An algorithm for computing the fuzzy transitive closure of a bipolar weighted digraph

Mateja Šajna

March 12, 2014

1 Notation and terminology

We have a bipolar weighted digraph $D=\left(V, w_{+}, w_{-}\right)$, where:

- $V=\{1,2, \ldots, n\}$ is the vertex set
- each arc is an ordered pair (s, t), with the arrow from vertex s to vertex t
- $w_{+}(s, t)$ is the weight of the positive arc (s, t), and $0 \leq w_{+}(s, t) \leq 1$
- $w_{-}(s, t)$ is the weight of the negative arc (s, t), and $0 \leq w_{-}(s, t) \leq 1$
- if the positive/negative arc (s, t) is absent from D, we set $w_{+}(s, t)=0$ or $w_{-}(s, t)=0$, respectively

The bipolar weighted digraph $D=\left(V, w_{+}, w_{-}\right)$is represented by its matrices $A=\left(a_{s t}\right)_{s, t=1}^{n}$ and $B=\left(b_{s t}\right)_{s, t=1}^{n}$:

- A and B are of dimension $n \times n$;
- their entries are $a_{s t}=w_{+}(s, t)$ and $b_{s t}=w_{-}(s, t)$.

2 Fuzzy transitive closure

The fuzzy transitive closure of $D=(V, w)$ is the bipolar weighted digraph $D^{*}=\left(V, w_{+}^{*}, w_{-}^{*}\right)$, where (informally):

- $w_{+}^{*}(s, t)$ is the maximum weight of a minimal (s, t)-walk of positive sign
- $w_{-}^{*}(s, t)$ is (in absolute value) the maximum weight of a minimal (s, t)-walk of negative sign
- the sign of a walk is the product of signs of all arcs traversed by the walk
- the weight of a walk is (in absolute value) the minimum of the weights of the arcs of the walk
- a minimal (s, t)-walk of positive/negative sign is an (s, t)-walk not properly contained in an (s, t)-walk of the same sign

3 Input

Positive integer n and matrices $A=\left(a_{s t}\right)_{s, t=1}^{n}$ and $B=\left(b_{s t}\right)_{s, t=1}^{n}$ as described above.

4 Output

At the end of the algorithm, matrices $A=\left(a_{s t}\right)_{s, t=1}^{n}$ and $B=\left(b_{s t}\right)_{s, t=1}^{n}$, represent the fuzzy transitive closure of D. That is, $a_{s t}=w_{+}^{*}(s, t)$ and $b_{s t}=w_{-}^{*}(s, t)$ for all $s, t=1,2, \ldots, n$.

5 Algorithm

procedure $\operatorname{FuzzyTC}(n, A, B)$

begin
Comment: compute the fuzzy transitive closure.
for $u=1,2, \ldots, n$ do Comment: u is the new allowable vertex on the walk.
for $i=1,2$ do Comment: to allow for two traversals of vertex u.
begin
Comment: $A^{\prime}=\left(a_{s t}^{\prime}\right)_{s, t=1}^{n}$ and $B^{\prime}=\left(b_{s t}^{\prime}\right)_{s, t=1}^{n}$ will store the new entries of matrices A and B, respectively.

> for $s=1,2, \ldots, n$ do
> for $t=1,2, \ldots, n$ do
> \quad begin
> $\quad a_{s t}^{\prime}:=\max \left\{a_{s t}, \min \left(a_{s u}, a_{u t}\right), \min \left(b_{s u}, b_{u t}\right)\right\}$
> $b_{s t}^{\prime}:=\max \left\{b_{s t}, \min \left(a_{s u}, b_{u t}\right), \min \left(b_{s u}, a_{u t}\right)\right\}$
> end
for $s=1,2, \ldots, n$ do \quad Comment: Update A and B.
for $t=1,2, \ldots, n$ do
begin
$a_{s t}:=a_{s t}^{\prime}$
$b_{s t}:=b_{s t}^{\prime}$
end
end
output A
output B

Comment: now A contains the positive and B the absolute values of the negative weights of the fuzzy transitive closure.
end

6 Modification

If the input digraph contains no parallel arcs, of which one is positive and one negative (that is, there is no (s, t) with $w_{+}(s, t)>0$ and $\left.w_{-}(s, t)>0\right)$, then the input can be a single $\operatorname{matrix} M=\left(m_{s t}\right)_{s, t=1}^{n}$ with entries

$$
m_{s t}= \begin{cases}w_{+}(s, t) & \text { if } w_{+}(s, t)>0 \\ -w_{-}(s, t) & \text { if } w_{-}(s, t)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Input matrices A and B for procedure FuzzyTC can then be computed using the algorithm below.
procedure MatricesAB (n, M)

begin

Comment: copy all positive entries of M into matrix $A=\left(a_{s t}\right)_{s, t=1}^{n}$ and all negative ones (their absolute values) into matrix $B=\left(b_{s t}\right)_{s, t=1}^{n}$.
for $s=1,2, \ldots, n$ do
for $t=1,2, \ldots, n$ do begin
if $m_{s t} \geq 0$ then
begin

$$
\begin{aligned}
& a_{s t}:=m_{s t} \\
& b_{s t}:=0
\end{aligned}
$$

end
else
begin
$a_{s t}:=0$
$b_{s t}:=-m_{s t}$
end
end
output A
output B
end

