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Abstract — This paper proposes new unitary space-
time constellation designs with high diversity prod-
ucts for any number of antennas and any rate based
on Slepian’s group codes. Many of our Hamiltonian
and product constellations have the best known di-
versity products in the literature, and outperform all
other constellation designs.

I. INTRODUCTION

Consider multiple antennas in a Rayleigh flat-fading channel
with M transmitter antennas and N receiver antennas. Let
V = {Vi}/2} be an M x M unitary constellation. The rate
is R = log, L/M. The design problem of differential unitary
space-time constellation [1] is to maximize the diversity prod-
uct, Cy as:

1
v = ;0<l<l/<L Vi)™, (1)
0 < ¢v < 1. A constellation V which has (v > 0 is said to
have full diversity. Our goal in this paper is to find a set V
of M x M unitary matrices which has {y as large as possible.
From [2], the diversity product of a 2 X 2 Hamiltonian matrix
equals one half of the Euclidean distance between two points
in C2. Using a transformation from R* to C?, the problem
of constructing the 2 x 2 Hamiltonian constellation is reduced
to finding L points in R* such that the minimum distance
between any two points is as large as possible.
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II. DESIGN OF UNITARY CONSTELLATIONS
A. Hamiltoman constellation: We use an (L, 4) cyclic group
code, {X;}2)} = 01X; O; = diag(A(lk1), A(lk2)) where
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)
and an initial vector X = (/1,0,+/72,0) where z1 + z2 =
1 and z1,22 > 0 to get L points on a unit sphere in R*. The
M x M Hamiltonian constellation H = {J;}}-;' has the block
diagonal form

HM? H . HM'M)  for M even (3)
J27r/€1l7Hl2737 B .7HlM*1’M) for M odd (4)
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where H,™" is defined as
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B. Product Constellations: A product constellation P
is constructed by a product of Hamiltonian constellation

H = {J}27" as in (3) and (4) for M even and
odd respectively and a cyclic group {Ok}Lgo_ , where
O = diag(ej%\'mIc/LC7ej27\'7"2k:/LC7 o ej27rer: LC)7 as P =

{JiOx} VP71 When the case where M is odd, we
proposé another unitary product constellation, P, which
is obtained by a product of two Hamiltonian constel-
lations with the diagonal blocks in different order, as

{JzJJr ZL:IO_I Ly = where JZ denotes a block di-

agonal matrix with different order of Jj, in (4) as J§ =
diaug(Hé’Q7 H:A, ceey Hly%’M*l7 eI2mrak/ Ly ). Although H,
P and Py do not form groups, the optimization of (y re-
quires checking only L — 1 distinct matrices which makes it
comparable to those codes that use group constellations.

III. RESULTS AND PERFORMANCE
Hamiltonian constellations of L = 2 to 5 for M even case
are optimal constellations whose diversity product achieve the

theoretical upper bound as given by ,/ Q(L—L_l) Figure 1 shows

the block error rate performance of proposed Hamiltonian and
product constellations at R = 1.00 for M =2,3,4 and N =1
of Haxa,Hsxs and Paxa respectively.
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