
An algorithm for computing the fuzzy transitive closure
of a bipolar weighted digraph

Mateja Šajna

March 12, 2014

1 Notation and terminology

We have a bipolar weighted digraph D = (V,w+, w−), where:

• V = {1, 2, . . . , n} is the vertex set

• each arc is an ordered pair (s, t), with the arrow from vertex s to vertex t

• w+(s, t) is the weight of the positive arc (s, t), and 0 ≤ w+(s, t) ≤ 1

• w−(s, t) is the weight of the negative arc (s, t), and 0 ≤ w−(s, t) ≤ 1

• if the positive/negative arc (s, t) is absent from D, we set w+(s, t) = 0 or w−(s, t) = 0,

respectively

The bipolar weighted digraph D = (V,w+, w−) is represented by its matrices A = (ast)
n
s,t=1

and B = (bst)
n
s,t=1:

• A and B are of dimension n× n;

• their entries are ast = w+(s, t) and bst = w−(s, t).

2 Fuzzy transitive closure

The fuzzy transitive closure of D = (V,w) is the bipolar weighted digraph D∗ = (V,w∗
+, w

∗
−),

where (informally):

• w∗
+(s, t) is the maximum weight of a minimal (s, t)-walk of positive sign

• w∗
−(s, t) is (in absolute value) the maximum weight of a minimal (s, t)-walk of negative

sign

• the sign of a walk is the product of signs of all arcs traversed by the walk

1



• the weight of a walk is (in absolute value) the minimum of the weights of the arcs of

the walk

• a minimal (s, t)-walk of positive/negative sign is an (s, t)-walk not properly contained

in an (s, t)-walk of the same sign

3 Input

Positive integer n and matrices A = (ast)
n
s,t=1 and B = (bst)

n
s,t=1 as described above.

4 Output

At the end of the algorithm, matrices A = (ast)
n
s,t=1 and B = (bst)

n
s,t=1, represent the fuzzy

transitive closure of D. That is, ast = w∗
+(s, t) and bst = w∗

−(s, t) for all s, t = 1, 2, . . . , n.

5 Algorithm

procedure FuzzyTC(n, A, B)

begin

Comment: compute the fuzzy transitive closure.

for u = 1, 2, . . . , n do Comment: u is the new allowable vertex on the walk.

for i = 1, 2 do Comment: to allow for two traversals of vertex u.

begin

Comment: A′ = (a′st)
n
s,t=1 and B′ = (b′st)

n
s,t=1 will store the new entries of matrices A and

B, respectively.

for s = 1, 2, . . . , n do

for t = 1, 2, . . . , n do

begin

a′st := max{ast,min(asu, aut),min(bsu, but)}
b′st := max{bst,min(asu, but),min(bsu, aut)}

end

for s = 1, 2, . . . , n do Comment: Update A and B.

for t = 1, 2, . . . , n do

begin

ast := a′st
bst := b′st

end

end

output A

output B

2



Comment: now A contains the positive and B the absolute values of the negative weights

of the fuzzy transitive closure.

end

6 Modification

If the input digraph contains no parallel arcs, of which one is positive and one negative (that

is, there is no (s, t) with w+(s, t) > 0 and w−(s, t) > 0), then the input can be a single

matrix M = (mst)
n
s,t=1 with entries

mst =


w+(s, t) if w+(s, t) > 0
−w−(s, t) if w−(s, t) > 0
0 otherwise

Input matrices A and B for procedure FuzzyTC can then be computed using the algorithm

below.

procedure MatricesAB(n, M)

begin

Comment: copy all positive entries of M into matrix A = (ast)
n
s,t=1 and all negative ones

(their absolute values) into matrix B = (bst)
n
s,t=1.

for s = 1, 2, . . . , n do

for t = 1, 2, . . . , n do

begin

if mst ≥ 0 then

begin

ast := mst

bst := 0

end

else

begin

ast := 0

bst := −mst

end

end

output A

output B

end

3


