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Introduction: Cohomological invariants

F - a base field. For simplicity let’s restrict to the case char F = 0

G - algebraic group over F .

FieldsF - category of field extensions L/F .

Functor H1(∗,G )

H1(∗,G ) : FieldsF → Sets

L/F 7→ H1(L,G )
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Introduction: Cohomological invariants
Let H be another functor

H : FieldsF → Abelian Groups

Definition

Cohomological invariant a with values in H is a natural transformation

a : H1(∗,G )→ H, i.e.

For any L/F a map aL : H1(L,G )→ H(L) such that

H1(L1,G )
aL1 //

��

H(L1)

��
H1(L2,G )

aL2 // H(L2)

commutes for any L1 → L2.

Cohomological Invariants of degree 3 and Chow ring of a versal flag. 3 / 22 November 18, 2013



Introduction: Cohomological invariants

Invariants with values in H form an abelian group

Inv(G ,H)

Definition

Invariant a is normalized if aL(E ) = 0 for every trivial torsor E over L.

Normalized invariants form a subgroup

Inv(G ,H)norm

By functorial property,

Inv(G ,H) = Inv(G ,H)norm ⊕ H(F )
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Introduction: Galois cohomology

F sep denotes a separable closure of F

Γ = Gal(F sep/F ) denotes the absolute Galois group

A is a discrete Γ-module

Galois cohomology Hn(F ,A) is the cohomology of the profinite group Γ
with coefficients in A, i.e. the homology group of the complex C •(Γ,A)
with Cn(Γ,A) = Mapcont(Γn,A)

. . .→ Cn−1(Γ,A)
dn−1

→ Cn(Γ,A)
dn

→ Cn+1(Γ,A)→ . . .

dn(f )(g1..gn+1) = g1f (g2..gn+1) +
n∑

i=1

(−1)i f (g1..gigi+1..gn+1)+

+(−1)n+1f (g1..gn)
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Introduction: Galois modules Q/Z(d)

For a prime p
Qp/Zp(d) = lim−→

m

(µpm)⊗d

Set
Hd+1(F ,Q/Z(d)) =

∐
p−prime

Hd+1(F ,Qp/Zp(d))

Examples:

H1(F ,Q/Z(0)) = Homcont(ΓF ,Q/Z)

H2(F ,Q/Z(1)) = Br(F )
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Introduction: Cup product and residue maps

Definition

For a field F with discrete valuation v and the residue field F (v) there is
the residue map homomorphism

∂v : Hd+1(F ,Q/Z(d))→ Hd(F (v),Q/Z(d − 1))

Definition

The cup product

∪ : Hp1(F ,Q/Z(d1))× Hp2(F ,Q/Z(d2))→ Hp1+p2(F ,Q/Z(d1 + d2))

In particular this gives rise to

F× × Hd(F ,Q/Z(d − 1))→ Hd+1(F ,Q/Z(d))
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Introduction: Invariants of degree d

Definition

Degree d invariants are invariants with values in Hd(F ,Q/Z(d − 1))

Invd(G , d − 1) = Inv(G ,Hd(F ,Q/Z(d − 1)))

For d=1 and a connected group G

Inv1(G , 0)norm = 0
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Introduction: Invariants of degree 2

Let G be a semisimple algebraic group. Consider a simply-connected cover

1→ C → G̃ → G → 1

For every E/F this gives an exact sequence of pointed sets

H1(E , G̃ )→ H1(E ,G )
d→ H2(E ,C )

for every character χ : C → Gm this gives composition

βχ : H1(E ,G )
d→ H2(E ,C )

χ∗→ H2(E ,Gm) = Br(E )

This gives rise to a group homomorphism (in fact an isomorphism)

C ∗ → Inv2(G , 1)norm, χ 7→ βχ
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Introduction: (Semi-)decomposable invariants

We consider two subgroups of Inv3(G , 2)norm:

The subgroup Inv3(G , 2)dec of decomposable invariants is generated
by invariants a of the form

aL(E ) = (α) ∪ βχ(E ) for E ∈ H1(G , L)

where α is a fixed element in F×, χ ∈ C ∗

The subgroup Inv3(G , 2)semi of semi-decomposable invariants
consisting of invariants a such that for every L/F and E ∈ H1(L,G )
there is aχ ∈ L× such that

a(E ) =
∑
χ∈C∗

(aχ) ∪ βχ(E )

So, Inv3(G , 2)dec ⊆ Inv3(G , 2)semi ⊆ Inv3(G , 2)norm
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Introduction: Classifying variety

Definition

Let V be a G -representation, U an open subset of V such that
codim V \ U ≥ 3 and G acts freely on U. Then U → U/G is called a
classifying torsor G -torsor.

Classifying property: For every field extension L/F and G -torsor
E ∈ H1(G , L) there is a morphism x : Spec L→ U/G such that
E = U ×U/G Spec L

Y //

��

U

��
Spec L

x // U/G
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Introduction: Versal torsor and versal flag

Let ξ be the generic point of U/G

Definition

The versal torsor Yξ is the generic fiber of U → U/G :

Yξ = U ×U/G ξ

The versal flag Xξ is the generic fiber of U/T → U/G :

Xξ = U/T ×U/G ξ
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Main result: Statement

Theorem

There is a short exact sequence

0→ Inv3(G , 2)semi → Inv3(G , 2)norm
α→ CH2(Xξ)tors → 0
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Main result: Difference

Theorem

The difference between decomposable and semidecomposable invariants
can be computed as

Inv3(G , 2)semi

Inv3(G , 2)dec
=

(ĨW ∩ Z[T ∗]) + I 3

IW + I 3

T is a maximal split torus of G

Λ denotes the weight lattice, T ∗ ⊆ Λ

W denotes the Weyl group of G .

Z[T ∗] ⊆ Z[Λ] are the group rings of lattices T ∗ and Λ

Ĩ is the kernel of the augmentation map aug : Z[Λ]→ Z, eω 7→ 1

I = Z[T ∗] ∩ Ĩ

ĨW denotes the ideal in Z[Λ] generated by W -invariant elements of Ĩ

IW denotes the ideal in Z[T ∗] generated by W -invariant elements of I
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Main result: Some corollaries

By the classification of degree 3 invariants made by Merkurjev,
Inv3(G , 2) = Inv3(G , 2)dec in the following cases:

G of type An

G of type Bn

G of type Cn and n ≡ 1, 2, 3 mod 4

G of type Dn and n ≡ 1, 2, 3 mod 4

Then immediately in all these cases CH2(Xξ) is torsion-free.
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Idea of the proof

By the results of Rost, the assignment

Θ: Inv3(G , 2)→ H3(F (U/G ),Q/Z(2)), a 7→ aF (U/G)(Yξ)

is injective

The image of Θ coincides with the kernel of the residue map

∂ =: H3(F (U/G ),Q/Z(2))→
∐

z∈U/G (1)

H2(F (z),Q/Z(1))
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Idea of the proof: Rost cycle modules

For a scheme X Consider the cycle complex∐
z∈X (0)

Kn(F (z))→
∐

z∈X (1)

Kn−1(F (z))→
∐

z∈X (2)

Kn−2(F (z))→ . . .

Its p cohomology group Ap(X ,Kn) is called cycle module cohomology.
Note that An(X ,Kn) = CHn(X ).
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Idea of the proof: Map ρ

Let H̃3(F (U/G ), 2) denote the kernel of the pullback map

H̃3(F (U/G ), 2) = ker[H3(F (U/G ), 2)→ H3(F (Xξ), 2)]

Note that C ∗ = Λ/T ∗, for λ ∈ Λ λ̄ denotes the image of λ in C ∗. Then
there is the map

ρ : F (U/G )⊗ Λ→ H̃3(F (U/G ), 2)

φ⊗ λ 7→ (φ) ∪ βλ̄(Yξ)
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Idea of the proof: Map α

For a prime p let

H̃3(Xξ, µ
⊗2
pn ) = ker[H3

et(Xξ, µpn)→ H3(F (Xξ), µ
⊗2
pn )]

By the Leray spectral sequence and Bloch-Ogus theorem it coincides with
the homology of the cycle module complex

H2(F (Xξ), µ
⊗2
pn )→

∐
z∈X (1)

ξ

H1(F (z), µpn)→
∐

z∈X (2)
ξ

Z/pnZ
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Idea of the proof: Map α
By Merkurjev-Suslin norm residue isomorphism theorem

0

��

0

��

0

��
K2(F (Xξ)) //

p̂n

��

∐
z∈X (1)

ξ

F (z)× //

p̂n

��

∐
z∈X (1)

ξ

Z

·pn

��
K2(F (Xξ)) //

��

∐
z∈X (1)

ξ

F (z)× //

��

∐
z∈X (1)

ξ

Z

��
H2(F (Xξ), µ

⊗2
pn ) //

��

∐
z∈X (1)

ξ

H1(F (z), µpn) //

��

∐
z∈X (2)

ξ

Z/pnZ

��
0 0 0

αpn : H̃3(F (U/G ), µ⊗2
pn )→ H̃3(Xξ, µ

⊗2
pn )→ CH2(Xξ)pn−tors

Taking limit in p, n we get α : H̃3(F (U/G ),Q/Z(2))→ CH2(Xξ)tors
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Idea of the proof: The key diagram

For any point z in U/G Xz denotes the fiber product Xz = U/T ×U/G z .
There is the following diagram with exact rows

0 // A1(Xξ,K2) //

∂X

��

F (U/G )× ⊗ Λ
ρ //

d

��

H̃3(F (U/G ), 2)
α //

∂

��

CH2(Xξ)tors // 0

0 //
∐

z∈U/G (1)

Pic Xz
//

∐
z∈U/G (1)

Λ //
∐

z∈U/G (1)

H̃2(F (z), 1) // 0

dz : φ⊗ χ 7→ vz(φ)χ for φ ∈ F (U/G )×, χ ∈ Λ.

Note that d is surjective since PicU/G = 0

Inv3(G , 2)norm = ker ∂, im(ρ) ∩ ker ∂ = Inv3(G , 2)semi

Then the diagram chase gives the short exact sequence

0→ Inv3(G , 2)semi → Inv3(G , 2)norm → CH2(Xξ)tors → 0
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Idea of the proof: Decomposable and
semidecomposable invariants

In the previous diagram Inv3(G , 2)dec = ρ(F ⊗ Λ). Then the follwoing
sequence is exact

0→ Inv3(G , 2)dec → Inv3(G , 2)semi → coker(∂X )→ 0
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