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We show that split Jordan pairs over rings without 2-torsion can be distinguished
by polynomial identities with integer coefficients. In particular, this holds for
simple finite-dimensional Jordan pairs over algebraically closed fields of character-
istic not 2. We also generalize results of Drensky and Racine and of Rached and
Racine on polynomial identities of, respectively, Jordan algebras and Jordan triple
systems. Q 1999 Academic Press

0. INTRODUCTION

Identities are one of the key tools in Zel’manov’s description of prime
w x w xJordan algebras Z1, McZ and Jordan triple systems Z2, D1, D2 . This led

McCrimmon to a number of questions aimed at clarifying the structure of
w xpolynomial identities of Jordan triple systems Mc , some of which were

answered by Rached and Racine: simple finite-dimensional Jordan triple
systems of degree F 2 over algebraically closed fields of characteristic

w x/ 2 can be separated by polynomial identities and nonidentities RR , and
w xthe same is true for the simple exceptional Jordan triple systems RR2 .

That the isomorphism classes of simple finite-dimensional Jordan algebras
over algebraically closed fields of characteristic 0 are determined by the

Ž .polynomial non identities of the algebras had been shown before by
w xDrensky and Racine DR . In this paper, we generalize these results to the

setting of Jordan pairs.
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w x w xOne of the polynomials used in RR and RR2 is the inner Capelli
polynomial IC , which was shown to be a nonidentity for several classes ofn

Žw x wsimple Jordan triple systems RR, Propositions 16]19 and RR2, Proposi-
x.tion 1 . These classes all have the property that the associated Jordan pair

contains a connected grid of n idempotents. That Jordan pairs occur is not
surprising. By its very definition, the inner Capelli polynomial is a Jordan
pair polynomial rather than a Jordan triple polynomial. It is therefore

Ž .more natural to work with Jordan pairs. Our first theorem see Section 2
proves the obvious generalization of Rached’s and Racine’s results on the
inner Capelli polynomial: over rings without 2-torsion, IC is not ann
identity for any Jordan pair containing a connected grid of n idempotents.

It is an easy consequence of this theorem that the inner Capelli
polynomials can be used to distinguish between split finite-dimensional

ŽJordan pairs of different dimensions see Section 3 for the definition of
.‘‘split’’ . To separate nonisomorphic Jordan pairs of the same dimension,

we use a new variant of the inner Capelli polynomial and other polynomi-
w x w xals already introduced in DR and RR . This leads to our second

theorem, proven in Section 9: simple finite-dimensional Jordan pairs over
algebraically closed fields of characteristic / 2 can be separated by
polynomial identities. As a corollary we obtain the analogous result for

w xJordan algebras which generalizes the Drensky]Racine theorem DR .
That Jordan pairs of rectangular matrices can be distinguished by polyno-

w xmial identities is also proven in I .

1. INNER CAPELLI POLYNOMIALS AND
CAPELLI SEQUENCES

Unless stated otherwise, Jordan pairs will be considered over arbitrary
w xcommutative rings of scalars. We will use the notation of L .

Ž q y. Ž .Let X s X , X be a pair of nonempty sets. We denote by FJP X the
free Jordan pair over Z on X, defined by the universal property that for

Ž .every Jordan pair V considered as a Jordan pair over the integers and
Ž .every map w : X ª V there exists a unique homomorphism F: FJP X ª V

Ž .extending w. Such a map w or F will be called a substitution in V, while
Ž .s Ž .elements of FJP X , s s ", are called Jordan polynomials. If f s f x, y

Ž .s Ž .g FJP X is a Jordan polynomial in the generators x s x , . . . , x ,1 m
s Ž . ys Ž . Ž .x g X , and y s y , . . . , y , y g X , and w : x, y ¬ u, v gi 1 n j

s s ys ys Ž s ys .V = ??? = V = V = ??? = V m factors of V , n factors of V is
s Ž . Ž . Ž .a substitution in V we put F f s f u, v s f u , . . . , u , ¨ , . . . , ¨ , and1 m 1 n

say it results from f by the substitution F. We say that a Jordan
Ž .s s Ž .polynomial f g FJP X is an identity of a Jordan pair V if F f s 0 for
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all substitutions in V and if f is monic in the sense that some leading
monomial in f has coefficient 1.

w xWarning. Our concepts differ somewhat from the ones used in D1 ,
w x w xDMc2 , or McZ . We consider free Jordan pairs only over Z and corre-
spondingly Jordan polynomials and polynomial identities all have integer
coefficients. We will remind the reader of this by speaking of integral
Jordan polynomials and integral polynomial identities. Also, we do not
require that a polynomial identity of a Jordan pair V holds in all scalar

Ž Ž ..extensions of V see, however, criterion 3.2 .
Ž� q q q4 � y y y4.For X s x , x , . . . , x , x , x , . . . , x and s s " we put1 2 n 1 2 n

DDQs x s , x s , . . . , x s ; xys , xys , . . . , xysŽ .n 1 2 n 1 2 n

s D x s , xys ??? D x s , xys Q x s xysŽ . Ž . Ž .n n 2 2 1 1

s ??? Q x s xys , xys , x s xys , x s ??? xys , x s .� 4� 4� 4Ž .� 41 1 2 2 3 3 n n

Ž q y.The inner Capelli polynomial is then defined as IC s IC , IC gn n n
Ž .FJP X ,

IC s x s , x s , . . . , x s ; xys , xys , . . . , xysŽ .n 1 2 n 1 2 n

t s s s s ys ys yss y1 DDQ x , x , . . . , x ; x , x , . . . , x ,Ž . Ž .Ý n 1 2 n t Ž1. t Ž2. t Žn.
tgSn

Ž .twhere y1 denotes the signature of the permutation t in the symmetric
Ž w x w x. sgroup S see RR and RR2 . The Jordan polynomial IC is an alternat-n n

ing multilinear function in the generators xys and hence an identity ofi
any Jordan pair for which Vys is spanned by fewer than n elements. On
the other hand, the following theorem gives a criterion for IC s not to ben
an identity.

To establish this result we prove the existence of a special substitution
which is analogous to the concept of an Amitsur]Levitzki staircase se-
quence for the standard polynomial for matrix algebras. For a fixed

� 4s g " we define an nth order Capelli sequence in a Jordan pair V as a
Ž . Ž . Ž . s yspair of sequences u; v s u , . . . , u ; ¨ , . . . , ¨ , u , ¨ g V = V , such1 n 1 n i i

that

DDQs u , u , . . . , u ; ¨ , ¨ , . . . , ¨ s 0Ž .n 1 2 n t Ž1. t Ž2. t Žn.

s Ž . s Ž .for every permutation t g S with t / 1, and thus IC u; v s DDQ u; v .n n n
s Ž .Obviously, the interest lies in those sequences with IC u; v / 0. Butn

because of the situation in a Jordan pair of hermitian matrices in charac-
Ž .teristic 2 see the Theorem in Section 2 below , we have not included this

condition as part of the definition of a Capelli sequence.
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We give an example of a Capelli sequence in the Jordan pair I , p F q,p q
of rectangular p = q matrices over a base ring k with Jordan pair product
given by Q y s xyT x. Let E denote the usual rectangular matrix units:x i j

Ž .the ij -entry of E is 1 while all other entries of E are 0. The pairsi j i j
Ž .u , ¨ of an nth order Capelli sequence, n s pq, and s s q arej j

E , E , E , E , . . . , E , E , E , E ,Ž . Ž . Ž . Ž .11 11 21 21 py1, 1 py1, 1 p1 p1

E , E , E , E , . . . , E , E , E , E ,Ž . Ž .Ž . Ž .1q 1q 1, qy1 1, qy1 13 13 22 12

E , E , E , E , . . . , E , E , E , E ,Ž . Ž .Ž . Ž .2 q 2 q 2, qy1 2, qy1 23 23 32 22

E , E , E , E , . . . , E , E , E , E ,Ž . Ž .Ž . Ž .3q 3q 3, qy1 3, qy1 33 33 42 32

. . . , . . . , . . . . . . , . . .

E , E , E , E , . . . ,Ž . Ž .py1, q py1, q py1, qy1 py1, qy1

E , E , E , E ,Ž . Ž .py1, 3 py1, 3 p2 py1, 2

E , E , E , E , . . . , E , E , E , E .Ž . Ž . Ž . Ž .p q p q p , qy1 p , qy1 p3 p3 p2 p , 2

Note the ‘‘wrinkle’’ in the choice of the u s in the last entry of thej
second-to-last row: the u s miss E but repeat E . For this Capellij 12 p2

qŽ .sequence one finds IC u, v s E . The reader may prove this now orn p1
specialize the proof of the following Theorem, Section 2, which establishes
a more general result.

This generalization arises from the observation that the Jordan pair I p q
is a Jordan pair containing a finite connected standard grid, namely, the

Ž . �Ž . 4rectangular grid RR p, q s E , E ; 1 F i F p, 1 F j F q , and that thei j i j
Capelli sequence above comprises "-parts of idempotents in this grid
Ž Ž . Ž ..most but not all u , ¨ are idempotents in RR p, q . We claim thatj j
Capelli sequences always exist in Jordan pairs containing grids. In particu-
lar, we will give an inductive construction of Capelli sequences which
works for all Jordan pairs containing orthocollinear connected standard
grids and which produces the sequence above when applied to the Jordan

Ž .pair I and the rectangular grid RR p, q . Regarding grids and standardp q
w x w xgrids in Jordan pairs the reader is referred to N2 and N3 . Some of the

properties of standard grids are reviewed in the proof of the Theorem,
Section 2, but we recall here that a connected standard grid is either an

Žorthocollinear grid any two idempotents in the grid are either equal,
.orthogonal, or collinear or an odd quadratic form grid or a hermitian grid,

see also Section 3 below.
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2. EXISTENCE OF CAPELLI SEQUENCES

THEOREM. Suppose V contains a finite connected standard grid GG of size
< < Ž .GG s n. Then there exists a Capelli sequence u; v in V such that

Ž . Ž . s � s Ž q y. 4a u s u , . . . , u ; GG [ g ; g s g , g g GG ,1 n

Ž . Ž . ys ysb v s ¨ , . . . , ¨ ; GG is an enumeration of GG ,1 n

Ž . s Ž . sc if GG is not a hermitian grid then IC u; v s "e for some e g GG,n
� 4while in the case of a hermitian grid GG s h ; 1 F i F j F r of rank r G 2i j

s Ž .s ry2 swe ha¨e IC u; v s 2 h .n 1 r

Proof. We will first consider orthocollinear grids and construct the
sequences u and v for all such grids at once. Thus, let GG be a connected
orthocollinear standard grid. We will need the following known facts
about GG:

Ž s . ysFact 1. For any g, h g GG the product Q g h is zero unless g s h,
Ž s . ys sin which case Q g h s g .

Ž Ž . Ž .Fact 2. If g , g g GG are collinear g g V g and g g V g ,1 2 1 1 2 2 1 1
. � s ys s 4denoted g i g then for any g g GG the product g g g is either1 2 1 2

� s ys s 4 szero or g s g , i s 1, 2, in which case, respectively, g g g s g ori 1 1 2 2
� s ys s 4 sg g g s g .1 2 2 1

Ž .Fact 3. If g , g g GG are two orthogonal idempotents g H g then1 2 1 2
� s ys s 4 Ž .for any g g GG the product g g g either vanishes or g , g, g is a1 2 1 2

� 4hook, i.e., g i g i g H g . In the latter case, there exists e g "1 and1 2 1
Ž .e g GG such that g , g, g , e e is a quadrangle of idempotents. In particu-1 2

� s ys s 4 slar, g H e i g , i s 1, 2, and g g g s e e .i 1 2

Ž . � Ž .4For FF ; GG and g g GG we put FF g s f g FF; f g V g . We will usei i
subfamilies FF of GG and elements e g GG _ FF which are hooked up to FF:

ˆfor any f g FF with f H e there exists f g FF such that e is hooked to f via
ˆ ˆŽ .f , i.e., e, f , f is a hook. An example of such a configuration is:

Let FF ; GG be a connected subgrid of GG .

Then any e g GG _ FF with FF e / B is hooked up to FF. 1Ž . Ž .1

Indeed, let f g FF with f H e. By assumption we know that there exists
ˆ ˆ ˆ ˆf g FF with e i f. If f i f we are done: e is hooked to f via f g FF.

ˆOtherwise f H f , and by Fact 3 applied to the connected grid FF there exist
ˆŽ .f , f g FF such that f , f , f , " f ; FF is a quadrangle of idempotents. By1 2 1 2

Ž . Ž .orthocollinearity of GG we have f g V e l V f for i s 1 or 0. If i s 11 i 1
then e is hooked up to f via f g FF. If i s 0 then e is hooked up to f via1
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f g FF: by the Peirce multiplication rules2

q̂ y q ŷ q yf s " f f f , f f f g V e l V f .Ž . Ž .� 4 � 4ž /2 1 1 1 1

We also need:

If FF ; GG is a connected subgrid then so is FF g for any g g GG . 2Ž . Ž .0

Ž .That FF g is again a standard grid is immediate from the definitions. So it0
Ž . Ž .remains to prove connectivity, i.e., any orthogonal pair f , f ; FF g1 3 0

Ž .imbeds in a hook in FF g . But since FF is connected there exists an0
Ž . Ž .orthogonal pair f , f ; FF such that f , f , f , " f is a quadrangle, and2 4 1 2 3 4

a quadrangle is orthogonal to g as soon as two opposite corners are: since
Ž . Ž .f q f f f q f we have g g V f q f s V f q f , and thus f , f g1 3 2 4 0 1 3 0 2 4 2 4

Ž .FF g .0
We are now ready to construct a Capelli sequence with properties

Ž . Ž .a ] c for an orthocollinear grid GG. If n s 1 we are trivially done:
� 4 Ž . Ž s ys . sGG s e and u; ¨ s e ; e is a Capelli sequence for IC . So in the1 1 1 n

Ž . ysfollowing let n ) 1. The enumeration ¨ of GG and the elementsi
u g GG s comprising the Capelli sequence will be constructed inductively.i

Ž .The ith induction step i G 1 will use the following data:

Ž . ii a subset GG ; GG which is a connected subgrid for i G 2,
Ž . i iii e g GG _ GG which is hooked up to GG ,i

Ž . Ž . siii a choice of u , . . . , u , u g GG , and an enumeration1 mi j
Ž . Ž i.ys¨ , . . . , ¨ of GG _ GG such that, regardless of the choice of the1 m i

Ž . Ž i.ysfollowing u , . . . , u and the enumeration ¨ , . . . , ¨ of GG , wem q1 n m q1 ni i

have

DDQs u, t v s 0 unless t j s j for 1 F j F m ,Ž . Ž .Ž .n i

s Ž Ž .. s Ž .where DDQ u, t v [ DDQ u , u , . . . , u ; ¨ , ¨ , . . . , ¨ , andn n 1 2 n t Ž1. t Ž2. t Žn.

. . . Q u ¨ , ¨ , u ??? ¨ , u s "es.� 4� 4Ž .� 41 1 2 2 m m ii i

Ž .Thus, for t g S with t j s j for 1 F j F m we haven i

DDQs u, t v s " . . . es , ¨ys , us . . . ¨ys us .Ž . � 4Ž . � 4½ 5n i t Žm q1. m q1 t Žn. ni i

Ž . Ž .In the ith induction step we will construct the data i ] iii for i q 1 such
that GG iq1 is a proper subset of GG i. After a finite number of steps this

Ž . Ž .process stops, producing a Capelli sequence with properties a ] c . The
reader may want to keep in mind the example above, which arises from the

Ž .general construction in p steps by taking e s E , E , 1 F i F p, andi i1 i1
i �Ž 4GG s E , E ; i F l F p, 2 F j F q for i G 2.l j l j
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Ž .Beginning of Induction i s 1 . We start by choosing arbitrarily some
1 � 4 Ž .e g GG. By Fact 3, e is hooked up to GG [ GG _ e . We let u , ¨ s1 1 1 1 1

Ž s ys . Ž . se , e . Then Q u ¨ s e and, by Fact 1, for any enumeration1 1 1 1 1
Ž . ys 1, s Ž .¨ , . . . , ¨ of the remaining g in GG the term Q u ¨ vanishes if2 n 1 t Ž1.
Ž . Ž . Ž .t 1 / 1. Thus i ] iii hold for i s 1 with m s 1.1

Induction Step. We suppose that we are given the data described in
Ž . Ž .i ] iii for some i G 1. We will distinguish two cases A and B depending
on whether or not all idempotents of GG i are collinear to e .i

Case A. Not all idempotents of GG i are collinear to e . Let h g GG i withi
i i Ž .h H e . Since e is hooked up to GG , there exists f g GG such that e , f , hi i i

is a hook. By Fact 3, it can be completed to a quadrangle: there exists
Ž .e g GG such that e , f , h, " e is a quadrangle of idempotents. Weiq1 i iq1

iq1 iŽ . i i iq1put GG s GG e . This is a proper subset of GG since f g GG _ GG . It is0 i
2 Ž .also a connected subgrid of GG: for i s 1 we have GG s GG e so that0 1

Ž . iconnectivity follows from 2 ; for i G 2 we know by induction that GG is
Ž . iq1 Ž .connected and hence again by 2 that GG is connected. Thus i holds

Ž . iq1for i q 1. We also have ii . Indeed, e i e implies that e f GGi iq1 iq1
iŽ . Ž . Ž iq1. Ž . Ž .and since h g GG e l GG e s GG e it follows from 10 i 1 iq1 1 iq1

iq1 iŽ . Žthat e is hooked up to GG . We now enumerate GG e s g , . . . ,iq1 1 i m q1i
.g s f , l s m , and choosel iq1

u , . . . , u , u s g s , . . . , g s , hs ,Ž . Ž .m q1 ly1 l m q1 ly1i i

¨ , . . . , ¨ , ¨ s gys , . . . , gys , gys s fys .Ž . Ž .m q1 ly1 l m q1 ly1 li i

Ž .Note the choice of u , ¨ ! By construction, all u g GG, 1 F j F l, andl l j
Ž . Ž iq1.ys¨ , . . . , ¨ is an enumeration of GG _ GG . To show the remaining1 l

Ž . � .parts of iii we suppose that the sequence u , . . . , u ; ¨ , . . . , ¨ has been1 l 1 l
Ž . Ž . Ž .completed to a sequence u; v satisfying a and b of the theorem, and

Ž .we let t g S . We can assume t j s j for 1 F j F m . For m q 1 - l sn i i
� s 4m we have g i e and hence, by Fact 2, e , ¨ , u s 0iq1 m q1 i i t Žm q1. m q1i i i

Ž . � s 4unless t m q 1 s m q 1, in which case e , ¨ , u s e . Analo-i i i m q1 m q1 ii i

gously, for any j - l we have

. . . es , ¨ , u . . . ¨ , u s 0� 4� 4½ 5i t Žm q1. m q1 t Ž j. ji i

Ž .unless t k s k for m F k F j, and in this case the product equals e .i i
� s 4 � s s 4Finally, we consider the product e , ¨ , u s e , ¨ , h . We cani t Ž l . l i t Ž l .

Ž . ys � 4assume that t j s j for 1 F j - l. Then ¨ s g for some g g f jt Ž l .
iŽ . Ž .GG e . Hence, by Fact 3, this product vanishes unless g s f , i.e., t l s l,0 i

�� � s s 4 44and in this case we obtain . . . e , ¨ , h . . . s "e . This finishes thei l iq1
induction step in Case A.
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Case B. All idempotents in GG n are collinear to e . In this case thei
i Ž .induction stops: we enumerate GG s g , . . . , g arbitrarily and putm q1 ni

Ž . Ž s ys . Ž . Ž .u ,¨ s g , g for m - j F n. Then u; v s u , . . . , u ; ¨ , . . . , ¨j j j j i 1 n 1 n
Ž . Ž .satisfies a and b of the theorem, and we claim that it is also a Capelli

Ž .sequence with property c . Indeed, it is enough to consider t g S withn
Ž . st j s j for 1 F j F m . Since then ¨ / e while g i e , Fact 2i t Žm q1. i m q1 ii i

� 4 Ž .shows that e , ¨ , u s 0 unless t m q 1 s m q 1, and in thisi t Žm q1. m q1 i ii i
� s 4 scase e , ¨ , u s e , soi m q1 m q1 ii i

DDQs u; t v s " . . . es , ¨ys , us . . . ¨ys us .Ž . � 4Ž . � 4½ 5n i t Žm q2. m q2 t Žn. ni i

s Ž Ž ..Repeating this argument shows DDQ u, t v s 0 unless t s 1, in whichn
s Ž . scase DDQ u, v s "e .n i

w xAssume now that GG s QQ is an odd quadratic form grid N2, II.1.1 :o
� 4 Ž Ž .QQ s g j QQ , where g governs every g g QQ g g V g and g go 0 e 0 e 2 0 0

Ž . . � 4 Ž .V g , denoted g & g and QQ s g ; 1 F i F m , m s n y 1 r2, is an1 0 e " i
even quadratic form grid, i.e., g H g and g i g for i / j. In thisqi yi " i " j
case we can explicitly list a Capelli sequence. Our choice is analogous to

Ž . Ž s ys .the orthocollinear case: we choose e s g , let u ; ¨ s g ; g ,1 q1 1 1 q1 q1
Ž . � 4enumerate GG g s QQ _ g , and build in a wrinkle at the end of the1 q1 o "1

sequence. In precise terms, we let

u s g s , . . . , u s g s , u s g s , . . . ,1 q1 m qm mq1 ym
s su s g , u s g s u ,ny2 y2 ny1 y1 n
ys ys ys¨ s g , . . . , ¨ s g , ¨ s g , . . . ,1 q1 m qm mq1 ym
ys ys ys¨ s g , ¨ s g , ¨ s g .ny2 y2 ny1 0 n y1

s Ž Ž .. Ž . Ž .In DDQ u, t v the product Q u ¨ is nonzero only if t 1 s 1. Forn 1 t Ž1.
Ž . Ž . � 4t 1 s 1 we have Q u ¨ s u , and for 2 F j F n y 2 a product u ¨ u1 1 1 1 t Ž j. j

Ž . � s ys s 4is nonzero only if t j s j since g g g s 0 for i / j. Therefore" i 0 " j
s Ž Ž .. Ž .DDQ u, t v vanishes unless t j s j for 1 F j F n y 2, and in this casen
s Ž Ž .. �� s s 4 s 4 � 4DDQ u, t v s g , ¨ , g ¨ g where ¨ , ¨ sn 1 t Žny1. y1 t Žn. y1 t Žny1. t Žn.

� ys ys 4 Ž . ysg , g equality of sets . Since g H g we must have ¨ s gy1 0 1 y1 t Žny1. 0
ys s Ž Ž ..and ¨ s g for DDQ u, t v to be nonzero. Thus t s 1 andt Žn. y1 n

s Ž . � s ys s 4 sDDQ u, v s g g g s g .n 0 y1 y1 0
� 4Finally we consider a hermitian grid HH s h ; 1 F i F j F r of ranki j

w xr G 2 N2, II.1.2 . But since, for r s 2, HH is an odd quadratic form grid we
can assume r G 3. We recall that the relations and multiplication rules of
the idempotents h g HH are an axiomatization of the relations and multi-i j

Ž .plication rules satisfied by the ‘‘hermitian matrix units’’ h s E , E andi i i i i i
Ž .h s E q E , E q E , i / j, in the Jordan pair of hermitian matrices.i j i j ji i j ji
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In particular, if we put h s h , we have the following relations fori j ji
distinct i, j, k, l:

h & h H h , h i h , h H h . 3Ž .i j i i j j i j i k i j k l

Ž .Also in this case we can list Capelli sequences u; v all at once. The pairs
Ž .u , ¨ arej j

hs , hys , hs , hys , hs , hys , . . . , hs , hys , hs , hys ,Ž . Ž . Ž . Ž . Ž .11 11 1 r 1 r 1, ry1 1, ry1 13 13 22 12

???

hs , hys , hs , hys , hs , hys , . . . ,Ž . Ž . Ž .i i i i i r i r i , ry1 i , ry1

hs , hys , hs , hys ,Ž . Ž .i , iq2 i , iq2 iq1, iq1 i , iq1

???

hs , hys , hs , hys , hs , hys ,Ž . Ž . Ž .ry2, ry2 ry2, ry2 ry2, r ry2, r ry1, ry1 ry2, ry1

hs , hys , hs , hys ,Ž . Ž .ry1, ry1 ry1, ry1 r r ry1, r

hs , hys .Ž .r r r r

The reader will notice that this sequence is constructed in a way similar to
the orthocollinear case. One proceeds in r steps, with auxiliary idem-

i � 4potents e s h and subgrids HH s h ; i F p F q F r , 1 F i F r. Thei i p q
ith step for 1 F i - r corresponds to the orthocollinear Case A. After

Ž .Ž .having chosen l s i y 1 r y ir2 elements u and an enumeration ofj
i Ž . Ž s ys .HH _ HH one puts u , ¨ s e , e , chooses an enumerationlq1 lq1 i i

Ž . Ž Ž . . iŽ . Ž . Ž s ys .g , . . . , g , m s i r y i q 1 r2 of HH e , puts u , ¨ s g , g ,lq2 m 1 i j j j j
Ž .l q 2 F j F m y 1, and builds in a wrinkle at the end by putting u , ¨m m

Ž s ys . Ž . w xs e , g , where g ; e ; e is a triangle in the sense of N2, I.2.1 .iq1 m m i iq1
Ž . iq1 iŽ .One then continues with the i q 1 th step for which HH s HH e . In0 i

r � 4the final r th step one has HH s e , which corresponds to the ortho-r
collinear Case B.

Ž .It remains to prove that the sequence u; v above is a Capelli sequence
s Ž . ry2 s Ž . Ž . � 4with IC u, v s 2 h . By 3 we have HH h s h , hencen 1 r 2 11 11

Ž s . ys sQ h h s 0 unless pq s 11, in which case we get h . One now has to11 p q 11
� s ys s 4 Ž .consider products h , h , h for j ) 1. Since h g HH h such a11 p q 1 j 11 2 1 j

Ž . Ž . Ž .product vanishes unless also h g HH h . But, by 3 , HH h sp q 2 1 j 2 1 j
� 4 � s ys s 4h , h , h and h , h , h s 0. Since pq s 11 was already chosen we11 1 j j j 11 j j 1 j

� s ys s 4 smust have pq s 1 j, in which case h , h , h s 2h . At the end of the11 1 j 1 j 11
first row we have

. . . Q u ¨ , ¨ , u . . . ¨ u s 2 ry2 hs , hys , hs ,� 4� 4Ž . � 4� 41 1 2 2 t Ž r . r 11 p q 22

Ž . � 4which vanishes unless h g HH h q h s h , h , h . The onlyp q 2 11 22 11 12 22
possible choice left is therefore pq s 12, in which case we obtain
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� s ys s 4 sh , h , h s h by the multiplication rules for hermitian grids.11 12 22 12
Ž .At the end of the i y 1 th row we arrive at a product

�� � Ž . 4 4 4 ry2 s s Ž Ž ... . . Q u ¨ , ¨ , u . . . ¨ u s 2 h : each term DDQ u, t v van-1 1 2 2 l l 1 i n

ishes unless t fixes the first i y 1 rows of hs. The same continues to hold
� s ys s 4in the ith row: h , h , h for i F p, q is zero unless pq s ii, in which1 i p q i i

s � s ys s 4case it reproduces h , and h , h , h for i F p, q and j G i q 2 van-1 i 1 i p q i j

ishes by rigid collinearity of h and h unless pq s 1i or pq s ij.1 i i j
� s ys s 4 sTherefore pq s ij and in this case we get h , h , h s h . At the end1 i i j i j 1 i

� s ys s 4of the ith row we have to consider h , h , h , i F p, q. Since1 i p q iq1, iq1
Ž . Ž .h H h this product is 0 except for pq s i, i q 1 , when it pro-1 i iq1, iq1

s Ž .duces h . Continuing in this way proves that u; v is a Capelli sequence1, iq1
s Ž . ry2 swith IC u; v s 2 h .n 1 r

Remark. The proof above is inspired by the proofs of Propositions
w x w x16]19 of RR and of Proposition 1 of RR2 , where special cases of the

theorem were proven. Indeed, suppose T s Vq[ Vy is the polarized
Ž q y.Jordan triple system of a Jordan pair V s V , V . Any Jordan triple

polynomial f on T has the form f s fq[ fy for a Jordan pair polynomial
Ž q y. q yf , f of V. Hence, the theorem also holds for T and IC s IC [ IC .n n n

w xInterpreted in this way, it yields Propositions 16, 17, and 19 of RR . The
Ž .theorem can also be interpreted for the Jordan pair T , T associated with

w xa Jordan triple system T. In this way, one obtains Proposition 18 of RR
w xand Proposition 1 of RR2 .

3. SPLIT JORDAN PAIRS

For the purpose of this paper, it is appropriate to call a Jordan pair V
over some base ring k split, or split of type GG in case we need to be
more precise, if V is freely spanned by a finite connected grid GG: V s s
[ k ? g s for s s ". In this case, we can assume that GG is a finiteg g GG

w xconnected standard grid N3, 3.8 , and hence V is obtained by base ring
² : Ž q y.extension from the Jordan pair GG s [ Z g , Z g over Z: V sg g GG

² :GG m k. All base ring extensions of V are then again split of type GG,Z

² :i.e., for any commutative unital k-algebra K we have V m K f GG m K.k Z

Any finite-dimensional simple Jordan pair over an algebraically closed
w xfield is split. This is obvious from the classification of L, 17.12 and is

w xproven without classification in N3, 3.11 . The classification of standard
w xgrids N3 shows that over any given base ring k there are the following

six types of split Jordan pairs which we describe using the notation of
w xL, 17.12 . We also give the dimension and indicate if the Jordan pair has
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invertible elements:

Split V Grid GG Dimension Inv. elem.
Ž . Ž .I 1 F p F q Rectangular grid RR p, q pq If p s qp q

n n y 1Ž .
Ž . Ž . Ž .II n G 5 Symplectic grid SS n If n ' 0 2n 2

n n q 1Ž .
Ž . Ž .III n G 2 Hermitian grid HH n Yesn 2
Ž .IV n G 5 Quadratic form grid n Yesn

Ž . Ž .QQ n or QQ ne 0
V Bi-Cayley grid BB 16 No
VI Albert grid AA 27 Yes

The types IV can of course be defined for every n, but become isomor-n
phic to other types for small n. In particular, we have

III f IV , I f IV . 1Ž .2 3 22 4

Ž .sAn integral Jordan polynomial f g FJP X is a strict identity of some
Jordan pair V over k if f is an identity for all base ring extensions V m Kk
of V. For split Jordan pairs of type GG the following conditions are
equivalent:

Ž . ² :2.a f is a strict identity of the integral Jordan pair GG , i.e., an
identity for all split Jordan pairs of type GG;

Ž . ² :2.b f is an identity of the complex Jordan pair GG m C.

Indeed, there exist polynomials f over Z in a finite number of variablesg
Ž .depending on f and GG such that for every k and every evaluation of f on

² : Ž . s Ž .V s GG m k we have f u, v s Ý g m f u, v . If f vanishes identi-g g GG g
² :cally on GG m C, then because C is infinite the polynomials f are theg

zero polynomials, hence f s 0 on V.

4. THE POLYNOMIAL ICQ l

Ž . Ž�PROPOSITION. Let ICQ x , . . . , x , z , . . . , z ; y g FJP x , . . . , x ,l 1 l 1 l 1 l
4 � 4.qz , . . . , z , y be defined by1 l

ICQ x , . . . , x , z , . . . , z ; y s ICq x , . . . , x , Q z , . . . , Q z .Ž . Ž .l 1 l 1 l l 1 l y 1 y l
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Then ICQ is an identity for all split Jordan pairs of type GG in the followingl
cases:

Ž . Ž . 2a GG s RR p, q , p - l;
Ž . Ž . Ž . Ž .Ž .b GG s SS n , n ' 1 2 , n y 1 n y 2 - 2 l.

Howe¨er, ICQ is not an identity of a split Jordan pair of dimension ll
Ž .containing in¨ertible elements. In particular, if T V denotes the T-ideal of

identities of a Jordan pair V we ha¨e

p F p9 and q F q9 m I ; I m T I > T I . 1Ž .Ž . Ž .p q p9q9 p q p9q9

ŽŽ . Ž .. Ž .Proof. a and b . By 3.2 it suffices to show that ICQ is anl
² : qŽidentity for the Jordan pair V s GG m C. Since IC x , . . . , x , Q z ,l 1 l y 1

.. . . ,Q z is alternating multilinear in Q z , . . . , Q z , it is enough to provey l y 1 y l
that every inner ideal Q Vq, ¨ g Vy, has dimension - l. But V is simple¨

Ž .nondegenerate and hence regular, ¨ is part of an idempotent c s c , ¨q
q yŽ . yŽ .of V. Therefore Q V s V c ; V e for a maximal idempotent e of V.¨ 2 2

w x Ž . 2 Ž .By the conjugacy theorem L, 17.1 , V e has dimension p in case a and2
1 Ž .Ž . Ž .dimension n y 1 n y 2 in case b .2

If V contains invertible elements there exists ¨ g Vy such that Q Vqs¨
Vy and hence by Section 2 a substitution for which ICQ does not vanish.l

Ž .Finally, with respect to 1 , it is clear that p F p9 and q F q9 implies
Ž . Ž . Ž .I ; I , which in turn implies T I > T I . Assuming T I >p q p9q9 p q p9q9 p q

Ž . Ž .2T I we will show p F p9 and q F q9: if p ) p9 then ICQ g T Ip9q9 p p9q9

Ž .2but ICQ f T I since it is not an identity of I ; I . Thereforep p q p p p q
p F q, and because I f I and I f I we then also have q F q9.p q q p p9q9 q9 p9

Ž . wRemark. A different proof for the equivalences 1 is given in I,
xTheorem 1 .

5. JORDAN PAIR POLYNOMIALS OBTAINED FROM
JORDAN ALGEBRA POLYNOMIALS

Ž .Let X be a set and let FJA X be the free nonunital Jordan algebra on
Ž � 4. Ž .qX over Z. We put X s X, y for some y f X and denote by FJP X y
Ž . w x Ž .the y-homotope of FJP X L, 1.9 . By the universal property of FJA X
Ž .there exists a unique nonunital Jordan algebra homomorphism c :

Ž . Ž .q Ž .FJA X ª FJP X mapping every x g X ; FJA X onto x g X ;y
Ž .q ŽFJP X . It is easily seen that c is an isomorphism but we do not need
. JP Ž . Ž .this. We define g [ c g for g g FJA X and call it the Jordan

homotope polynomial associated with g.
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Intuitively, g JP is obtained as follows: write g as a sum of monomials
where each monomial is a composition of maps U , squaring operatorsx

2 � 4x ¬ x , and left multiplications V defined by V u s x z u s Q z yx, z x, z xqu
Ž . Ž y .Q z y Q z for x, z, u g FJA X ; then replace each factor U by U sx u x x

2 Ž2, y . Ž .Q Q , squaring operators x by x s Q x y, and the left multiplica-x y
Ž y . Ž . Ž .tions V by V s D x, Q z . For example, the polynomial ICQ x, z; yx, z x, z y l

of Proposition 4 is a Jordan homotope polynomial since the term
qŽ . Ž . Ž .DDQ x, z; y s D x , Q z ??? D x , Q z Q Q z is the image undern y n 2 y 2 x y 11

Ž .c of the Jordan algebra polynomial VVU x, z s V ??? V U z . Wex , z x , z x 1n n 2 2 1

will later use the following examples of homotope polynomials:

Ž . Ž . w xa Racine’s central polynomials Let n G 3. By R, Theorem 3
Ž . Ž� 4.there exist homogeneous integral polynomials R x , x g FJA x , xn 1 2 1 2

Ž .which are central polynomials of the Jordan algebra J s H CC of hermi-n
tian matrices over an associative composition algebra CC over a field k, i.e.,

Ž .R J, J ; k ? 1, where 1 is the identity element of J. Since the mapn
Ž .V y V is a derivation, the derived version of R x , x ,x , x x , x n 1 23 4 4 3

DR x , x , x , x s x , x , R x , x y x , x , R x , x ,� 4 � 4Ž . Ž . Ž .n 1 2 3 4 3 4 n 1 2 4 3 n 1 2

is then a homogeneous integral polynomial identity of J. The associated
Ž .integral homotope polynomials will be denoted R x , x ; y [n 1 2

Ž .JP Ž . Ž .JPR x , x and DR x , x , x , x ; y [ DR x , x , x , x ; y andn 1 2 n 1 2 3 4 1 2 3 4
called, respectively, the Racine homotope polynomial and the derï ed
Racine homotope polynomial.

Ž . w Ž . Ž .xb We recall from McZ, 0.25 and 7.6 that in a Jordan algebra
Ž . 2the commutator square is defined as C x , x s x (U x y U x y1 2 1 x 1 x 22 1

U x 2, and the standard Clifford polynomial isx 12

SC x , x , x , x s C x , x , x , x y x , C x , x , x .� 4 � 4Ž . Ž . Ž .1 2 3 4 1 2 3 4 3 1 2 4

In the setting of Jordan triple systems the associated homotope polynomi-
w xals were introduced in RR . We denote them by

JPC x , x ; y [ C x , xŽ . Ž .1 2 1 2

s x , y , Q Q x y Q Q Q y y Q Q Q y ,� 41 x y 1 x y x x y x2 1 2 2 1

JPSC x , . . . , x ; y [ SC x , x , x , xŽ . Ž .1 4 1 2 3 4

s C x , x ; y , Q x , x y x , Q C x , x ; y , x ,Ž . Ž .� 4 � 41 2 y 3 4 3 y 1 2 4

Ž .and call SC x , x , x , x ; y the standard Clifford homotope polynomial. As1 2 3 4
we will show in the following lemma, SC is in fact a Clifford homotope

w xpolynomial in the spirit of DMc2 : it vanishes on quadratic form pairs but
not on the Jordan pair of hermitian matrices of rank G 3.
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6. STANDARD CLIFFORD HOMOTOPE POLYNOMIALS

w xLEMMA RR . The standard Clifford homotope polynomial SC does not
Ž .¨anish on any Jordan pair containing a rectangular grid RR 2, 3 or a hermitian

Ž .grid HH 3 . On the other hand, SC is an identity of rectangular matrix pairs of
size 1 = q and of quadratic form pairs.

In particular, SC dï ides the split Jordan pairs into two groups: it does not
Ž . Ž . Ž .¨anish on I 2 F p F q, 3 F q , II 5 F n , III 3 F n , V, and VI, but itp q n n
Ž . Ž .¨anishes on I 1 F q and IV 3 F n .1q n

w xProof. The first part follows essentially from RR, Proposition 2 and
w x Ž .the remark on pages 976]978 of RR . Indeed, for any triangle g ; e , e1 2

Ž s s ys .of idempotents in a Jordan pair V one easily calculates C e , e ; g s1 2
s Ž . Ž .g . If V contains a rectangular grid RR 2, 3 s e ; 1 F i F 2, 1 F j F 3i j

Ž . Ž ys ys . sthen e q e ; e , e is a triangle, and since Q e q e e s 0 and12 21 11 22 12 21 13
e H e we obtain13 21

SC es , es , es , es ; eys q eys s 0 y es , eys , es s yes .� 4Ž .11 22 13 22 12 21 13 12 22 23

Ž . Ž .Similarly, if HH 3 s h , 1 F i F j F 3 ; V is a hermitian grid theni j
Ž . Ž ys . s Ž .h ; h , h is a triangle and one verifies, using Q h h by 2.3 ,12 11 22 12 13

SC hs , hs , hs , hs ; hys s 0 y hs , hys , hs s yhs ,� 4Ž .11 22 13 23 12 13 12 22 23

That SC vanishes on rectangular matrix pairs of size 1 = q and on
w xquadratic form pairs is shown in RR, Propositions 1 and 2 .

Concerning split Jordan pairs, one only has to observe that the first
Ž . Ž . Ž .group contains RR 2, 3 or HH 3 while in view of the isomorphisms 3.1 the

second group is made up of special types of rectangular matrix pairs and
quadratic form pairs.

Ž .7. IDENTITIES OF J AND OF J, J

LEMMA. Let k be an infinite field of characteristic / 2, and let J be a
finite-dimensional unital Jordan algebra o¨er k. Then a homogeneous integral

Ž .polynomial g g FJA X is a polynomial identity of J if and only if the integral
JP Ž .homotope polynomial g is an identity of the Jordan pair V s J, J .

Proof. Under a specialization Xqs X ª Vqs J and y ¬ ¨ g Vys J,
the polynomial g JP becomes the polynomial g evaluated on the Jordan
algebra Vq , which is nothing else but the ¨-homotope of J. Since J s Vq

¨ 1
for the unit element 1 of J s Vy, it is clear that g is an identity of J if g JP

is an identity of V. To prove the converse we may after a base field
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extension assume that k is algebraically closed. It suffices to prove that
g JP vanishes under any specialization of type y ¬ ¨ , where ¨ belongs to
the Zariski-dense subset of invertible elements of J. But for such a ¨ the

q w xJordan algebra V is isomorphic to J since ¨ is a square in J J, p. 60 and¨
w x qJ, VI.7 Lemma, p. 242 . Therefore g vanishes on V .¨

8. THE DERIVED RACINE HOMOTOPE POLYNOMIAL

PROPOSITION. Let n G 3 and let k be a ring without 2-torsion. The
Ž . Ž Ž .derï ed Racine homotope polynomial DR x , x , x , x ; y see a , Sectionn 1 2 3 4

.5 is an identity of the Jordan pairs I , II , and III o¨er k, but not ofnn 2 n n
I , II , and III for any m ) n.m m 2 m m

Ž .Proof. Let CC s k, k [ k, and Mat k . The canonical involution of CC2
considered as a composition algebra, i.e., Id for CC s k, the exchangek

Ž .involution for CC s k [ k, and the symplectic involution for CC s Mat k ,2
extends naturally to an involution on the associative algebra of m = m

Ž .matrices over CC. Let H CC be the Jordan algebra of hermitian matricesm
with respect to this involution. The Jordan pairs III , I , and II arem m m 2 m

Ž . Ž .the Jordan pairs of the Jordan algebras H CC . Since DR x , . . . , x gm n 1 4
Ž .FJA vanishes on the Jordan algebra H CC over fields, the correspondingn

Ž .homotope polynomial DR x , . . . , x ; y vanishes on the Jordan pairn 1 4
Ž Ž . Ž ..H CC , H CC for k s C by the Lemma, Section 7, and then for arbitraryn n

Ž .k by 3.2 .
Ž . JPTo prove that the homotope polynomial DR x , x , x , x ; y s DRn 1 2 3 4 n

Ž Ž . Ž ..does not vanish on the Jordan pairs H CC , H CC for m ) n, it sufficesm m
to establish nonvanishing of the Jordan algebra polynomial DR onn

Ž . JPH CC since DR evaluated for y ¬ 1 yields DR . This in turn willm n n
follow from

DR does not vanish on H CC , m ) n , for fields of characteristic / 2.Ž .n m

1Ž .

Ž . w xIndeed, if 1 holds we can proceed as in RR2, p. 2691 : since k has no
2-torsion, there exists a prime ideal ` of k not containing 2. The quotient

Ž .field F of R s kr` has characteristic / 2. By 1 , DR is not an identityn
Ž .of H CC over F; clearing denominators by homogeneity then shows thatm

Ž .DR is not an identity of H CC over R and hence also not over k.n m
Ž . w xIt remains to prove 1 . We use an argument from DR, p. 312 . By

w x Ž Ž . Ž ..R, Theorem 2 one knows R H CC , H CC s k ? 1 if k is a field ofn n n
Ž . Ž .characteristic / 2. Hence R u , u s 1 for some u , u g H CC . Thenn 1 2 1 2 n

Ž . Ž . Ž .viewing u , u g H CC gives R u , u s diag 1, . . . , 1, 0, . . . , 0 \1 2 m n 1 2
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Ž .c g H CC , and taking u s h s E and u s h sm 3 nq1, nq1 nq1, nq1 4 n, nq1
1� 4 � 4E q E gives u u c y u u c s u . This finishes the proofn, nq1 nq1, n 3 4 4 3 44

of the proposition.

9. DISTINGUISHING SPLIT JORDAN PAIRS

THEOREM. Let k be a ring without 2-torsion. Then the split Jordan pairs
o¨er k can be distinguished by the following integral polynomial identities:

Ž .1 inner Capelli polynomials IC;
Ž .2 inner Capelli homotope polynomials ICQ;
Ž .3 derï ed Racine homotope polynomials DR;
Ž .4 the standard Clifford homotope polynomial SC;
Ž .5 the Jordan pair analogue of the Glennie polynomial.

In particular, this is so for simple finite-dimensional Jordan pairs o¨er
algebraically closed fields of characteristic / 2.

To be distinguishable by integral polynomial identities means that if V
and W are split Jordan pairs of types GG and GG9, respectively, with GG / GG9
then one of the five Jordan polynomials listed above is an identity of one
of them but not of the other. We will denote this by V l W. That split
Jordan pairs of type I can be distinguished by polynomial identities is also

w xproven in I .

Proof. We will distinguish between split Jordan pairs of different
dimensions by an appropriate inner Capelli polynomial. In particular,

w xV l VI. LMc, Theorem 3.10 the Jordan pair version of the Glennie
identity does not vanish on the exceptional Jordan pair V, hence neither
on VI. On the other hand, it vanishes on all a-special Jordan pairs, in
particular on the first four types I]IV. Hence we can distinguish between
V, VI, and the a-special types so that in the following it is sufficient to
consider only the types I]IV.

Within the classes II, III, and IV we can distinguish by dimensions via
IC s. If pq s p9q9 with p / p9, say p - p9, we have I l I by evaluat-l p q p9q9

ing ICQ for l s p92: by the Proposition, Section 4, it vanishes on I butl p q
does not vanish on I ; I . Thus, in the following we only needp9 p9 p9q9

to distinguish between Jordan pairs belonging to different classes I, II, III,
or IV.

Ž .By the Lemma, Section 6, nonvanishing respectively, vanishing of the
standard Clifford homotope polynomial SC will divide the special split
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Jordan pairs into the following two disjoint sets:

I 2 F p F q , 3 F q , II 5 F n , III 3 F nŽ . Ž . Ž .� 4p q n n

l I 1 F q , IV 3 F n .Ž . Ž .� 41q n

ŽWithin the second set we can distinguish I l IV by ICQ see the1n n n
.Proposition, Section 4 . We are therefore left with distinguishing Jordan

Ž . Ž . Ž .pairs in different classes I 2 F p F q, 3 F q , II 5 F n , and III 3 F np q n n
which have the same dimension.

Ž .I l III . We have pq s n n q 1 r2. If p - q the polynomial ICQp q n p q
will distinguish between I and III since l s pq ) p2. In case p s q wep q n
have p - n and hence I l III by the Proposition, Section 8.p p n

Ž . Ž .II l III . We have m m y 1 r2 s n n q 1 r2 \ l, i.e., m s n q 1.m n
Ž .If m ' 1 2 we can use ICQ to distinguish between II and III sincel m n

Ž .Ž . Ž .m y 1 m y 2 r2 - l. If m ' 0 2 we have mr2 - n and hence II ªm
III by the Proposition, Section 8.n

I l II . Equality of dimensions leads top q n

2 pq s n n y 1 1Ž . Ž .

For p s q we will distinguish between I and II by applying thep p n
Proposition, Section 8. Namely, DR does not vanish on I while it willpy1 p p
vanish on any II which is imbeddable in a II , i.e., if n F 2 p y 2.n 2Ž py1.

Ž . 2These two inequalities are fulfilled if ) n q 2 F 2 p. But since 2 p s
Ž . Ž .n n q 1 the inequality ) is true for any n G 5.
We can now assume p - q. In this case the polynomial ICQ vanishesl

on I for any l ) p2 but does not vanish on II if l s dim II sp q 2 m 2 m
Ž .m 2m y 1 . Hence it does not vanish on II for which II ; II , i.e., forn 2 m n

2m F n. This yields the inequality

p2 - m 2m y 1 . 2Ž . Ž .

Ž . Ž .For even n we can choose n s 2m and then 2 follows from 1 and
p - q. Hence in the following we can assume that n is odd. We take

Ž . 2 Ž .Ž .2m s n y 1, and then 2 is equivalent to 2 p - n y 1 n y 2 . Observe
that we can distinguish between I and II using the polynomial ICQ inp q n l
another way: it does not vanish on I ; I for l s p2 but it vanishes onp p p q

Ž .Ž . Ž .II whenever n y 1 n y 2 - 2 l using b of the Proposition, Section 4,n
2 Ž .Ž .for n odd, i.e., whenever 2 p ) n y 1 n y 2 . Therefore I l II if wep q n

show that the following system does not have an integral solution:

2 p2 s n y 1 n y 2 , 2 pq s n n y 1 , 2 F p - q , n ' 1 2 .Ž . Ž . Ž . Ž .
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Since n y 1 and n y 2 have different prime divisors, the first equation
implies that there exist relatively prime a, b g N such that n y 1 s 2 a2,
n y 2 s b2, p s ab. Substituting this into the second equation yields

Ž 2 . 2 Ž 2 .2 abq s b q 2 2 a , thus bq s a b q 2 . Since b is odd it is relatively
prime to b2 q 2, hence b divides a. On the other hand, n y 1 s 2 a2 s
b2 q 1 implies that a - b or that a s b s 1, which contradicts that b
divides a or that p G 2.

10. DISTINGUISHING JORDAN ALGEBRAS AND
JORDAN TRIPLE SYSTEMS

COROLLARY. O¨er algebraically closed fields of characteristic / 2, inte-
gral polynomial identities distinguish the isomorphism classes of the following
simple finite-dimensional Jordan structures:

Ž .a Jordan algebras;
Ž .b polarized Jordan triple systems.

Ž . w xFor fields of characteristic 0, a is proven in DR, Theorem 1 .

Ž . Ž .s Ž q y.Proof. a A Jordan pair polynomial f g FJP X , X s X , X , is
also a Jordan algebra polynomial in the free Jordan algebra over Z on the
generating set X s Xqj Xy. If J is a Jordan algebra, f vanishes on the

Ž .Jordan pair J, J if and only if f vanishes on J. Over the algebraic
closure, isotopy of Jordan algebras is the same as isomorphism. Hence two
simple Jordan algebras are isomorphic if and only if the corresponding
Jordan pairs are isomorphic.
Ž . q y q yb Let S s S [ S and T [ T be two simple polarized Jordan

w x w xtriple systems. By N1, Lemma A.1 and N1, Theorem A.3 , the Jordan
Ž q y. Ž q y.pairs SS s S , S and TT s T , T are simple, and S and T are

isomorphic as Jordan triple systems if and only if SS is isomorphic to
Ž q y. o p Ž y q.TT s T , T or to TT s T , T . Since simple finite-dimensional Jor-

Ž .dan pairs always have an involution, we have S f T m SS f TT. As in a , a
Ž .sJordan pair polynomial f g FJP X can be interpreted as a Jordan triple

polynomial in the free Jordan triple system over Z on the generating set
X s Xqj Xy. Moreover, if f vanishes on SS but not on TT, then f
vanishes on S and not on T.
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