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Abstract

Two regular quadratic forms are considered to be equivalent if their
matrices are congruent. There are, however, easier ways to find these
equivalences, such as Witt’s Chain-Equivalence Theorem, and a combina-
tion of dimension, determinant and Hasse invariant. As we will show, all
p-adic quadratic forms of dimension 5 or higher are isotropic, and thus are
equivalent to a lower-dimensional anisotropic quadratic form with some
number of hyperbolic planes added (and possibly some totally isotropic
subspace). Thus, to classify p-adic quadratic forms, it is sufficient to
classify all anisotropic forms of dimension 4 or lower. We will use these
methods to classify the p-adic quadratic forms, including finding explicit
representatives of each equivalence class.

Contents

1 Quadratic Forms 2

2 p-adics, Square Classes and 1-Dimensional Forms 5
2.1 Square Classes of p-adic Fields . . . . . . . . . . . . . . . . . . . 5
2.2 Other Useful Results . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 2-Dimensional Forms 8
3.1 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Determinant 1 . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Determinant ρ . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Determinants π, ρπ . . . . . . . . . . . . . . . . . . . . . 11

∗Supervisor: Dr. Monica Nevins, University of Ottawa

1



4 Witt’s Chain Equivalence Theorem 11
4.1 Witt’s Chain Equivalence Theorem . . . . . . . . . . . . . . . . . 12
4.2 3-Dimensional Forms . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Forms with Dimension > 4 . . . . . . . . . . . . . . . . . . . . . 15
4.4 Combined Representatives . . . . . . . . . . . . . . . . . . . . . . 16

5 Hasse Invariant 16
5.1 The Hilbert Symbol . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 The Hasse Invariant . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 The Full Classification 20

1 Quadratic Forms

Before we begin, we will gather some useful definitions, notations and theorems.
All results in this section will be stated without proof; they can mostly be found
in Chapter 1 of [3], or in Chapter 3 of [1]. We will always be assuming that we
are working over a field F with characteristic not equal to 2; in the p-adic case,
we additionally assume that the residual characteristic is not 2, in other words
p 6= 2.

Definition 1.1. A quadratic form over a field F is a homogeneous polynomial
of degree 2 with coefficients in F .

In other words, a quadratic form is a polynomial of the form

q(X1, . . . Xn) =

n∑
i,j=1

aijXiXj ai,j ∈ F. (1)

This can be written equivalently and symmetrically as

q(X1, . . . Xn) =

n∑
i,j=1

a′ijXiXj a′i,j =
1

2
(aij + aji); (2)

Using this notation, we can associate each quadratic form with a symmetric
matrix

(
a′ij
)
.

Definition 1.2. Two n-dimensional quadratic forms are considered to be equiv-
alent if thier matrices are congruent; in other words, if f , g are two quadratic
forms with associated matrices Mf ,Mg, they are equivalent precisely when
∃ C ∈ GL(n) such that

Mf = CtMgC.

Definition 1.3. A quadratic form is called regular or nondegenerate when its
associated matrix is non-singular, i.e. when its rank is equal to its dimension.
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Unless otherwise stated, we will be assuming that all quadratic forms are
regular; this will be justified later by Witt’s Decomposition Theorem (Theorem
1.6).

There are two important properties of quadratic forms which we will use:

1. If q is an n-dimensional quadratic form over a field F, then ∀ a ∈ F, x ∈ Fn,

q(ax) = a2q(x).

2. If q is a quadratic form, there is a uniquely determined symmetric bilinear
pairing on Fn which we associate to it, defined as

Bq(x, y) = [q(x+ y)− q(x)− q(y)]/2.

Another common way to view quadratic forms is through their associated
quadratic space; in other words, given an n-dimensional quadratic form q over
a field F, we can examine an n-dimensional F-vector space equipped with the
bilinear pairing Bq defined above.

Definition 1.4. Two quadratic spaces (V,B), (V ′, B′) are isometric if there
exists a linear isomorphism τ : V → V ′ which preserves the inner product on
the space, i.e. ∀ x, y ∈ V,

B(x, y) = B′(τ(x), τ(y)).

These two ways of viewing quadratic forms are equivalent to each other,
and we will use them interchangeably. In particular, two quadratic forms are
equivalent iff their associated quadratic spaces are isometric.

Notation. If two quadratic forms q, q′ are equivalent, or if their associated
quadratic spaces are isometric, we will write

q ∼= q′.

Since every symmetric matrix is orthogonally diagonalizable, every quadratic
form is equivalent to a diagonal form. It will thus be sufficient to look only at
diagonal quadratic forms, i.e. those of the form q = a1X

2
1 + a2X

2
2 + · · ·+ anX

2
n.

These are equivalent to the quadratic spaces of the form 〈a1〉⊥〈a2〉⊥ . . .⊥〈an〉,
where 〈ai〉 is the 1-dimensional space associated to the form q = aiX

2. Note
that two permuted diagonal forms are equivalent; thus two permuted quadratic
forms are equivalent.

Notation. If q = a1X
2
1 + a2X

2
2 + · · ·+ anX

2
n, we will often abbreviate this as

〈a1, a2, . . . , an〉.

Another important simplification we shall note requires the use of isotropic
vectors and hyperplanes.

Definition 1.5. Let (V,Bq) be a quadratic space.
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1. A non-zero vector v ∈ V is called isotropic (as a vector) if Bq(v, v) = 0,
i.e. if q(v) = 0. Otherwise, it is called anisotropic.

2. If (V,Bq) contains at least one isotropic vector, then V is called isotropic
(as a vector space), and q is called isotropic (as a quadratic form). Oth-
erwise, V and q are both called anisotropic.

3. If all non-zero vectors in a space are isotropic, then the space is called
totally isotropic. (In the case of regular (i.e. nondegenerate) quadratic
forms, the associated space will never be totally isotropic, but it may have
a totally isotropic subspace.)

4. If a regular quadratic space (V,B) contains one isotropic vector v (i.e. V
is isotropic), it must also contain a second isotropic vector w such that
B(v, w) = 1. The span of these two vectors will be a basis for a 2-
dimensional subspace called a hyperbolic plane.

5. A space which is the orthogonal sum of any number of hyperbolic planes
is called a hyperbolic space.

Any hyperbolic plane is isometric to 〈1,−1〉. This can be seen from the
fact that

(
1 0
0 −1

)
is a diagonalization of ( 0 1

1 0 ), which is the matrix of the form
associated to a hyperbolic plane relative to the basis described above.

We mentioned Witt’s Decomposition Theorem above; it also has something
to say about hyperbolic planes.

Theorem 1.6 (Witt’s Decomposition Theorem). Any (not necessarily regular)
quadratic space (V, B) splits into an orthogonal sum

(Va, qa)⊥(Vh, qh)⊥(Vt, qt) (3)

where Va is anisotropic, Vh is hyperbolic, and Vt is totally isotropic, and each
of these spaces are uniquely determined (up to isometry).

This theorem allows us to focus our classification on the anisotropic quadratic
forms; any other quadratic form can be classified as simply the appropriate
anisotropic quadratic form plus some number of hyperbolic planes and some
appropriately sized totally isotropic space. In other words, any quadratic form
can be written as

q = 〈a1, a2, . . . , ak〉 ⊥ m · 〈1,−1〉 ⊥ 〈0, 0, . . . , 0〉 (4)

where m · 〈1,−1〉 means m copies of 〈1,−1〉. (This also makes it clear why it’s
fairly safe to ignore non-regular quadratic forms; looking at q = aX2

1 + 0X2
2

doesn’t really add anything to the discussion that q = aX2
1 doesn’t already

cover.)
One last important definition is that of the determinant. It would be ideal if

we could define this simply as the determinant of the associated matrix; however,
it turns out that this is not an invariant. However, it is invariant up to a square
factor, which motivates the following definition.
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Definition 1.7. Let F be a field with multiplicative group Ḟ. Let q be a
quadratic form with matrix representation Mq. Then the determinant det q is

the element of Ḟ/Ḟ2 such that

det q = detMq · Ḟ2 (5)

With this definition, two quadratic forms can only be equivalent if they
have the same determinant; however, this is only a necessary condition, not a
sufficient one.

Some simple matrix calculations (conjugating by diagonal matrices) also
show that two diagonal forms are equivalent if their coefficients differ only by
square factors. We can thus use square classes to describe both the determinant
and coefficients of quadratic forms.

2 p-adics, Square Classes and 1-Dimensional Forms

2.1 Square Classes of p-adic Fields

We first restrict our attention to the case where F = Qp, p 6= 2. Recall that
every non-zero p-adic number x can be written as the product x = pnv, where
v ∈ Żp, the multiplicative group of p-adic integers (ie those with valuation 0).
In other words,

Q̇p
∼= Żp × Z.

Hensel’s Lemma allows us to reduce the question of whether v is a square to a
question of whether it is a quadratic residue mod p, in other words whether the
coefficient of p0 (which must be non-zero since v has valuation 0) is a square in
Ḟp. Meanwhile, p never has a square root in Qp, so pn is a square iff 2|n. This
means that in every case,

Qp/Q2
p
∼= Z/2Z× Z/2Z ∼= {1, r, p, rp} (6)

where r is any quadratic non-residue modulo p.
The p-adic numbers may be extended to a p-adic (extension) field in one of

two essential ways (or a combination thereof): by adjoining some number of
roots of Teichmuller representatives or roots of the residue field, or by adjoining
some number of roots of p. In the case of the former, what changes is that
the coefficients are now drawn from some finite field, rather than simply some
prime field; in the case of the latter, what changes is that the valuation is now
relative to the generator of the prime ideal of the integer ring, also known as
the uniformizing element or conductor.

Definition 2.1. If a p-adic field is extended by adjoining roots of p, the ex-
tension is called a ramified extension; if it is extended by ajoining roots of the
residue field, it is called an unramified extension. If a field is extended by a
combination of the two, we can talk about the ramified and unramified parts of
the extension.
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Notation. We will use the notation Kp to mean any p-adic field of residual
characteristic p, including Qp and any extensions thereof, with multiplicative

group K̇p = Kp − {0}.

Unless otherwise stated we will be assuming that the quadratic forms we are
dealing with are defined over some fixed p-adic field Kp.

In the first case the multiplicative group of any finite field is cyclic and thus
still divides into squares and non-squares, and in the second the uniformizing
element, being essentially the smallest positive root of p, will by definition have
no square root. Thus, we obtain essentially the same result as (6):

Kp/K2
p
∼= Z/2Z× Z/2Z ∼= {1, ρ, π, ρπ} , (7)

where Kp is some field extension of Qp with smallest positive root of p π, and ρ
is a non-square with valuation 0. For more information about field extensions
of the p-adics, see [2].

A common issue we will come across will be that some finite fields, and
therefore some p-adic fields, contain −1 as a square, specifically those where p ≡
1 (mod 4) and/or the degree of the unramified part of the extension is divisible
by 2. This causes some fundamental differences between the two classifications:
notably, if −1 ∈ K̇2

p, then 〈1, 1〉 ∼= 〈1,−1〉, in other words 〈1, 1〉 is a hyperbolic

plane. This is certainly not the case when −1 /∈ K̇2
p (ie p ≡ 3 (mod 4) and the

degree of the unramified part of the extension is odd). Although we will be
able to circumvent this with some clever representative choices, it is important
to note that a look at the deeper structure will reveal a significant difference
between the two cases. In fact, our representative choices may be representing
very different equivalence classes in the two cases.

However, in the 1-dimensional case, the classification is very simple and does
not differ between the two cases. Conjugation by a 1-dimensional matrix is
equivalent to multiplication by a square scalar; so the 1-dimensional anisotropic
quadratic forms are essentially equivalent to the p-adic square classes. In other
words, all 1-dimensional anisotropic quadratic forms over the p-adics are equiv-
alent to exactly one of

〈1〉, 〈ρ〉, 〈π〉, 〈ρπ〉. (8)

2.2 Other Useful Results

The following results will prove useful in our classifications.

Lemma 2.2. Let Kpbe a p-adic field, Kp(α) an unramified extension by α2 = ρ,

ρ a non-square of valuation 0 in Kp. Then α is a square in Kp(α)⇔ −1 /∈ K̇2
p.

Proof. Suppose −1 is not a square in the base field; without loss of generality,
set ρ = −1, α2 = −1. Then in Kp(α),(

α+ 1√
2

)2

=
α2 + 2α+ 1

2
=
−1 + 2α+ 1

2
= α.
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Conversely, suppose that α is a square. Then, since every element of Kp(α)
is of the form a+ bα, a, b ∈ Kp, there must exist a, b ∈ F such that

(a+ bα)2 = α

⇔ a2 + 2abα+ b2α2 = α

⇔ a2 + b2ρ+ 2abα = α

⇒ a2 + b2ρ = 0

⇔ a2 = −ρb2

⇔ ρ = −1 · x2 for some x ∈ Kp

⇒ −1 is not a square in Kp.

Theorem 2.3. Let a = πnv be an element in any p-adic field Kp, where v has

valuation 0. If v is a square, then for some b, c ∈ K̇p where b and c are non-
squares with valuation 0, a = πnb + πnc. If v is a non-square, then for some
d, e ∈ K̇p where d and e are squares with valuation 0, a = πnd+ πne.

Proof. Since v = a+b⇒ πnv = πna+πnb, it is sufficient to prove this result for
elements with valuation zero. Therefore, using Hensel’s Lemma, this result is
equivalent to the same result in the case of finite fields; we will therefore proceed
to prove this in the finite field case.

We begin by showing that it is sufficient to prove this in a single case. Let F
be a finite field with multiplicative group Ḟ. Suppose that we have shown that
for some x ∈ Ḟ, x2 = r + s, where r, s ∈ Ḟ are non-squares. Then, in Ḟ/Ḟ2,

x2 · Ḟ2 = r · Ḟ2 + s · Ḟ2 ⇒ 1 · Ḟ2 = r · Ḟ2 + r · Ḟ2

⇒ ∀y ∈ Ḟ,∃a, b ∈ Ḟ, a, b non-squares, such that y2 = a+ b,

and moreover by multiplying through by a non-square, say r, we get

r · Ḟ2 = r2 · Ḟ2 + r2 · Ḟ2 ⇒ s · Ḟ2 = 1 · Ḟ2 + 1 · Ḟ2

⇒ ∀s ∈ Ḟ, s a non-square, ∃c, d ∈ Ḟ such that s = c2 + d2.

So, we need only show that a single square element can be written as the sum
of two non-squares to prove the theorem.

Suppose that Fp is a prime field. Then Fp is additively generated by the
element 1; so there must be a non-square r that is one more than a square x2.
So, r = x2 + 12 and we are done.

Suppose now that Fn is any finite field. Since the finite field of any given
order is unique up to isomorphism, we can view any finite field as a field exten-
sion of some Fp created by adjoining roots. If the degree of the field extension is
odd, then there can have been no quadratic roots adjoined, and so any squares
and non-squares in the base field will still be squares and non-squares with the
same sum; thus we can simply use the prime field calculation.
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Suppose then that the degree of the field extension is even; say the degree
is 2mk, where k is odd. We use [E : F ] to notate the degree of a field extension
E over a field F. Then,

[Fn : Fp] = 2mk = [Fn : F2mp][F2mp : F2m−1p] · · · [F2p : Fp]

Again we use the fact that the finite field of any given order is unique up to
isomorphism to say that since it is possible to construct a finite field of order n
in this way, we can treat Fn as having been constructed in this way. Each step
of this chain except the last is a quadratic extension; the last step can be done
by adjoining a k-th root to F2mp. As argued above this last step will not add
any quadratic roots, and thus if the result is true for F2mp we can use the same
equation in Fn to prove it true for Fn. Thus we can simply use an inductive
argument on the length of the chain of quadratic extensions.

Suppose for some finite field F, every non-square element ρ is the sum of
two square elements. Fix some non-square ρ. Let F(α) be the extension field
where α2 = ρ. Every non-square in the original field is now a square; α may be
a square or may not be a square.

If α is a square, then since every element of F is now a square and every
element of F(α) can be written as a+ bα for some a, b ∈ F, it is trivial to write
any element as the sum of two squares. So, suppose α is not a square. Then 2α
is not a square either. However,

(α+ 1)2 = α2 + 1 + 2α⇒ (α+ 1)2 − (α2 + 1) = 2α;

since every element of F is now a square, −(α2 + 1) must be a square, and
therefore there is a non-square that is the sum of two squares.

3 2-Dimensional Forms

Unfortunately, dimension and determinant cease to be sufficient for a classifi-
caion of quadratic forms when we reach the two-dimensional case. Before we
can classify these forms, we will need a few more definitions and results.

3.1 Equivalence

Definition 3.1. A quadratic form q = 〈a1, . . . an〉 is said to represent an ele-
ment c ∈ K̇p if q(v) = c for some vector v ∈ V , i.e. if ∃x1, . . . xn ∈ Kp such
that

c = a1x
2
1 + . . . anx

2
n.

Lemma 3.2. Let q = 〈a, b〉 be a 2-dimensional quadratic form. Suppose q
represents an element c ∈ K̇p. Then ∃ d ∈ Qp such that q ∼= 〈c, d〉.

Proof. For this proof it will be most useful to think of the quadratic forms in
terms of their quadratic spaces. Let (V,Bq) be the quadratic space associated
to q. Then, if q represents c, there must be a vector v ∈ V such that q(v) = c.
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Recall that q(av) = a2q(v); in other words, for any vector u = xv ∈ span(v),
q(u) = x2 · c. But then this means that span(v) ∼= 〈c〉, so 〈c〉 is a subspace of V .

Recall that the radical of a subspace W in (V,Bq), denoted W⊥, is the
subspace of all elements w⊥ ∈ V such that ∀w ∈ W , Bq(w⊥, w) = 0. It is
well known, for example by the rank-nullity theorem, that dimV = dimW +
dimW⊥, for any subspace W of a regular quadratic space V . So, 〈c〉⊥ must
have dimension 1, and therefore must be the span of vector u orthogonal to v.
If u is isotropic, then u is orthogonal to every vector in V and V is singular,
contradicting its regularity; so u must be anisotropic. This means that ∃d ∈ K̇p

such that q(u) = d. Thus span(u) ∼= 〈d〉, V ∼= 〈c〉⊥〈d〉, and therefore q ∼= 〈c, d〉,
as desired.

Theorem 3.3. Let q1 = 〈a, b〉, q2 = 〈c, d〉 be 2-dimensional quadratic forms.
Then q1 ∼= q2 iff det q1 = det q2 and there exists a common element e ∈ Kp

represented by both q1 and q2.

Proof. This follows almost immediately from the above lemma. Clearly, if two
forms are equivalent, they must have the same determinant and represent the
same elements. Conversely, suppose q1, q2 both represent some element e ∈ Kp.
If e = 0 then they are both isotropic, and thus are both equivalent to the
hyperbolic plane 〈1,−1〉; so we can assume e 6= 0, i.e. e ∈ K̇p. Now by the

lemma, ∃f, f ′ ∈ K̇p such that q1 ∼= 〈e, f〉, q2 ∼= 〈e, f ′〉. But det q1 = det q2 ⇒
ef ·Q̇2

p = ef ′ ·Q̇2
p. So f, f ′ must be in the same square class; and since quadratic

forms are equivalent if their coefficients differ only by squares, this means that
q1 ∼= q2.

So, the problem of classification of 2-dimensional forms comes down to look-
ing at forms with the same determinant, and determining when they represent
a common element.

3.2 Classification

We will begin by stating our proposition; to prove it, we will go through the
possibilities by determinant.

Proposition 3.4. The 2-dimensional quadratic forms can be classified as fol-
lows:

1. If −1 ∈ K2
p, the anisotropic 2-dimensional forms are

〈1, π〉, 〈1, ρ〉, 〈1, ρπ〉, 〈ρ, π〉, 〈ρ, ρπ〉, 〈π, ρπ〉;

the only isotropic form is the hyperbolic plane 〈1,−1〉 (or 〈1, 1〉).

2. If −1 /∈ K2
p, the anisotropic 2-dimensional forms are

〈1, 1〉, 〈1, π〉, 〈1, ρπ〉, 〈ρ, π〉, 〈ρ, ρπ〉, 〈π, π〉;

the only isotropic form is the hyperbolic plane 〈1,−1〉 (or 〈1, ρ〉).
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3.2.1 Determinant 1

Since diagonal quadratic forms are equivalent if their coefficients differ by squares,
we can essentially treat the coefficients of diagonal quadratic forms as being
elements of K̇p/K̇2

p. Using this method, there are four possibilities with deter-
minant one:

〈1, 1〉, 〈ρ, ρ〉, 〈π, π〉, 〈ρπ, ρπ〉.

Claim. 〈1, 1〉 ∼= 〈ρ, ρ〉

Proof. By Theorem 2.3, it is always possible to write a square of valuation 0 as
the sum of two non-squares of valuation 0 and vice versa. Thus ∃r, s ∈ Kp, non-

square and with valuation 0, such that r+s = 1; and since r ·K̇2
p = s·K̇2

p = ρ·K̇2
p,

∃a, b ∈ K̇p such that ρa2+ρb2 = 1. Meanwhile for 〈1, 1〉, clearly 1 ·12+1 ·02 = 1.
Thus these forms share a common element and are therefore equivalent.

Similarly, 〈π, π〉 ∼= 〈ρπ, ρπ〉.

Claim. 〈1, 1〉 ∼= 〈π, π〉 ⇔ −1 ∈ K̇2
p

Proof. If −1 ∈ K̇2
p, then both of these will be isotropic, and thus isometric to

the hyperbolic plane. Conversely, suppose −1 /∈ K̇2
p. Now,

〈1, 1〉 ∼= 〈π, π〉 ⇔ ∃x, y, a, b ∈ Kp such that x2 + y2 = π(a2 + b2).

Since we are talking about sums of elements which may not have valuation
zero, we will first simplify the situation by dividing through this equation by
πm, where m is the least valuation. The equation will now be non-trivial if we
look at it modulo π; specifically, modulo π the equation will either reduce to

x2 + y2 ≡ 0 (mod π) or 0 ≡ a2 + b2 (mod π),

with the non-zero side being that which contained at least one element with
lowest valuation. Without loss of generality, we assume it reduces to x2 +
y2 ≡ 0 or, equivalently, y2 ≡ −x2 (mod π). This is possible only if −1 is a
square in Fpk , which implies it must be a square in Kp as well, contradicting our
assumption.

So if −1 ∈ K̇2
p, there is one equivalence class with determinant one, and

it is the hyperbolic plane; otherwise, there are two inequivalent anisotropic
equivalence classes with determinant one, 〈1, 1〉 and 〈π, π〉.

3.2.2 Determinant ρ

The forms with determinant ρ work, in essence, the opposite way that the forms
with determinant 1 did, with respect to their behaviour in relation to whether
or not −1 ∈ K̇2

p. An interesting way to look at this is that it is always the 2-
dimensional forms with determinant −1 which are isotropic, whereas (as we shall
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see) there are always two anisotropic forms with any other given determinant;
the question is simply into which square class −1 falls.

After taking into account the equivalence of permutations, there are only
two possibilities for forms with determinant ρ:

〈1, ρ〉, 〈π, ρπ〉

Claim. 〈1, ρ〉 ∼= 〈π, ρπ〉 ⇔ −1 /∈ K̇2
p

Proof. This proof is more or less symmetric to the proof for 〈1, 1〉 and 〈π, π〉.
If −1 /∈ K̇2

p, then without loss of generality we can assume ρ = −1. It is then
clear that both forms are isotropic, and thus equivalent. Otherwise, the problem
again reduces, this time to whether we can find a solution to

x2 + ρy2 ≡ π(a2 + ρb2) ≡ 0 (mod π).

Since this requires that x2 ∼= −ρy2 (mod π), ρ ≡ −
(

x
y

)2
(mod π), so −1 must

be a non-square.

3.2.3 Determinants π, ρπ

There are once again only two possibilities with determinant π:

〈1, π〉, 〈ρ, ρπ〉

Claim. 〈1, π〉 � 〈ρ, ρπ〉

Proof. These represent a common element only if the equation x2 + πy2 =
ρa2 +πρb2 is solvable. Once again, we can simplify the situation by dividing the
equation by πm where m is the least valuation, making it non-trivial modulo π;
then either

x2 ≡ ρa2 (mod π) or y2 ≡ ρb2 (mod π),

which are both absurd.

The argument for the forms with determinant ρπ is similar; the options are

〈ρ, π〉, 〈1, ρπ〉

and the argument for them being distinct is almost identical to the one above.
Thus, the anistropic forms are as originally claimed.

4 Witt’s Chain Equivalence Theorem

The proof for Theorem 3.3 relied heavily on the fact that there were only two
dimensions; as such, it is not particularly surprising that it no longer holds for
higher dimensions. Luckily, Witt’s Chain Equivalence Theorem allows us to
essentially reduce the problem of classification to the two-dimensional case.
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4.1 Witt’s Chain Equivalence Theorem

As the name implies, Witt’s Chain Equivalence Theorem was originally proven
by Witt. Most of the results and definitions in this subsection can also be found
in [3, Chapter 1].

Definition 4.1. Two diagonal forms q = 〈a1, . . . , an〉, q′ = 〈b1, . . . , bn〉 are
called simply equivalent if, for some indices i and j,

1. 〈ai, aj〉 ∼= 〈bi, bj〉, and

2. ∀k 6= i, j, we have ak = bk

In other words, q1 is simply equivalent to q2 when one can be mapped to
the other via a linear isomorphism that is an isometry on a two-dimensional
subspace, and the identity everywhere else. It is clear that this implies isometry,
and therefore equivalence in the normal sense.

Definition 4.2. Two diagonal forms q = 〈a1, . . . , an〉, q′ = 〈b1, . . . , bn〉 are
called chain equivalent if there exists some sequence of forms

q = q0, q1, . . . , qm−1, qm = q′ (9)

such that each qi is simply-equivalent to qi−1.

Notation. If two forms q, q′ are chain equivalent, we will write

q ≈ q′.

Once again, by transitivity, chain equivalence clearly implies normal equiv-
alence. To prove the converse, we will need the following result, also by Witt:

Theorem 4.3 (Witt’s Cancellation Theorem). Let q, q1, q2 be arbitrary quadratic
forms. Then q⊥q1 ∼= q⊥q2 ⇔ q1 ∼= q2.

The proof of Witt’s Cancellation Theorem is rather involved, so we will not
cover it here. A proof of it can be found in Chapter 1 of [3].

Theorem 4.4 (Witt’s Chain Equivalence Theorem). Let f, g be two arbitrary
diagonal quadratic forms of the same dimension. Then f ∼= g ⇔ f ≈ g.

Proof. As stated above, f ≈ g ⇒ f ∼= g follows easily from the transitivity of
equivalence, so we need only prove the converse.

Any two equivalent forms will have the same totally isotropic subspace, so we
can discount this and assume we are working with regular forms. Additionally,
if the dimension is one or two this result is trivially true; so we will work by
induction on the dimension for some n > 3. We can also freely permute the
coefficients, since any permutation is a product of transpositions, and any two
forms that are equal except for a transposition are simply-equivalent.

Now, suppose f = 〈a1, . . . an〉 and g = 〈b1 . . . bn〉, n > 3. Since they are
equivalent, they represent all the same elements; thus f must represent b1,

12



as must anything chain equivalent to f . Choose f ′ = 〈c1, . . . cn〉 such that
f ′ ≈ f and 〈c1, . . . ck〉 represents b1 with k the smallest possible. So there exist
e1, . . . , ek ∈ Kp such that b1 = c1e

2
1 + · · ·+ cke

2
k. Since k is minimal, no subsum

of this can equal zero, since then the remainder of the sum would also equal b1
with fewer elements.

We claim k = 1. Suppose by way of contradiction that k ≥ 2. Then
d = c1e

2
1 + c2e

2
2 6= 0, and thus (by Lemma 3.2) there exists some d′ such that

〈c1, c2〉 ∼= 〈d, d′〉. But then

f ≡ f ′ = 〈c1, . . . ck, . . . cn〉
≈ 〈d, d′, c3, . . . , ck, . . . , cn〉
≈ 〈d, c3, . . . ck, . . . cn, d′〉

and b1 = d + c3e
2
3 + · · · + cke

2
k, which has k − 1 terms; this contradicts k’s

minimality. Thus, k = 1, as claimed. So, f ≈ 〈b1, c2, . . . , cn〉; we can now
use Witt’s Cancellation Theorem to cancel these equivalent first terms, in other
words

〈b1, c2, . . . , cn〉 ∼= 〈b1, b2, . . . , bn〉 ⇒ 〈c2, . . . , cn〉 ∼= 〈b2, . . . , bn〉.

This now is a form with n− 1 elements; by the inductive hypothesis, it follows
that 〈c2, . . . , cn〉 ≈ 〈b2. . . . , bn〉; and so, f ≈ 〈b1, c2, . . . , cn〉 ≈ 〈b1, b2, . . . , bn〉 =
g, and thus f ≈ g, as desired.

4.2 3-Dimensional Forms

We can use a combination of Witt’s Cancellation Theorem and Witt’s Chain
Equivalence Theorem to easily find representatives for the 3-dimensional quadratic
forms. Of course, this does not necessarily give as any way to quickly tell which
representative any given quadratic form is equivalent to; for that, we will need
the Hasse invariant, defined in the next section.

Proposition 4.5. The 3-dimensional quadratic forms can be classified as fol-
lows:

1. If −1 ∈ K̇2
p, the anisotropic 3-dimensional forms are

〈1, ρ, π〉, 〈1, ρ, ρπ〉, 〈1, π, ρπ〉, 〈ρ, π, ρπ〉.

2. If −1 /∈ K̇2
p, the anisotropic 3-dimensional forms are

〈1, 1, π〉, 〈1, 1, ρπ〉, 〈1, π, π〉, 〈ρ, π, π〉.

3. In either case, the isotropic forms are

〈1,−1, 1〉, 〈1,−1, ρ〉, 〈1,−1, π〉, 〈1,−1, ρπ〉.
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Proof. By Witt’s Decomposition Theorem (Theorem 1.6) and Witt’s Cancel-
lation Theorem (Theorem 4.3), the isotropic forms must be the 1-dimensional
forms with an added hyperbolic plane; in other words they must be precisely
the four classes 〈x〉⊥〈1,−1〉, x ∈ {1, ρ, π, ρπ}. Thus any three-dimensional forms
which are not equivalent to one of these forms must be anisotropic.

We can take any two of distinct 2-dimensional forms q1 = 〈a, b〉, q2 = 〈c, d〉
and construct q′1 = 〈1, a, b〉 and q′2 = 〈1, c, d〉. By Witt’s Cancellation The-
orem (Theorem 4.3), these forms will also be distinct. We can therefore use
Proposition 3.4 to construct seven three-dimensional classes (not necessarily
anisotropic) in this way for each case:

• −1 ∈ K̇2
p: (Recall that 〈−1〉 ∼= 〈1〉; we write hyperbolic planes as 〈1,−1〉

for consistancy.)

〈1,−1, 1〉, 〈1,−1, ρ〉, 〈1,−1, π〉, 〈1,−1, ρπ〉, 〈1, ρ, π〉, 〈1, ρ, ρπ〉, 〈1, π, ρπ〉

• −1 /∈ K̇2
p: (We make use of the fact that we can set ρ = −1, but only do

so in the case of hyperbolic planes, again for consistancy.)

〈1, 1, ρ〉 ∼= 〈1,−1, 1〉
〈1, 1, 1〉 ≈ 〈1, ρ, ρ〉 ∼= 〈1,−1, ρ〉
〈1,−1, π〉, 〈1,−1, ρπ〉, 〈1, 1, π〉, 〈1, 1, ρπ〉, 〈1, π, π〉

This necessarily covers all the forms which include 〈1〉; thus we can find any
remaining forms by looking at all the combinations of ρ, π, ρπ.

If −1 ∈ K̇2
p:

∀x, 〈ρ, ρ, x〉 ≈ 〈1, 1, x〉 (10)

∀x, 〈π, π, x〉 ≈ 〈1, 1, x〉 (11)

∀x, 〈ρπ, ρπ, x〉 ≈ 〈1, 1, x〉 (12)

We therefore need only look at the one combination which has no doubles,

q = 〈ρ, π, ρπ〉.

Since q has determinant 1, the only form it could be equivalent to would be
〈1,−1, 1〉, which is isotropic; however q is anisotropic, since

ρx2 + πy2 + ρπz2 = 0⇔ ρx2 + π(y2 + ρz2) = 0

⇒ x ≡ 0, y2 ≡ −ρz2 (mod π)

which is impossible since −1 is a square. So, q is anisotropic and thus not
equivalent to 〈1,−1, 1〉.

If −1 /∈ K̇2
p:

∀x, 〈ρ, ρ, x〉 ≈ 〈1, 1, x〉 (13)

∀x, 〈π, ρπ, x〉 ≈ 〈1, ρ, x〉 (14)

∀x, 〈ρπ, ρπ, x〉 ≈ 〈π, π, x〉 (15)
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There are now only two forms which have not been shown to be equivalent to a
form containing a 1, 〈π, π, π〉 and 〈ρ, π, π〉. However,

〈π, π, π〉 ≈ 〈π, ρπ, ρπ〉 ≈ 〈1, ρ, ρπ〉, (16)

so we need only look at 〈ρ, π, π〉. This form has determinant ρ, and thus again
could only be equivalent to 〈1,−1, 1〉, an isotropic form; however it is anisotropic
since

ρx2 + πy2 + πz2 = 0⇔ ρx2 + π(y2 + z2) = 0

⇒ x ≡ 0, z2 ≡ −y2 (mod π)

and since −1 is not a square, −y2 is not a square. Thus, this form is not
anisotropic, and thus not equivalent to 〈1,−1, 1〉.

4.3 Forms with Dimension > 4

Interestingly, things actually get simpler after three dimensions, as shown by
the following result.

Theorem 4.6. There is only one anisotropic 4-dimensional form, and it is the
form 〈1, ρ, π, ρπ〉 when −1 ∈ K̇2

p and 〈1, 1, π, π〉 when −1 /∈ K̇2
p. There are no

anisotropic forms of dimension 5 or higher.

Proof. When −1 ∈ K̇2
p, any four-dimensional form other than the one listed,

and any five or higher dimensional form, must have at least one square class
repeated twice in the coefficients. Since

〈ρ, ρ〉 ∼= 〈π, π〉 ∼= 〈ρπ, ρπ〉 ∼= 〈1, 1〉 ∼= 〈1,−1〉,

it follows that any such form represents zero and thus is, by definition, isotropic.
To see that 〈1, ρ, π, ρπ〉 is anisotropic, note that for it to be otherwise requires
that ∃w, x, y, z ∈ Kp such that

w2 + ρx2 + πy2 + ρπz2 = 0.

Following our usual method, we divide out by of πm where m is the least valua-
tion among the terms of this equation, making it non-trivial and yet necessarily
true modulo π; this leaves us with either w2 = −ρx2 or y2 = −ρz2, both of
which are impossible since −1 ∈ K̇2

p. Thus, 〈1, ρ, π, ρπ〉 is anisotropic.

For the case when −1 /∈ K̇2
p, first note that

〈1, 1〉 ∼= 〈ρ, ρ〉 and 〈π, π〉 ∼= 〈ρπ, ρπ〉; (17)

so we can use chain equivalence to freely multiply pairs of identical coefficents
by ρ.

Next, note that any form q which can be written as q = 〈a, ρa, b, c〉 for some
a, b, c ∈ K̇p/K̇2

p will be isotropic. For example: (we assume without loss of
generality that ρ = −1)

a · 12 − a · 12 + b · 02 + c · 02 = 0. (18)
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Moreover, if a form q′ has a triple of identical coefficients, i.e. it is of the form
〈a, a, a, b〉, then by (17) it is equivalent to 〈a, ρa, ρa, b〉, which by the previous
statement is also isotropic.

To summarize, when −1 /∈ K̇2
p, an anisotropic 4-dimensional form may not

have both 1 and ρ as coefficients, nor may it have both π and ρπ; it also can
have each of these coefficients at most twice. Since it is 4-dimensional and has
only two options for coefficients, it must therefore have both of these coefficients
twice; by chain-equivalence and (17), all such forms are therefore equivalent to
〈1, 1, π, π〉.

We again check that this is in fact an anisotropic form by looking at the
possibility the existence of w, x, y, z ∈ Kp such that

w2 + x2 + π(y2 + z2) = 0;

this again reduces to either w2 ≡ −x2 or y2 ≡ −z2 (mod π), depending on the
parity of the least valuation, which are both impossible since −1 /∈ K̇2

p. Thus,
〈1, 1, π, π〉 is the only anisotropic form of dimension 4 or higher.

4.4 Combined Representatives

We were able, when talking about the 3-dimensional isotropic forms, to find a
representative that was accurate for both forms, even though the forms were
structurally different (i.e. they had the same determinant). It turns out that we
can extend this trick, using the observation that

〈−1〉 ∼=

{
〈1〉 when − 1 ∈ K̇2

p

〈ρ〉 when − 1 /∈ K̇2
p

(19)

〈−ρ〉 ∼=

{
〈ρ〉 when − 1 ∈ K̇2

p

〈1〉 when − 1 /∈ K̇2
p

(20)

and similarly for −π,−ρπ.
Table 1 shows what the representatives look like up to this point, both using

this combined representation and the original representations we used previ-
ously. Be aware that some of the characteristics of the combined representations
are different; for example, their determinant is usually different, and as we will
see in the next section, their Hasse invariant may be as well.

5 Hasse Invariant

The general definition of the Hasse invariant for any field is quite complicated,
takes up a few chapters of [3], and requires knowledge of the Brauer Group.
Luckily, there is a simpler, but equivalent, construction for the p-adics, which
can be found in [4]. This construction allows us to look at the Hasse invariant
in terms of the Hilbert 2-symbol.
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−1 ∈ K̇2
p −1 /∈ K̇2

p Combined

〈1〉 〈1〉 〈1〉
〈ρ〉 〈ρ〉 〈ρ〉
〈π〉 〈π〉 〈π〉
〈ρπ〉 〈ρπ〉 〈ρπ〉
〈1, ρ〉 〈1, 1〉 〈1,−ρ〉
〈1, π〉 〈1, π〉 〈1, π〉
〈1, ρπ〉 〈1, ρπ〉 〈1, ρπ〉
〈ρ, π〉 〈ρ, π〉 〈ρ, π〉
〈ρ, ρπ〉 〈ρ, ρπ〉 〈ρ, ρπ〉
〈π, ρπ〉 〈π, π〉 〈π,−ρπ〉
〈1, ρ, π〉 〈1, 1, ρπ〉 〈1,−ρ,−π〉
〈1, ρ, ρπ〉 〈1, 1, π〉 〈1,−ρ,−ρπ〉
〈1, π, ρπ〉 〈1, π, π〉 〈1, π,−ρπ〉
〈ρ, π, ρπ〉 〈ρ, π, π〉 〈ρ, π,−ρπ〉
〈1, ρ, π, ρπ〉 〈1, 1, π, π〉 〈1,−1, π,−ρπ〉

Table 1: Representatives of Anisotropic Quadratic Forms, Dimensions 1-4

5.1 The Hilbert Symbol

Definition 5.1. The Hilbert 2-symbol (a, b) for two elements a, b in a field F
is defined as

(a, b) :=

{
1 ∃x, y, z ∈ F, not all zero, such that ax2 + by2 = z2

−1 otherwise.
(21)

Looking at this in terms of square classes for the p-adics, we know that for any
such z, there will be some w such that w2z2 = 1 = a(xw)2 + b(yw)2. Therefore,
we can define the Hilbert Symbol equivalently as

(a, b) :=

{
1 ∃x, y ∈ Kp such that ax2 + by2 = 1

−1 otherwise.
(22)

Using the equivalence classes of 2-dimensional quadratic forms in Proposition
3.4 will yield the Hilbert symbol for elements of each pair of square classes; the
Hilbert symbol is simply asking whether the form in question represents 1. The
results can be found in Tables 2 and 3. Since the Hilbert Symbol is symmetric,
I have only included the first instance of each pair.

5.2 The Hasse Invariant

Definition 5.2. Let q = 〈a1, . . . , an〉 be a quadratic form of dimension 2 or
higher. The Hasse invariant of q is defined over the p-adics as

H(q) =
∏
i<j

(ai, aj).
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1 ρ π ρπ

1 1 1 1 1
ρ 1 -1 -1
π 1 -1
ρπ 1

Table 2: Hilbert symbol results when −1 ∈ K̇2
p

1 ρ π ρπ

1 1 1 1 1
ρ 1 -1 -1
π -1 -1
ρπ -1

Table 3: Hilbert symbol results when −1 /∈ K̇2
p

The usual proofs of the Hasse invariant’s properties are rather involved; we
will use a bit of brute force to provide a simplified version of the proofs here.
For more elegant proofs of the following results, we refer the reader to Chapters
3 and 4 of [4] or Chapters 4 and 5 of [3].

Lemma 5.3. If two quadratic forms are equivalent, they have the same Hasse
invariant.

Proof. Since equivalence implies chain equivalence, it is sufficient to prove this
result for two simply equivalent forms. Permutation will not change the Hasse
invariant, since multiplication is commutative and the Hilbert symbol is sym-
metric. Thus we may assume that the coefficients of the quadratic forms are
ordered so that q1 = 〈a1, a2, a3, . . . , an〉 and q2 = 〈a′1, a′2, a3, . . . , an〉, where
〈a1, a2〉 ∼= 〈a′1, a′2〉. Note that since the Hasse invariant is based on the Hilbert
symbol, which is in turn based on 2-dimensional quadratic forms and thus cares
only about square classes, it is legitimate for us to continue to speak about
coefficients of the form in terms only of their square classes.

First observe that the Hasse invariant can be broken up as follows:

H(q) = (a1, a2) ·

(
n∏

i=3

(a1, ai)(a2, ai)

) ∏
36j<k

(aj , ak)

 (23)

Since 〈a1, a2〉 ∼= 〈a′1, a′2〉, these pairs must have the same Hilbert symbol,
so the first term of equation (23) is equal. Similarly, since all the coefficients
involved in the last term are the same in both cases, the last segment of equation
(23) will also be equal. It is now sufficient to prove that the middle term is equal.

Note that (a, c)(b, c) = (ab, c); the proof of this is quite complex and tech-
nical, however it can be seen explicitly by inspection of Tables 2 and 3. Now,

18



since 〈a1, a2〉 ∼= 〈a′1, a′2〉,

det 〈a1, a2〉 = det 〈a′1, a′2〉 ⇒ a1a2 · K̇2
p = a′1a

′
2 · K̇2

p,

in other words a1a2 and a′1a
′
2 are in the same square class; therefore, for any

other element b ∈ Kp,

(a1, b)(a2, b) = (a1a2, b) = (a′1a
′
2, b) = (a′1, b)(a

′
2, b),

thus each term of the middle product of equation (23) will be equal for q1 and
q2. Therefore every part of the equation is equal in both cases; thus, the Hasse
invariant is indeed invariant for any equivalent quadratic forms.

Theorem 5.4. Two p-adic quadratic forms of dimension > 2 are equivalent
iff they have the same dimension, the same determinant and the same Hasse
invariant.

Proof. Since these are all invariants, we already know that if two forms are
equivalent, they will have the same dimension, determinant and Hasse invariant;
we need only prove the converse.

In the 1-dimensional case, determinants are enough to classify the forms, so
this is clearly true. In the 2-dimensional case, equivalence was additionally based
on whether the forms shared a common element. By looking at Proposition 3.4,
we can see that there were only two distinct forms for any given determinant,
and exactly one of those forms always represented 1. Thus the Hasse invariant,
which in the 2-dimensional case is just the Hilbert symbol, is enough to classify
the 2-dimensional forms of the same determinant.

For the higher dimensions, we will prove the result by induction. Suppose
we know this is true for all forms of dimension less than some n ≥ 3. Let
q1 = 〈a1, . . . , an〉, q2 = 〈b1, . . . , bn〉 be two forms with the same dimension,
determinant and Hasse invariant. We will first show that these two forms rep-
resent a common element, in other words that there is some d ∈ Kp and some
x1, . . . , xn, y1, . . . , yn ∈ Kp such that

n∑
i=1

aix
2
i = d =

n∑
j=1

biy
2
i

This is equivalent to asking whether there is a d ∈ K̇p/K̇2
p such that both

〈a1, . . . , an,−d〉 and 〈b1, . . . , bn,−d〉 are isotropic. As proven in Theorem 4.6,
there is only one anisotropic 4-dimensional form, and no anisotropic forms of
dimension 5 or higher, so this is always possible (in the 4-dimensional case, just
choose d such that −d · det q 6= 1, since the only 4-dimensional anisotropic form
has determinant 1).

Now, we need an extension Lemma 3.2; we want to say that we can write,
for some a′1, . . . a

′
n−1, b

′
1, . . . , b

′
n−1,

q1 ∼= 〈d, a′1, . . . , a′n−1〉, (24)

q2 ∼= 〈d, b′1, . . . , b′n−1〉. (25)
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To show this, we will look at the corresponding quadratic spaces, (V,Bq1) and
(W,Bq2). Take v ∈ V and w ∈W to be any vectors such that q1(v) = d = q2(w);
now expand these vectors to orthogonal bases for their respective spaces using
the standard methods. The coefficients of the (diagonal) matrix representations
of the pairing with respect to these new bases will be as above.

So now we have q1 ∼= 〈d〉⊥〈a′1, . . . , a′n−1〉, q2 ∼= 〈d〉⊥〈b′1, . . . , b′n−1〉. By Witt’s
Cancellation Theorem (Theorem 4.3), these are equivalent iff 〈a′1, . . . , a′n−1〉 ∼=
〈b′1, . . . , b′n−1〉. Let’s call these subforms q′1 = 〈a′1, . . . , a′n−1〉 and q′2 = 〈b′1, . . . , b′n−1〉.
Then,

det q1 = det q2 ⇒ d ·
n−1∏
i=1

a′i = d ·
n−1∏
j=1

b′i

⇒
n−1∏
i=1

a′i =

n−1∏
j=1

b′i

⇒ det q′1 = det q′2

and

H(q1) = H(q2)

⇒

(
n−1∏
i=1

(d, ai)

)∏
j<k

(a′j , a
′
k)

 =

(
n−1∏
i′=1

(d, bi′)

) ∏
j′<k′

(b′j′ , b
′
k′)


⇒ (d, a1a2 · · · an−1)

∏
j<k

(a′j , a
′
k)

 = (d, b1b2 · · · bn−1)

 ∏
j′<k′

(b′j′ , b
′
k′)


⇒ (d, det q′1)H(q′1) = (d, det q′2)H(q′2)

⇒ H(q′1) = H(q′2).

We now have two forms of degree n − 1 with the same determinant and Hasse
invariant; by the induction hypothesis, they are equivalent, and thus our original
forms are as well. Therefore, this information completely classifies the p-adic
quadratic forms of any dimension.

We can now use the Hasse invariant to provide an alternate (and possibly
more satisfying) proof of the classification of three-dimensional forms, by simply
multiplying the Hilbert Symbols as found in Tables 2 and 3 of the appropriate
elements. Table 4 contains the results. For the sake of interest, I have also
included the results for dimensions 2 and 4. I have denoted the isotropic forms
by 〈a1, . . . , an〉∗; for the sake of visual simplicity, I have used the combined
representatives.

6 The Full Classification

We are now able to completely classify the quadratic forms over any p-adic field.

20



Representative −1 ∈ K̇2
p −1 /∈ K̇2

p

〈a1, . . . , an〉 (det, H) (det, H)

〈1, π〉 (π,+) (π,+)
〈1,−ρ〉 (ρ,+) (1,+)
〈1, ρπ〉 (ρπ,+) (ρπ,+)
〈ρ, π〉 (ρπ,−) (ρπ,−)
〈ρ, ρπ〉 (π,−) (π,−)
〈π,−ρπ〉 (ρ,−) (1,−)
〈1,−1〉∗ (1,+) (ρ,+)
〈1,−ρ,−ρπ〉 (π,−) (π,+)
〈1, π,−ρπ〉 (ρ,−) (1,−)
〈1,−ρ,−π〉 (ρπ,−) (ρπ,+)
〈ρ, π,−ρπ〉 (1,−) (ρ,−)
〈1,−1, 1〉∗ (1,+) (1,+)
〈1,−1, ρ〉∗ (ρ,+) (ρ,+)
〈1,−1, π〉∗ (π,+) (π,−)
〈1,−1, ρπ〉∗ (ρπ,+) (ρπ,+)
〈1,−ρ, π,−ρπ〉 (1,−) (1,−)
〈1,−1, 1,−1〉∗ (1,+) (1,+)
〈1,−1, 1, π〉∗ (π,+) (ρπ,−)
〈1,−1, 1,−ρ〉∗ (ρ,+) (ρ,+)
〈1,−1, 1, ρπ〉∗ (ρπ,+) (π,−)
〈1,−1, ρ, π〉∗ (ρπ,−) (π,+)
〈1,−1, ρ, ρπ〉∗ (π,−) (ρπ,+)
〈1,−1, π,−ρπ〉∗ (ρ,−) (ρ,−)

Table 4: Determinants and Hasse Invariants, Dimensions 2-4
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Theorem 6.1 (Classification of the Quadratic Forms over the p-adics). Ev-
ery quadratic form over the p-adics is the orthogonal sum of some completely
isotropic space, some hyperbolic space, and at most one of the following an-
isotropic forms:

〈1〉 〈ρ〉 〈π〉 〈ρπ〉 〈1, π〉
〈1,−ρ〉 〈1, ρπ〉 〈ρ, π〉 〈ρ, ρπ〉 〈π,−ρπ〉
〈1,−ρ,−ρπ〉 〈1, π,−ρπ〉 〈1,−ρ,−π〉 〈ρ, π,−ρπ〉 〈1,−ρ, π,−ρπ〉.

References

[1] Emil Artin, Geometric Algebra, Interscience Tracts in Pure and Applied
Mathematics Vol. 3, Interscience Publishers Inc, New York-London, 1957.
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