An algorithm for computing the fuzzy transitive closure of a bipolar weighted digraph

Mateja Šajna

March 12, 2014

1 Notation and terminology

We have a bipolar weighted digraph $D = (V, w_+, w_-)$, where:

- $V = \{1, 2, \dots, n\}$ is the vertex set
- each arc is an ordered pair (s, t), with the arrow from vertex s to vertex t
- $w_+(s,t)$ is the weight of the positive arc (s,t), and $0 \le w_+(s,t) \le 1$
- $w_{-}(s,t)$ is the weight of the negative arc (s,t), and $0 \le w_{-}(s,t) \le 1$
- if the positive/negative arc (s, t) is absent from D, we set $w_+(s, t) = 0$ or $w_-(s, t) = 0$, respectively

The bipolar weighted digraph $D = (V, w_+, w_-)$ is represented by its matrices $A = (a_{st})_{s,t=1}^n$ and $B = (b_{st})_{s,t=1}^n$:

- A and B are of dimension $n \times n$;
- their entries are $a_{st} = w_+(s,t)$ and $b_{st} = w_-(s,t)$.

2 Fuzzy transitive closure

The fuzzy transitive closure of D = (V, w) is the bipolar weighted digraph $D^* = (V, w_+^*, w_-^*)$, where (informally):

- $w_+^*(s,t)$ is the maximum weight of a minimal (s,t)-walk of positive sign
- $w_{-}^{*}(s,t)$ is (in absolute value) the maximum weight of a minimal (s,t)-walk of negative sign
- the sign of a walk is the product of signs of all arcs traversed by the walk

- the weight of a walk is (in absolute value) the minimum of the weights of the arcs of the walk
- a minimal (s, t)-walk of positive/negative sign is an (s, t)-walk not properly contained in an (s, t)-walk of the same sign

3 Input

Positive integer n and matrices $A = (a_{st})_{s,t=1}^n$ and $B = (b_{st})_{s,t=1}^n$ as described above.

4 Output

At the end of the algorithm, matrices $A = (a_{st})_{s,t=1}^n$ and $B = (b_{st})_{s,t=1}^n$, represent the fuzzy transitive closure of D. That is, $a_{st} = w_+^*(s,t)$ and $b_{st} = w_-^*(s,t)$ for all $s, t = 1, 2, \ldots, n$.

5 Algorithm

```
procedure FuzzyTC(n, A, B)
begin
    Comment: compute the fuzzy transitive closure.
    for u = 1, 2, ..., n do
                                    Comment: u is the new allowable vertex on the walk.
        for i = 1, 2 do
                                Comment: to allow for two traversals of vertex u.
           begin
    Comment: A' = (a'_{st})_{s,t=1}^n and B' = (b'_{st})_{s,t=1}^n will store the new entries of matrices A and
B, respectively.
              for s = 1, 2, ..., n do
                 for t = 1, 2, ..., n do
                    begin
                       a'_{st} := \max\{a_{st}, \min(a_{su}, a_{ut}), \min(b_{su}, b_{ut})\}
                       b'_{st} := \max\{b_{st}, \min(a_{su}, b_{ut}), \min(b_{su}, a_{ut})\}
                    end
              for s = 1, 2, ..., n do
                                              Comment: Update A and B.
                 for t = 1, 2, ..., n do
                    begin
                       a_{st} := a'_{st}
                       b_{st} := b'_{st}
                    end
           end
    output A
    output B
```

Comment: now A contains the positive and B the absolute values of the negative weights of the fuzzy transitive closure. end

6 Modification

If the input digraph contains no parallel arcs, of which one is positive and one negative (that is, there is no (s,t) with $w_+(s,t) > 0$ and $w_-(s,t) > 0$), then the input can be a single matrix $M = (m_{st})_{s,t=1}^n$ with entries

$$m_{st} = \begin{cases} w_{+}(s,t) & \text{if } w_{+}(s,t) > 0\\ -w_{-}(s,t) & \text{if } w_{-}(s,t) > 0\\ 0 & \text{otherwise} \end{cases}$$

Input matrices A and B for procedure FuzzyTC can then be computed using the algorithm below.

procedure MatricesAB(n, M)

begin

Comment: copy all positive entries of M into matrix $A = (a_{st})_{s,t=1}^n$ and all negative ones (their absolute values) into matrix $B = (b_{st})_{s,t=1}^n$.

```
for s = 1, 2, ..., n do
       for t = 1, 2, ..., n do
          begin
              if m_{st} \ge 0 then
                 begin
                    a_{st} := m_{st}
                    b_{st} := 0
                 end
              else
                 begin
                    a_{st} := 0
                    b_{st} := -m_{st}
                 end
          end
   output A
   output B
end
```