:17041
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