
A CONSIDERATION OF ATTACKS AND THEORY IN

CODE-BASED CRYPTOGRAPHY

FILIP STOJANOVIC

Abstract. The McEliece public-key cryptosystem (PKC) based on binary,

irreducible Goppa codes (known as Classic McEliece in its submission to the
National Institute of Standards and Technology’s post-quantum cryptogra-

phy standardization project) is one of the most promising cryptosystems in
post-quantum cryptography with it admitting no considerable speed-up from

quantum attacks, as catalogued in [B]. We consider several structural attacks

against McEliece schemes based on both Goppa codes and Generalized Reed-
Solomon (GRS) codes, identifying when these attacks may threaten Classic

McEliece. We notably extend the Sidelnikov-Shestakov attack to show that it

is also successful on any McEliece scheme based on full-rank Goppa codes. We
also collect a number of results about Fp-linear subcodes of Fpm -linear codes

and more specific results on GRS and Goppa codes. Ultimately, we use them

to motivate a new approach for a key-recovery attack on the McEliece scheme
based on Goppa codes.

Acknowledgements

I want to offer my sincerest thanks to Dr. Monica Nevins both for providing me
many opportunities to deepen my knowledge and interest for math over many years
and for helping me find those early feelings of triumph in the face of challenging
math problems that all mathematicians can invariably cite as a principal motivation
for their decision to study what they love. Furthermore, her generous donation of
her time, insight, and direction enriched the contents of this project greatly and
made working on it an incredibly rewarding experience. I also wish to thank NSERC
for providing me with the occasion to study this material through their support via
an Undergraduate Student Research Award.

1. Introduction

In opposition to the threat of quantum computers on PKCs, the National Insti-
tute of Standards and Technology launched its initiative to find classically-secure
and quantum-resistant PKCs. Classic McEliece has been identified as one of the
most promising post-quantum cryptosystems by this initiative. In order to study
its security, we present the requisite coding theory needed to describe the McEliece
PKC in Part 1 of this article, and we describe attacks against it in Part 2.

In Part 1, we study the properties of subfield subcodes and trace codes, Fp-linear
subcodes of Fpm -linear codes, notably deriving a precise construction for each us-
ing subspaces of Fnpm that are invariant under the Galois group Gal(Fpm ,Fp). More
generally, we also relate properties of Fp-linear codes to those of their Fpm -linear

Date: January 22, 2021.

1

2 FILIP STOJANOVIC

extensions. We define Goppa and GRS codes and we precisely describe the rela-
tionship of Goppa codes as subfield subcodes of GRS codes, consequently using
it to characterize Goppa codes using the polynomial-evaluation definition of GRS
codes.

In Part 2, we describe the McEliece PKC as well as the two main classes of attacks
against it. We rely on results from [TS] to confirm the intractability of message
attacks on the McEliece PKC and use it as motivation to consider the efficiency
of structural attacks instead. We present several structural attacks against the
McEliece PKC based on GRS codes and subcodes thereof proposed by Sidelnikov
and Shestakov in [SS] and Wieschebrink in [W]. We note when it is possible to
extend these attacks to efficient attacks against the McEliece PKC based on Goppa
codes, notably identifying that the attack proposed by Sidelnikov and Shestakov
applies in exactly the same way to a McEliece PKC based on full-rank Goppa codes
as it does to one based on GRS codes. We illustrate why this attack does not extend
to lower-dimensional Goppa codes and identify what information is lost due to this
drop in dimension in the binary case. We ultimately propose a new approach for
a key-recovery attack on the McEliece PKC based on Goppa codes motivated by
results collected in Part 1. Its difficulty lies in the problem of identifying a linear
code given its Galois closure and we derive results about the relationship between
the parameters of GRS codes with the same Galois closure to ascertain the difficulty
of this problem. We also consider a modification to this approach using punctured
codes, which leads us to deriving a sufficient condition in the parameters of a GRS
for when its subfield subcode is of full rank. In considering this new approach, we
mention several open problems for future work.

1.1. Prerequisites. This material should be accessible to anyone who has taken
a first course in coding theory. The particular topics one should be comfortable
with are linear error-correcting codes, finite fields, and asymmetric cryptography.
Sections 1, 2, 3.3, and 4.2 in [N] would be the best places to consult for familiarizing
oneself with this material. Alternatives would be Sections 1, 2, and 3 in [Ro] or
Sections 1, 3, 4 in [MS] for background on linear error-correcting codes and finite
fields. The requisite familiarity with asymmetric cryptography can be acquired
through a quick skim of the Wikipedia page on public-key cryptography.

1.2. Statement on Notation. With apologies to the computer scientists, we will
write vectors as column vectors. We summarize certain other notable notation
choices below.

• Fpm denotes the finite field of size pm where p is prime and m ∈ N+.
• A (n, k) F-linear code C denotes a k-dimensional subspace of Fn.
• ω : Fnpm → N is used to denote the Hamming weight.
• Pk(Fpm) denotes the vector space of polynomials of degree at most k with

coefficients in Fpm .
• If M is a matrix in Mn,k(F), then we denote the ith column of M by Mi.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 3

Part 1. Properties of GRS, Goppa, and Alternant Codes

2. Subfield Subcodes and Trace Codes

For a linear code defined over an extension of a finite field, we will give the
construction of two important classes of linear codes that we can derive from such
a code and that will be vector spaces linear over the base field. We will prove certain
properties of subfield subcodes and trace codes, in particular giving bounds on their
dimensions. We will also give equivalent characterizations of subfield subcodes and
trace codes in terms of invariant vector spaces under a particular Galois group.

2.1. Preliminary Theory. We begin first by presenting the material from Galois
theory needed to understand the construction of subfield subcodes and trace codes
as well as develop a particularly interesting equivalent characterization for each.

We begin by outlining a few important properties of the primary tool we will
use to study Fp-linear subcodes of Fpm-linear codes, the Frobenius map.

Definition 2.1.1. The Frobenius map is φ : Fpm → Fpm given by x 7→ xp.

We may extend this map to n-tuples over Fpm . In this case, we label it by
φn : Fnpm → Fnpm , and, naturally, it maps (xi)

n
i=1 7→ (xpi)

n
i=1.

Lemma 2.1.2. Let x ∈ Fpm . We have φ(x) = x if and only if x ∈ Fp.

Proof. Notice that

φ(x) = xp = x ⇐⇒ x(xp−1 − 1) = 0.

This latter condition holds if and only if x = 0 or x ∈ µp−1. Immediately, we
recognize since the set of the p− 1 roots of unity is µp−1 = F×p , we have φ(x) = x

if and only if x ∈ F×p ∪ {0} = Fp, as required. �

Lemma 2.1.3. φn is Fp-linear.

Proof. Let x, y ∈ Fnpm and let α, β ∈ Fp.
We will show φn(αx+βy) = αφn(x)+βφn(y). Suppose α, β 6= 0 because the result
is trivial in this case. For any choice of i ∈ {1, . . . , n}, we have

(φn(αx+ βy))i = φ(αxi + βyi)

=

p∑
k=0

(
p

k

)
αkxki β

p−kyp−k

= αpxpi + βpypi since char(Fpm) = p

= φ(α)φ(xi) + φ(β)φ(yi)

= αφ(xi) + βφ(yi) by Lemma 2.1.2.

Since this holds for each coordinate of φn(αx+ βy), we get the result. �

Remark 2.1.4. Since φn is the coordinate-wise application of φ to a n-tuple over
Fpm , it follows immediately from this last lemma that for all x ∈ Fnpm , we have
φn(x) = x if and only if x ∈ Fnp .

Definition 2.1.5. Let G be a field and let F be a subfield of G. The Galois
group Gal(G,F) is the group of all field automorphism of G such that for any map
τ ∈ Gal(G,F) and for any element x ∈ F, we have τ(x) = x.

4 FILIP STOJANOVIC

For notational brevity, we will denote Gal(Fpm ,Fp) by Gal(pm, p). Furthermore,
Gal(pm, p) is a cyclic group of order m generated by the Frobenius map φ. A proof
of this comes from Theorem 4.12 in [R].

Definition 2.1.6. Let C be a subspace of Fnpm . C is said Gal(pm, p)-invariant if
for all vectors c ∈ C and for any map τ ∈ Gal(pm, p), we have τn(c) ∈ C where
τn : Fnpm → Fnpm is the map whose coordinate-wise action on c is τ . Since τ is an
automorphism, we will have τn(C) = C.

We will characterize when a linear code is Gal(pm, p)-invariant.

Lemma 2.1.7. Let C be a subspace of Fnpm . C is Gal(pm, p)-invariant if and only
if φn(c) ∈ C for all c ∈ C.

Proof. The forwards implication follows immediately from noticing φ ∈ Gal(pm, p).
For the converse direction, let c ∈ C be given.

φn(c) ∈ C =⇒ φn ◦ φn(c) ∈ C =⇒ φn ◦ · · · ◦ φn(c) ∈ C

For any r ∈ {1, . . . ,m}, we may compose φn with itself r times and get φrn(c) ∈ C.
Since Gal(pm, p) is the cyclic group of orderm generated by φ, for all τ ∈ Gal(pm, p),

∃r ∈ {1, . . . ,m} such that τ = φr.

Hence, τn(c) = φrn(c) ∈ C, as required. �

In fact, this last characterization remains true even when it’s just a basis of C
that’s contained in C after the application of φn. This characterization comes from
Lemma 5.2.15 in [P].

Lemma 2.1.8. Let C be a (n, k) Fpm-linear code and let B be a basis for C. C is
Gal(pm, p)-invariant if and only if φn(b) ∈ C for all b ∈ B.

Proof. See [P]. �

Definition 2.1.9. Let C be a subspace of Fnpm . We will define the Galois interior
and Galois closure of C, as

C0 := ∩mi=1φ
i
n(C) and

C∗ :=

m∑
i=1

φin(C), respectively.

Proposition 2.1.10. Let C be a subspace of Fnpm and consider its Galois interior.

(a) C0 is Gal(pm, p)-invariant.
(b) C is Gal(pm, p)-invariant if and only if C = C0.
(c) For any subspace D ⊆ C such that D is Gal(pm, p)-invariant, we have D ⊆ C0.

In other words, D is the largest Gal(pm, p)-invariant subspace of C.

Proof. We’ll prove each item separately.

(a) Let c ∈ C0, so c ∈ φsn(C) for all s = 0, . . . ,m−1. Thus, for any s ∈ {0, . . . ,m−
1}, there exists a vector c′s ∈ C such that c = φsn(c′s). By Lemma 2.1.7, we just
need to show φn(c) ∈ C0. We have φn(c) = φs+1

n (c′s). But since Gal(pm,m) is

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 5

a cyclic group of order m generated by φ, for any integer r ∈ N, we see that
φrn = φrmn such that rm ≡ r(mod m). Thus, it’s clear to see that

φn(c) =

{
φsn(c′s−1) s = 1, . . . ,m− 1

φ0
n(c′m−1) s = 0

Thus, φn(c) ∈ ∩mi=1φ
i
n(C) = C0, as required.

(b) The converse direction follows immediately from C0 being Gal(pm, p)-invariant.
Let C be Gal(pm, p)-invariant and let c ∈ C be given. By Lemma 2.1.7, we
have that φn(c) ∈ C. By successively applying Lemma 2.1.7, we get

φn(c) ∈ C =⇒ φ2
n(c) ∈ C =⇒ · · · =⇒ φmn (c) ∈ C.

Hence, the above implications give φin(C) ⊆ C for all i = 1, . . . ,m. Now, for
all i ∈ {1, . . . , n} set ci := φm−in (c). The above implications guarantees that
ci ∈ C. We therefore have

c = φin(ci) =⇒ c ∈ φin(C) ∀i = 1, . . . ,m.

This means C ⊆ φin(C) for all i = 1, . . . ,m, which allows us to conclude using
our previous inclusion that φin(C) = C for all i = 1, . . . ,m. Finally, we can
conclude C = ∩mi=1φ

i
n(C) = C0, as required.

(c) Let D ⊆ C be a subspace such that D is Gal(pm, p)-invariant. By part (b),
this means D = D0. However, because D ⊆ C, we get

D = ∩mi=1φ
i
n(D) ⊆ ∩mi=1φ

i
n(C) = C0, as required.

�

Proposition 2.1.11. Let C be a subspace of Fnpm and consider its Galois closure.

(a) C∗ is Gal(pm, p)-invariant.
(b) C∗ ⊇ C and for all vector spaces D ⊇ C such that D is Gal(pm, p)-invariant,

we have D ⊇ C∗. In other words, C∗ is the smallest Gal(pm, p)-invariant vector
space containing C.

Proof. Again, we’ll prove both parts separately.

(a) By Lemma 2.1.7, we need only prove φn(C∗) ⊆ C∗.
Since C∗ = {c1 + · · ·+ cm : ci ∈ φin(C) for all i = 1, . . . ,m}, if we take c ∈ C∗,
then there exist c1, . . . , cm ∈ C such that c =

∑m
i=1 φ

i
n(ci). Let c be as just

described.

φn(c) = φn

(
m∑
i=1

φin(ci)

)
=

m∑
i=1

φi+1
n (ci) by the Fp-linearity of φn

Notice that for all i = 1, . . . ,m − 1, we have φi+1
n (ci) ∈ φi+1

n (C) since ci ∈ C.
Since 〈φ〉 is a cyclic group of order m, we also have φm+1

n (cm) = φn(cm) ∈
φn(C). Hence, φn(c) ∈ C∗, as required.

(b) Since φmn = id, C∗ = C + φn(C) + · · · + φm−1
n (C) clearly contains C. Now,

suppose D is a Gal(pm, p)-invariant vector space such that D ⊇ C. This means
for all vectors d ∈ D, we have φin(d) ∈ D for all i = 1, . . . ,m.

6 FILIP STOJANOVIC

Let b1, . . . , bm ∈ C ⊆ D be given. We have φin(bi) ∈ D for all i = 1, . . . ,m.
But since D is a vector space, we have

∑m
i=1 φ

i
n(bi) ∈ D. This vector is just an

arbitrary element of C∗; thus, we conclude C∗ ⊆ D.

�

Definition 2.1.12. Let C be a Fp-linear code. The extension by scalars of C is
the Fpm-linear code spanFpm

(C). We denote this code by C ⊗ Fpm .

We will now establish a few results that relate a Fp-linear code to its extension
by scalars over Fpm .

Lemma 2.1.13. Let C be a (n, k) Fp-linear code and let {b1, . . . , bk} be a basis for
C. The set {b1, . . . , bk} will also be a basis for the code C ⊗ Fpm .

Proof. We begin first by showing {b1, . . . , bk} spans C ⊗ Fpm .

C ⊗ Fpm =

{∑
c∈C

λcc : λc ∈ Fpm
}

=

{∑
c∈C

λc

(
k∑
i=1

γibi

)
: γi ∈ Fp, λc ∈ Fpm

}

=

{
k∑
i=1

(∑
c∈C

γiλc

)
bi : γi ∈ Fp, λc ∈ Fpm

}
= spanFpm

{b1, . . . , bk}

To prove the set’s linear independence over Fpm , we first let {α1, . . . , αm} be
a basis for Fpm over Fp. Next, let λ1, . . . , λk ∈ Fpm such that λi =

∑m
j=1 ai,jαj .

Consider the equation
∑k
i=1 λibi = 0 and notice that it lets us develop the following.

⇐⇒
k∑
i=1

 m∑
j=1

ai.jαj

 bi = 0

⇐⇒
k∑
i=1

ai,1α1bi + · · ·+
k∑
i=1

ai,mαmbi = 0

⇐⇒


∑k
i=1 ai,1(bi)1α1 + · · ·+

∑k
i=1 ai,m(bi)1αm

...∑k
i=1 ai,1(bi)nα1 + · · ·+

∑k
i=1 ai,m(bi)nαm

 =

0
...
0


=⇒

k∑
i=1

ai,j(bi)r = 0 ∀j = 1, . . . ,m, ∀r = 1, . . . , n

⇐⇒
k∑
i=1

ai,jbi = 0 ∀j = 1, . . . ,m

=⇒ ai,j = 0 ∀i, j by the linear independence over Fp of {b1, . . . , bk}

Hence, λ1, . . . , λk = 0, so {b1, . . . , bk} is linearly independent over Fpm . Thus, it
is a basis for C ⊗ Fpm . �

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 7

Corollary 2.1.14. If C is a (n, k) Fp-linear code, then

dimFp
(C) = dimFpm

(C ⊗ Fpm).

Proof. This is a direct consequence of the previous lemma. �

The operations of extending a Fp-linear code by scalars and of intersecting a
Fpm-linear code with Fnp allow us to describe another equivalent characterization
for when a code is Gal(pm, p)-invariant.

Lemma 2.1.15. Let C be a (n, k) Fpm-linear code. C ∩ Fnp ⊗ Fpm = C if and only
if dimFp

(C ∩ Fnp) = k.

Proof. It is clear that C ∩ Fnp ⊗ Fpm ⊆ C. Thus,

C ∩ Fnp ⊗ Fpm = C ⇐⇒ dimFpm
(C ∩ Fnp ⊗ Fpm) = dimFpm

(C)

⇐⇒ dimFp(C ∩ Fnp) = k by Corollary 2.1.14.

�

The following theorem given in [GP] provides us with an equivalent characteri-
zation for the Gal(Fpm ,Fp)-invariance of a code.

Theorem 2.1.16. Let C be a Fpm-linear code. C is Gal(pm, p)-invariant if and
only if C = C ∩ Fnp ⊗ Fpm . This is equivalent to having C admit a basis in Fnp .

Proof. See [GP]. �

Corollary 2.1.17. Let C be a (n, k) Fpm-linear code. C is Gal(pm, p)-invariant if
and only if C ∩ Fnp is of maximal rank.

Proof. Successively applying Theorem 2.1.16 and Lemma 2.1.15 gives

C is Gal(pm, p)-invariant ⇐⇒ dimFp(C ∩ Fnp) = k,

which by Proposition 2.3.1 is the maximal dimension of C ∩ Fnp . �

Lastly before proceeding, we write a lemma to understand the interplay between
the actions ∩Fnp and ⊗Fpm we can perform on linear codes.

Lemma 2.1.18. If C is a (n, k) Fp-linear code, then C = C ⊗ Fpm ∩ Fnp .

Proof. Let B = {b1, . . . , bk} be a basis for C. By Lemma 2.1.13, B is also a ba-
sis for C ⊗ Fpm . Immediately, we will note that because C = C ∩ Fnp , we have
C ⊆ C ⊗ Fpm ∩ Fnp .

We will next show that C ⊗ Fpm ∩ Fnp ⊗ Fpm = C ⊗ Fpm . By our previous
observation, the ⊇ inclusion is clear. For the inclusion the other way, let s ∈ N be
given and let d1, . . . , ds be codewords of C ⊗ Fpm ∩ Fnp . This means that for all

j = 1, . . . , s, there exist scalars λj,1, . . . , λj,k ∈ Fpm such that dj =
∑k
i=1 λj,ibi and

dj ∈ Fnp . Thus, for all γ1, . . . , γs ∈ Fpm , we have

s∑
j=1

γjdj =

s∑
j=1

k∑
i=1

γjλj,ibi ∈ spanFpm
(B) = C ⊗ Fpm .

Hence, C ⊗ Fpm = C ⊗ Fpm ∩ Fnp ⊗ Fpm .

8 FILIP STOJANOVIC

By Corollary 2.1.14, we get dimFpm
(C ⊗ Fpm) = dimFp

(C ⊗ Fpm ∩ Fnp). But this
means dimFp(C) = dimFp(C ⊗ Fpm ∩ Fnp), which after recalling that we found that
C ⊆ C ⊗ Fpm ∩ Fnp , means we can conclude C = C ⊗ Fpm ∩ Fnp . �

Note that ∩Fnp and ⊗Fpm are not each other’s inverses. We’ve shown C ⊗Fpm ∩
Fnp = C, but it is not generally true C ∩ Fnp ⊗ Fpm = C. By Theorem 2.1.16, the
latter is true if and only if C is Gal(pm, p)-invariant.

2.2. Construction of Subfield Subcodes and Trace Codes. We will now in-
troduce subfield subcodes and trace codes, two important classes subcodes that lead
to the construction of many families of linear codes, including the cryptographically-
relevant family of Goppa codes.

Definition 2.2.1. The trace map is the map Tr : Fpm → Fp given by

x 7→ x+ xp + · · ·+ xp
m−1

=

m∑
i=1

φi(x),

where φ : Fpm → Fpm is the Frobenius map.

We will first verify that Tr(x) ∈ Fp for all x ∈ Fpm . This will be done using
Lemma 2.1.2, which states that φ(x) = x if and only if x ∈ Fp. Let x ∈ Fpm be
given.

φ(Tr(x)) = φ

(
m∑
i=1

φi(x)

)

=

m∑
i=1

φi+1(x) since φ is Fp-linear

=

m∑
i=1

φi(x) since 〈φ〉 is a cyclic group of order m

Hence, Tr(x) ∈ Fp. Additionally, it’s clear that φ being Fp-linear implies that Tr
is also Fp-linear.

Lemma 2.2.2. Tr : Fpm → Fp is surjective.

Proof. Suppose there exists x ∈ Fpm such that Tr(x) 6= 0. For any y ∈ Fp, we
observe by the Fp-linearity of Tr

Tr(yTr(x)−1x) = yTr(x)−1Tr(x) = y.

Hence, Tr is surjective if and only of there exists x ∈ Fpm such that Tr(x) 6= 0. To
show the surjectivity of Tr, we will show it is not the zero map.

Suppose for a contradiction that for all x ∈ Fpm , T r(x) = 0. This occurs if and
only if

m∑
i=1

xp
i

= 0

⇐⇒ x+ xp + · · ·+ xp
m−1

= 0

⇐⇒ x(1 + xp−1 + · · ·+ xp
m−1−1) = 0.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 9

Thus, for all y ∈ F×pm , y is a root of f(x) := 1 + xp−1 + · · · + xp
m−1−1. But

deg(f) = pm−1 − 1, so it has at most pm−1 − 1 roots. However, |F×pm | = pm − 1 >

pm−1−1, so it is not possible for all of F×pm to be roots of f(x), a contradiction. �

Proposition 2.2.3. For all a ∈ Fp, we have |Tr−1(a)| = pm−1.

Proof. By the previous lemma, Im(Tr) = Fp. Furthermore, as a vector space over
Fp, Fpm ∼= Fmp . Hence, by the Dimension Theorem,

m = dimFp
(Im(Tr)) + dimFp

(ker(Tr)) ⇐⇒ m− 1 = dimFp
(ker(Tr)).

Thus, |ker(Tr)| = pm−1. Let x0 ∈ Fpm be a vector such that Tr(x0) = a. But
by the Fp-linearity of Tr, we get Tr−1(a) = {x0} + ker(Tr). Thus, we conclude
|Tr−1(a)| = pm−1. �

We will now give an explicit formulation for the kernel of the trace map. It
comes as the result of Exercise 4.23 in [R]

Proposition 2.2.4. Let Tr : Fpm → Fp be the trace map as defined previously.
We have

ker(Tr) = {a ∈ Fpm : a = φ(u)− u for some u ∈ Fpm}.

Proof. Define τ := φ− id where id : Fpm → Fpm is the identity map.
We will show that ker(Tr) = Im(τ).

ker(τ) = {x ∈ Fpm : φ(x)− x = 0}
= {x ∈ Fpm : φ(x) = x}
= Fp since φ(x) = x ⇐⇒ x ∈ Fp

Furthermore, τ is Fp-linear since φ is Fp-linear. Since Fpm ∼= Fp as a vector space
over Fp, so by the Dimension Theorem,

m = dimFp
(Im(τ)) + dimFp

(ker(τ)) ⇐⇒ dimFp
(Im(τ)) = m− 1.

We recall that in the previous proposition, we found dimFp
(ker(Tr)) = m − 1 as

well. Hence, we need only show Im(τ) ⊆ ker(Tr). Let u ∈ Fpm be given.

Tr(τ(u)) = Tr(φ(u)− u)

=

m∑
i=1

φi+1(u)−
m∑
i=1

φi(u) by the Fp-linearity of Tr

=

m∑
i=1

φi(u)−
m∑
i=1

φi(u) since order(φ) = m

= 0

Thus, τ(u) ∈ ker(Tr), giving us the result. �

The following result comes from Corollary 1.29 in [C1].

Proposition 2.2.5. The map L(·, ·) : Fpm ×Fpm → Fp given by (a, b) 7→ Tr(ab) is
a non-degenerate, bilinear form.

Proof. The bilinearity of L follows from the Fp-linearity of Tr. Suppose for a
contradiction that there exists b ∈ F×pm such that Tr(ab) = 0 for all a ∈ Fpm . Since

b 6= 0, b−1 exists. Let x ∈ Fpm and take a = xb−1.

Tr(ab) = Tr(xb−1b) = Tr(x) = 0

10 FILIP STOJANOVIC

Hence, Tr is the zero map, but this is a contradiction since Tr is surjective. �

This map allows us to introduce the notion of the dual basis to a given basis of
Fpm over Fp. The dual basis becomes an important ingredient in the description of
a generating set for a trace code, which is about to be introduced. We will simply
state the results concerning the dual basis and invite the interested reader to con-
sult [C1] to get a better understanding.

We can also extend the trace map to n-tuples over Fpm as Tr : Fnpm → Fnp
by (xi)

n
i=1 7→

(∑m
j=1 φ

j(xi)
)n
i=1

. We’ll denote this map in the same way as

Tr : Fpm → Fp, so we’ll use the context to distinguish between these two maps.

We now define the first important class of linear subcodes, the trace code.

Definition 2.2.6. Let C be a (n, k) Fpm-linear code. The trace code of C is defined
to be Tr(C) = {Tr(c) : c ∈ C} = {

(∑m
i=1 φ

i(c1), . . . ,
∑m
i=1 φ

i(cn)
)

: c ∈ C}.

Definition 2.2.7. Let {α1, . . . , αm} be a basis for Fpm over Fp. The dual basis of
{α1, . . . , αm} is another basis {α∗1, . . . , α∗m} such that for all i, j ∈ {1, . . . ,m},

L(αi, α
∗
j) = Tr(αiα

∗
j) =

{
1 if i = j

0 if i 6= j
.

For any given basis, the corresponding dual basis exists and is unique. This is
verified in Proposition 1.32 in [C1].

The following result is presented in [C1] and gives us a generating set for a trace
code.

Proposition 2.2.8. Let C be a (n, k) Fpm-linear code. Let {α1, . . . , αm} be a basis
for Fpm over Fp and let {α∗1, . . . , α∗m} be its corresponding dual basis. If {b1, . . . , bk}
is a basis for C, then {Tr(biα∗j) : 1 ≤ i ≤ k, 1 ≤ j ≤ m} generates Tr(C).

Proof. See [C1]. �

We now define the other important class of linear subcodes, the subfield subcode.

Definition 2.2.9. Let C be a (n, k) Fpm-linear code. The subfield subcode of C is
C ∩ Fnp .

The following theorem is due to Delsarte in [D] and it describes the relationship
between subfield subcodes and trace codes.

Theorem 2.2.10 (Delsarte Duality). Let C be a (n, k) Fpm-linear code. We have
(C ∩ Fnp)⊥ = Tr(C⊥).

Proof. See [D]. �

For a Fpm -linear code C, we want to study the intersection of its correspond-
ing trace code and subfield subcode. We first begin by considering when C is
Gal(pm, p)-invariant.

Proposition 2.2.11. Let C be a (n, k) Fpm-linear code. We have C ∩Fnp = Tr(C)
if and only if C is Gal(pm, p)-invariant.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 11

Proof. See [GP]. �

Next, we consider the more general case when C need not be Gal(pm, p)-invariant.

Proposition 2.2.12. Let C be a (n, k) Fpm-linear code. If m 6≡ 0(mod p), then
C ∩ Fnp ⊆ Tr(C).

Proof. We first note that the map Tr : Fpm → Fp behaves in an interesting way
when applied to an element x ∈ Fpm . For all x ∈ Fp, we have

Tr(x) =

m∑
i=1

φi(x) =

m∑
i=1

x = mx.

Define r to be the smallest element of the equivalence class m (mod p), and r is
not zero by hypothesis. Let c := (c1, . . . , cn) ∈ C ∩ Fnp . We observe

Tr(c) = (Tr(ci))
n
i=1 = (rci)

n
i=1 = rc.

By the Fp-linearity of Tr, we have Tr(r−1c) = r−1Tr(c) = r−1rc = c. Hence, for
all codewords c ∈ C ∩ Fnp , there exists v := r−1c ∈ C such that Tr(v) = c. This
exactly means C ∩ Fnp ⊆ Tr(C). �

This proposition holds more generally. [GP] shows C ∩ Fnp ⊆ Tr(C) whenever
Fpm is a separable extension over Fp. By Lemma 11.82 in [R], Fpm is separable
over Fp if and only if the trace form L : Fpm × Fpm → Fp is non-degenerate. By
Proposition 2.2.5, L is non-degenerate, so Fpm is separable and C ∩ Fnp ⊆ Tr(C)
always holds.

The following theorem gives an equivalent characterization for the trace code
and subfield subcode of a Fpm -linear code in terms of its Galois closure and Galois
interior.

Theorem 2.2.13. Let C be a (n, k) Fpm-linear code. We have the following char-
acterization for its subfield subcode and trace code.

C ∩ Fnp = C0 ∩ Fnp and

Tr(C) = C∗ ∩ Fnp

Proof. We’ll first begin by showing the characterization for the subfield subcode.
Since C0 ⊆ C, it is clear that C0 ∩ Fnp ⊆ C ∩ Fnp .

For the inclusion the other way, let c ∈ C ∩ Fnp be a codeword and let r ∈
{1, . . . ,m}. Since we know φn(x) = x if and only if x ∈ Fnp by Remark 2.1.4, we
have

φrn(c) = φn ◦ · · · ◦ φn(c) = c.

Thus, we get c = φrn(c) for all r = 1, . . . ,m, so we have c ∈ φrn(C) for all r. This
means exactly c ∈ C0. But since c ∈ Fnp as well, this gives c ∈ C0 ∩ Fnp . With the

previous inclusion we derived, we get C ∩ Fnp = C0 ∩ Fnp , as required.

12 FILIP STOJANOVIC

Next, we will show the characterization for the trace code. We have

Tr(C) = {
m∑
i=1

φin(c) : c ∈ C} ⊆
m∑
i=1

φin(C) = C∗.

Also, since Tr : Fnpm → Fnp , we have Tr(C) ⊆ Fnp . Hence, Tr(C) ⊆ C∗ ∩ Fnp .

For the other inclusion, we invoke Delsarte Duality to write (C⊥∩Fnp)⊥ = Tr(C).

We’ll show the inclusion by showing (C⊥ ∩ Fnp)⊥ ⊇ C∗ ∩ Fnp . Let c =
∑m
i=1 φ

i
n(ci)

be a codeword such that c1, . . . , cm ∈ C. Suppose further that c ∈ Fnp and let

b ∈ C⊥ ∩ Fnp . We will use < ·, · > to denote the canonical inner product.

< c, b > =<

m∑
i=1

φin(ci), b >

=

m∑
i=1

< φin(ci), b >

=

m∑
i=1

n∑
t=1

φi((ci)t)bt

=

m∑
i=1

φi

(
n∑
t=1

bt(ci)t

)

=

m∑
i=1

φi(< b, ci >)

But since we have ci ∈ C = (C⊥)⊥ for all i = 1, . . . ,m, we get

< b, ci >= 0 ∀b ∈ C⊥ ∩ Fnp .

Hence,
∑m
i=1 φ

i(< b, ci >) =
∑m
i=1 φ

i(0) = 0. Because c ∈ Fnp as well and we

have (C⊥ ∩ Fnp)⊥ ⊆ Fnp , we conclude c ∈ (C⊥ ∩ Fnp)⊥. Of course, this means
C∗ ∩ Fnp ⊆ Tr(C), which gives us the equality. �

Immediately following from this theorem, we can relate the dimension of the
subfield subcode and the trace code of a linear code to the dimension of its Galois
interior and Galois closure, respectively.

Corollary 2.2.14. For a (n, k) Fpm-linear code C, we have

dimFp
(Tr(C)) = dimFpm

(C∗) and dimFp
(C ∩ Fnp) = dimFpm

(C0).

Proof.

dimFpm
(C0) = dimFpm

(C0 ∩ Fnp ⊗ Fpm) = dimFp(C0 ∩ Fnp) = dimFp(C ∩ Fnp)

and

dimFpm
(C∗) = dimFpm

(C∗ ∩ Fnp ⊗ Fpm) = dimFp
(C∗ ∩ Fnp) = dimFp

(Tr(C)).

�

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 13

2.3. Bounds on the Dimension of Subfield Subcodes and Trace Codes.
We will begin by placing näıve bounds on the dimensions of the subfield subcodes
and trace codes for a given linear code. We will also identify sufficient and nec-
essary conditions for these subcodes to be of maximal dimension. Lastly, we will
offer slight improvements on the näıve bounds for the dimensions of both subfield
subcodes and trace codes.

We begin by outlining the trivial bounds for a subfield subcode.

Proposition 2.3.1. Let C be a (n, k) Fpm-linear code. The dimension of its subfield
subcode will be bounded as follows:

0 ≤ dimFp
(C ∩ Fnp) ≤ k.

Proof. The lower bound is trivial, so we’ll just show that k is an upper bound.
We notice by Corollary 2.1.14 that dimFpm

(C0 ∩ Fnp ⊗ Fpm) = dimFp
(C0 ∩ Fnp).

But because C0 is Gal(pm, p)-invariant, by Theorem 2.1.16, we get dimFpm
(C0) =

dimFp
(C0 ∩ Fnp). Since C0 ⊆ C and recalling that by Theorem 2.2.13 we have

C ∩ Fnp = C0 ∩ Fnp , this gives the upper bound as

dimFp
(C ∩ Fnp) = dimFp

(C0 ∩ Fnp) = dimFpm
(C0) ≤ dimFpm

(C).

�

Note that these are näıve bounds on the dimension of a subfield subcode and
are therefore not necessarily any good. All subfield subcodes must satisfy these
bounds, but they may not necessarily be attained.

Next, we will outline the näıve bounds for the dimension of the trace code.

Proposition 2.3.2. Let C be a (n, k) Fpm-linear code. Tr(C) is a Fp-linear code
of dimension at most mk.

Proof. Consider the map Tr|C : C → Fnp . We have Tr(C) = Im(Tr|C), so Tr(C) ⊆
Fnp . Since C ∼= Fmkp and Tr|C is Fp-linear, by the Dimension Theorem,

mk = rankFp
(Tr|C) + dimFp

(ker(Tr|C))

=⇒ rankFp
(Tr|C) = mk − dimFp

(ker(Tr|C)) ≤ mk.
�

The lower bound follows from Delsarte Duality and restates part of Lemma 2.1.13
in [St].

Proposition 2.3.3. Let C be a (n, k) Fpm-linear code. Tr(C) has dimension at
least k.

Proof. By Delsarte Duality, Tr(C) = (C⊥ ∩ Fnp)⊥. Hence,

dimFp
(Tr(C)) = dimFp

((C⊥ ∩ Fnp)⊥)

= n− dimFp
(C⊥ ∩ Fnp)

≥ n− dimFpm
(C⊥)

= n− (n− dimFpm
(C))

= k.

�

14 FILIP STOJANOVIC

The upper bounds from these previous propositions indicate the maximal pos-
sible dimensions of subfield subcodes and trace codes. We will give sufficient and
necessary conditions for when the dimension of these codes attains their respective
upper bounds. Again, we start by considering the subfield subcode.

Proposition 2.3.4. Let C be a (n, k) Fpm-linear code. The subfield subcode C∩Fnp
is of maximal dimension if and only if C0 = C = C∗.

Proof. We start with the forwards implication.

If C ∩ Fnp is of maximal dimension, we have dimFp
(C ∩ Fnp) = dimFpm

(C0) = k.

But since C0 ⊆ C, this means C0 = C. Becuase C0 is Gal(pm, p)-invariant, this
means C itself is Gal(pm, p)-invariant. By Proposition 2.1.10, C∗ is the smallest
Gal(pm, p)-invariant vector space containing C, so because C is Gal(pm, p)-invariant
and it contains itself, we must have C ⊇ C∗ as well, giving us the last equality:
C = C∗.

For the converse direction, if we have C0 = C, then this means dimFpm
(C0) = k.

Because dimFp
(C ∩ Fnp) = dimFpm

(C0), it attains its upper bound. �

As a result, we may characterize when a subfield subcode is of maximal dimension
in another way as well.

Corollary 2.3.5. Let C be a (n, k) Fpm-linear code. Let B be a basis for C and
let H be a parity-check matrix. We observe that C ∩Fnp is of maximal dimension if
and only if

Hφn(b) = 0 ∀b ∈ B.

Proof. By the last proposition, C∩Fnp is of maximal dimension if and only if C = C0,

which, because C0 is Gal(pm, p)-invariant, means C is Gal(pm, p)-invariant. By
Lemma 2.1.8, C is Gal(pm, p)-invariant if and only if φn(b) ∈ C for all b ∈ B.
Hence, this occurs if and only if Hφn(b) = 0 for all b ∈ B. �

We next take a combinatorial perspective to describe the necessary relationship
between the Galois interior and the Galois closure of a linear code when its trace
code is of full rank.

Proposition 2.3.6. Let C be a (n, k) Fpm-linear code. If dimFp(Tr(C)) = mk,

then dimFpm
(C0) = 0.

Proof. Begin by considering the Galois closure C∗. We have that C∗ is a vector
space over Fpm , so if its dimension is d, it will be isomorphic to Fdpm . Indeed, we

know then that the cardinality of C∗ will be (pm)d, so we may in fact ascertain the
dimension of C∗ from its cardinality. We will first approximate |C∗| by assuming
each distinct choice of m-tuple v := (c1, . . . , cm) ∈ Cm produces a different vector
sv :=

∑m
i=1 φ

i
n(ci) ∈ C∗. In this case, we get

|C∗| = |Cm| = (pm)mk.

Define T : Cm → C∗ by the mapping v 7→ sv. Note that we won’t consider the
linearity of T in what follows. We will get the desired result by showing that T is
not injective.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 15

However, we notice for a given m-tuple (c1, . . . , cm) if there exists j ∈ {1, . . . ,m}
such that cj 6= 0 and φjn(cj) ∈ φin(C) for some i 6= j (WLOG j > i), then the choice
ofm-tuples v = (c1, . . . , ci, . . . , cj , . . . , cm) and w := (c1, . . . , ci+φ

j−i
n (cj), . . . , 0, . . . , cm)

will produce the same vector. This vector will therefore be double-counted in the
first estimate of |C∗|. If ∪j 6=iφin(C)∩φjn(C) 6= {0} for all i = 1, . . . ,m, then there is a
vector in C∗ that can be expressed as the image of two distinct m-tuples v, w ∈ Cm
in the above way. Hence, T is not injective, meaning that |Cm| = (pm)mk > |C∗|,
which then guarantees dimFpm

(C∗) 6= mk.

Notice that if C0 = ∩mi=1φ
i
n(C) 6= {0}, then for all i = 1, . . . ,m, we observe

∪j 6=iφin(C) ∩ φjn(C)) {0}, so dimFpm
(C∗) 6= mk as per the above. But since

dimFpm
(C∗) = dimFp

(Tr(C)), we have C0 6= {0} implies dimFp
(Tr(C)) 6= mk. The

contrapositve of this last implication is the result we wanted to show. �

Note that the converse doesn’t hold. Having dimFpm
(C0) = 0 isn’t nearly a

strong enough condition to guarantee that the dimension of the trace code attains its
upper bound. For example, one can verify that if ∩ni=1φ

i
n(C) = {0} and there exists

some i ∈ {1, . . . ,m} such that φin(C) ∩
(∑

j 6=i φ
j
n(C)

)
) {0}, the corresponding

trace code Tr(C) will not be of maximal dimension. We will soon prove this is
the case as a part of our describing conditions on C that will ensure Tr(C) is of
maximal rank. To do this, we will need to establish a result from linear algebra.

Proposition 2.3.7. Let V be finite-dimensional vector space over field F. Let
U1, . . . , Um be subspaces of V such that V = U1 + · · · + Um. We have that V =⊕m

i=1 Ui ⇐⇒ dim(V) =
∑m
i=1 dim(Ui).

Proof. To prove the forwards implication, we assume V =
⊕m

i=1 Ui. This means

V =

m∑
i=1

Ui and Ui ∩

∑
j 6=i

Uj

 = {0}.

Notice that V =
⊕m

i=1 Ui = (
⊕m−1

i=1 Ui)⊕Um, which follows essentially from the

associativity of addition and that Um ∩
(∑

j 6=m Uj

)
= {0}. Let W :=

⊕m−1
i=1 Ui

and let B1 := {w1, . . . , wk} be a basis for W . Likewise, let B2 := {u1, . . . , ul} be a
basis for Um. We will show that B1 ∪B2 is a basis for W ⊕ Um.

Let v ∈ V be given. Clearly, there exists w ∈W and u ∈ Um such that v = w+u.
Given that B1 is a basis for W and B2 is a basis for Um, there exist λi, γj ∈ F for all

i = 1, . . . , k and for all j = 1, . . . , l such that v =
∑k
i=1 λiwi +

∑l
j=1 γjuj . Hence,

V ⊆ span(B1 ∪B2), giving us V = span(B1 ∪B2).

Next, suppose for a contradiction that there exists I ⊆ {1, . . . , k} and J ⊆
{1, . . . , l} such that λi 6= 0 for all i ∈ I, γj 6= 0 for all j ∈ J , and

∑
i∈I λiwi +∑

j∈J γjuj = 0. By the linear independence of B1 and B2, we can’t have either

I = ∅ or J = ∅ as if I were empty,
∑
j∈J γjwj = 0 implies γj = 0 for all j ∈ J ,

which is a contradiction, and likewise for if J = ∅. Thus, both I 6= ∅ and J 6= ∅.

16 FILIP STOJANOVIC

We therefore have ∑
i∈I

λiwi +
∑
j∈J

γjuj = 0

⇐⇒
∑
i∈I

λiwi =
∑
j∈J

(−γj)uj .

But since γj 6= 0 for all j ∈ J and B2 is linearly independent,
∑
j∈J(−γj)uj 6= 0.

Therefore, there exists u ∈ Um such that u 6= 0 and u ∈ W . But this contradicts
W ⊕ Um = V , so

m∑
i=1

λiwi +

l∑
j∈J

γjuj = 0 =⇒ λi, γj = 0 ∀i, j.

Hence, B1 ∪B2 is linearly independent, so it’s a basis for V .

This gives dim(V) = dim(W) + dim(Um) = dim(
⊕m−1

i=1 Ui) + dim(Um). By tak-
ing m = m− j and iterating the above argument for all j = 1, . . . ,m− 2, what we
get is dim(V) =

∑m
i=1 dim(Ui). This proves the forwards implication.

To prove the converse direction, suppose that dim(V) = dim(
∑m
i=1 Ui) =

∑m
i=1 dim(Ui).

We must show this implies V =
⊕m

i=1 Ui, which amounts to showing Ui∩
(∑

j 6=i Uj

)
=

{0} for all i = 1, . . . ,m. Let i ∈ {1, . . . ,m} be given. By the associativity and
commutativity of addition, we have V = Ui +

∑
j 6=i Uj . We also have dim(V) =

dim(Ui) +
∑
j 6=i dim(Uj).

For any finite-dimensional vector spaces U,W over F, we have dim(U + W) =
dim(U) + dim(W)− dim(U ∩W). Hence,

dim(V) = dim(Ui) + dim(
∑
j 6=i

Uj)− dim(Ui ∩
∑
j 6=i

Uj).

But since dim(V) = dim(Ui) +
∑
j 6=i dim(Uj), we get

(2.1) dim(
∑
j 6=i

Uj)− dim(Ui ∩
∑
j 6=i

Uj) =
∑
j 6=i

dim(Uj).

Let Bj be a basis for Uj for all j 6= i. As we’ve shown in proving the previous
direction, ∪j 6=iBj spans

∑
j 6=i Uj , so we get

dim(
∑
j 6=i

Uj) ≤ | ∪j 6=i Bj | ≤
∑
j 6=i

dim(Uj).

But because dim(Ui∩
∑
j 6=i Ui) ≥ 0, the only way for (2.1) to hold is if dim(

∑
j 6=i Uj) =∑

j 6=i dim(Uj). Hence, dim(Ui ∩
∑
j 6= iUj) = 0, as required. �

This proposition lets us place the sufficient and necessary conditions for a trace
code of a linear code to be of maximal rank.

Corollary 2.3.8. Let C be a (n, k) Fpm-linear code. The trace code Tr(C) is of
maximal dimension if and only if C∗ =

⊕m
i=1 φ

i
n(C).

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 17

Proof. By Corollary 2.2.14, we have dimFp
(Tr(C)) = dimFpm

(C∗). The maximal

dimension of Tr(C) is mk =
∑m
i=1 φ

i
n(C). By the previous proposition, we conclude

dimFpm
(C∗) =

∑m
i=1 φ

i
n(C) if and only if C∗ =

⊕m
i=1 φ

i
n(C). �

Next, we will describe a relationship between the dimensions of the Galois closure
and Galois interior of a linear code.

Proposition 2.3.9. Let C be a (n, k) Fpm-linear code. Let B0 be a basis for its
Galois interior C0 and let Bi ⊇ B0 be a basis for φin(C) for all i = 1, . . . ,m. If we
define P := {1, . . . ,m}, we observe

dimFpm
(C∗) + (−1)m dimFpm

(C0) ≤
m−1∑
i=1

(−1)r+1
∑
I⊆P
|I|=r

| ∩i∈I Bi|.

Proof. Recall that C0 = ∩mi=1φ
i
n(C). With this, for any I ⊆ P , we observe that

∩i∈Iφin(C) will admit C0 as a subspace. Because of this, we can extend B0 to be
a basis for φin(C) for all i = 1, . . . ,m. The bases we get through this construction
are Bi := {bi,1, . . . , bi,k} for all i = 1, . . . ,m.

We will first show that ∪mi=1Bi spans C∗, and, thus, dimFpm
(C∗) ≤ | ∪mi=1 Bi|.

Let v ∈ C∗ be given, so there exists ci ∈ φin(C) for all i = 1, . . .m such that
v =

∑m
i=1 ci. Because for all i = 1, . . . ,m, we know Bi is a basis for φin(C), there

exists λi,1, . . . , λi,k ∈ Fpm such that ci =
∑k
j=1 λi,jbi,j . Hence,

v =

m∑
i=1

ci =

m∑
i=1

k∑
j=1

λi,jbi,k.

This lets us conclude C∗ ⊆ spanFpm
(∪mi=1Bi), which gives us the equality as the

inclusion in the other direction follows immediately from the definition of C∗.

Since the size of any generating set of a vector space is greater or equal to the
size of any linearly independent subset of the same vector space, dimFpm

(C∗) ≤
| ∪mi=1 Bi|. By inclusion-exclusion, the right-hand side simplifies to

| ∪mi=1 Bi| =
m∑
r=1

(−1)r+1
∑
I⊆P
|I|=r

| ∩i∈I Bi|.

For each i = 1, . . . ,m, we extended B0 to Bi so that it may be a basis for φin(C).
This means B0 ⊆ Bi for all i, and, hence, ∩mi=1Bi ⊇ B0. To address the other
inclusion, let b ∈ Bi for all i and suppose for a contradiction that b 6∈ B0. This
must mean that either B0 ∪ {b} is not linearly independent or b 6∈ C0. Taking
i ∈ {1, . . . ,m}, since B0 ∪ {b} ⊆ Bi and because Bi is linearly independent, any
subset thereof must also be linearly independent. Since b ∈ Bi ⊆ φin(C) for all
i = 1, . . . ,m, we have b ∈ C0, which is a contradiction. Since no such b exists, we
get ∩mi=1Bi ⊆ B0, meaning ∩mi=1Bi = B0. Thus,

| ∪mi=1 Bi| =
m−1∑
i=1

(−1)r+1
∑
I⊆P
|I|=r

| ∩i∈I Bi|+ (−1)m+1|B0|.

18 FILIP STOJANOVIC

Using the fact that dimFpm
(C∗) ≤ | ∪mi=1 Bi| and recognizing that |B0| =

dimFpm
(C0) gives us the result. �

The relationship between the dimensions of C∗ and C0 established in the pre-
vious proposition is maintained if we replace dimFpm

(C∗) by dimFp
(Tr(C)) and

dimFpm
(C0) by dimFp(C ∩ Fnp) as a result of Corollary 2.2.14.

Finally, we will offer some improved bounds on the dimensions of the trace code
and subfield subcode of a linear code. The first improvement is a new upper bound
on the dimension of the trace code given by Proposition 9.1.4 in [St].

Proposition 2.3.10. Let C be a (n, k) Fpm-linear code and let U be a Fpm-subspace
of C such that φn(U) ⊆ C. We have

dimFp
(Tr(C)) ≤ m(k − dimFpm

(U)) + dimFp
(U ∩ Fnp).

Proof. See [St]. �

A new lower bound on the dimension of the subfield subcode is given by Exercise
9.3 in [St].

Proposition 2.3.11. Let C be a (n, k) Fpm-linear code. Suppose there is a matrix
M ∈Mr×n(Fp) such that M is of rank s and Mc = 0 for all c ∈ C. We have

dimFp(C ∩ Fnp) ≥ k − (m− 1)(n− s− k).

Proof. Let Mx be M viewed as a matrix in Mr×n(Fpm). Since we have that for
all c ∈ C, Mc = Mxc = 0, we observe that C ∩ Fnp ⊆ ker(M) and C ⊆ ker(Mx).

Define V to be ker(Mx) viewed as a vector space over Fp and likewise let W be
C viewed as a vector space over Fp, so we have W ⊆ V . Consider the quotient map
T : V → V/W , whose kernel is necessarily W . Given that ker(M) = ker(Mx)∩Fnp ,
we also have ker(M) ⊆ V . Now, since C ∩ Fnp ⊆ ker(M), we have that the
kernel of T |ker(M) will be C ∩ Fnp . But since Im(T) ⊇ Im(T |ker(M)), we get that
rankFp

(T) ≥ rankFp
(T |ker(M)). But then by the Dimension Theorem, we have

dimFp
(ker(Mx))− dimFp

(C) ≥ dimFp
(ker(M))− dimFp

(C ∩ Fnp).

Note that since rankFp(M) = s, we also have rankFpm
(Mx) = s. Thus, we get by

the Dimension Theorem that dimFp
(ker(M)) = n − s = dimFpm

(ker(Mx)). With
this, we can rewrite the above equality to get the desired result.

m(dimFpm
(ker(Mx))− dimFpm

(C)) ≥ dimFp
(ker(M))− dimFp

(C ∩ Fnp)

⇐⇒ dimFp(C ∩ Fnp) ≥ n− s−m(n− s− k)

⇐⇒ dimFp
(C ∩ Fnp) ≥ k − (m− 1)(n− s− k)

�

This last proposition then gives us an improved upper bound for the dimension
of the corresponding trace code.

Corollary 2.3.12. Let C be a (n, k) Fpm-linear code. We have

dimFp
(Tr(C)) ≤ k + (m− 1)(k − dimFpm

(C0)).

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 19

Proof. Let B := {b1, . . . , bs} be a basis for C ∩ Fnp and let M ∈ Ms×n(Fp) whose

rows are the elements of B. Given that (C⊥)⊥ = C, we will have for all c ∈ C⊥,
Mc = 0. Hence, by the previous proposition,

dimFp
(C⊥ ∩ Fnp) ≥ dimFpm

(C⊥)− (m− 1)(n− s− dimFpm
(C⊥)).

By Delsarte Duality, we have

dimFp(Tr(C)⊥) ≥ dimFpm
(C⊥)− (m− 1)(n− s− dimFpm

(C⊥))

⇐⇒ n− dimFp
(Tr(C)) ≥ n− k − (m− 1)(k − s)

But since s = |B| = dimFp(C ∩ Fnp) = dimFpm
(C0), we conclude

dimFp
(Tr(C)) ≤ k + (m− 1)(k − dimFpm

(C0)).

�

3. GRS Codes

Generalized Reed-Solomon (GRS) codes are an important family of linear codes,
being perhaps the most extensively-used error-correcting codes in practice. They
saw direct cryptographic application in a McEliece scheme wherein the crypto-
graphic primitive was based on a GRS code, but this scheme was proven to be
insecure in [SS], as we outline in Section 6.1. Currently, their use in cryptography
is more indirect as it is Goppa codes, subfield subcodes of GRS codes, that form
the cryptographic primitive of current proposals of McEliece. We will study GRS
codes in this section, outlining key properties of GRS codes and the ways in which
the same GRS code may be defined by different pairs of parameters.

3.1. Properties of GRS Codes. We will define GRS codes and establish a few
of their basic properties.

Definition 3.1.1. A GRS code is defined by a pair of vectors α, β ∈ Fnpm such that
αi 6= αj for all i 6= j and βi 6= 0 for all i ∈ {1, . . . , n}. The (n, k) GRS code defined
by the pair (α, β) is

GRSn,k(α, β) := {(β1f(α1), . . . , βnf(αn)) : f ∈ Pk−1(Fpm)}.
The vectors α and β are typically called the locator and multiplier, respectively.

We next verify that GRS codes truly are linear codes.

Proposition 3.1.2. GRSn,k(α, β) is a vector space.

Proof. Given that GRSn,k(α, β) ⊆ Fnpm , we need only show it is a subspace of Fnpm .

• 0 ∈ Pk−1(Fpm) =⇒ (0, . . . , 0) ∈ GRSn,k(α, β)

• Let f, g ∈ Pk−1(Fpm) be given. Define a := (β1f(α1), . . . , βnf(αn)) and
b := (β1g(α1), . . . , βng(αn)). We observe

a+ b = (β1f(α1), . . . , βnf(αn)) + (β1g(α1), . . . , βng(αn))

= (β1(f + g)(α1), . . . , βn(f + g)(αn))

∈ GRSn,k(α, β).

20 FILIP STOJANOVIC

• Let λ ∈ Fpm . We observe

λa = (β1(λf)(α1), . . . , βn(λf)(αn)) ∈ GRSn,k(α, β).

�

We next verify that the dimension of GRSn,k(α, β) is as purported.

Proposition 3.1.3. dimFpm
(GRSn,k(α, β)) = k.

Proof. Suppose for a contradiction f, g ∈ Pk−1(Fpm) such that f 6= g and we have
(β1f(α1), . . . , βnf(αn)) = (β1g(α1), . . . , βng(αn)). Since βi 6= 0∀i, this implies as
follows.

f(αi) = g(αi) ∀i
⇐⇒ (f − g)(αi) = 0 ∀i
⇐⇒ (x− αi) | f − g ∀i

Therefore, we get (f − g)(x) = q(x)
∏n
i=1(x−αi) for some q ∈ Pk−1(Fpm). How-

ever, since deg(f − g) ≤ k − 1 and deg (
∏n
i=1(x− αi)) ≥ n > k − 1, the above is

a contradiction. Hence, codewords defined by different polynomials in Pk−1(Fpm)
are different.

Thus, |GRSn,k(α, β)| = |Pk−1(Fpm)| = pmk. But since GRSn,k(α, β) is a vector
space over Fpm , this means GRSn,k(α, β) ∼= Fkpm , so dimFpm

(GRSn,k(α, β)) = k.
�

An important property about GRS codes that makes them particularly useful for
error correction is that they are MDS, that is to say that they attain the Singleton
bound. We will first remind ourselves of the Singleton bound before proving that
GRS codes are MDS.

Theorem 3.1.4 (Singleton bound). Let C be a (n, k) linear code over Fpm and let
d be its minimum distance. We have d ≤ n− k + 1.

There are many references that offer a proof for this theorem. See Theorem 1.7.1
in [N] for a proof.

Proposition 3.1.5. Let d denote the minimum distance of GRSn,k(α, β). GRSn,k(α, β)
is MDS, meaning it attains the Singleton bound:

d = n− k + 1.

Proof. We present the proof as in [MS].
Let c ∈ GRSn,k(α, β)\{0}, so there exists f ∈ Pk−1(Fpm) such that c = (β1f(α1), . . . , βnf(αn)).
But since deg(f) ≤ k − 1, there are at most k − 1 non-zero entries in c.

Thus, ω(c) ≥ n− (k−1) = n−k+1. Since GRSn,k(α, β) is linear, d ≥ n−k+1.
But then by the Singleton bound, n − k + 1 ≤ d ≤ n − k + 1, so d attains the
Singleton bound. �

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 21

As there are several choices for a generator matrix for a linear code, we under-
stand that there is typically a “preferred choice” of generator matrix for each code.
We will next establish the canonical form of the generator matrix for a GRS code,
which is the “preferred” generator matrix.

To develop a generator matrix for GRSn,k(α, β), we first need to find a basis for
the GRS code. In fact, any basis for Pk−1(Fpm) can be used to define a basis for
GRSn,k(α, β).

Proposition 3.1.6. Let F := {f1, . . . , fk} be a basis for Pk−1(Fpm). The set
B := {b1, . . . , bk} is a basis for GRSn,k(α, β) where for all i = 1, . . . , k, bi is
defined by bi := (β1fi(α1), . . . , βnfi(αn)).

Proof. Suppose c ∈ GRSn,k(α, β) such that c = (β1f(α1), . . . , βnf(αn)) for some
f ∈ Pk−1(Fpm). Given that F is a basis for Pk−1(Fpm), there exists λ1, . . . , λk ∈ Fpm
such that f(x) =

∑k
i=1 λifi(x). But then

c = (β1f(α1), . . . , βnf(αn)) =

k∑
i=1

(β1fi(αi), . . . , βnfi(αi)).

Hence, GRSn,k(α, β) ⊆ spanFpm
(B). The inclusion in the other direction is evident,

so this is an equality. Since dimFpm
(GRSn,k(α, β)) = k = |B|, this means B is a

basis for GRSn,k(α, β). �

If the choice of basis for Pk−1(Fpm) used in the last proposition is the standard
monomial basis, then the basis for GRSn,k(α, β) defined from this basis is the
canonical basis of the GRS code. This will be{

(β1, . . . , βn), (β1α1, . . . , βnαn), . . . , (β1α
k−1
1 , . . . , βnα

k−1
n)

}
.

The canonical generator matrix for GRSn,k(α, β) is defined from this basis to be
as follows.

G :=


β1 β1α1 . . . β1α

k−1
1

β2 β2α2 . . . β2α
k−1
2

...
...

. . .
...

βn βnαn . . . βnα
k−1
n


For the last of these preliminary properties, we will note that the dual code of a

GRS code is another GRS code.

Proposition 3.1.7. The dual code of GRSn,k(α, β) is GRSn,k(α, β)⊥ = GRSn,n−k(α, γ)

such that γ ∈ Fnpm is defined by γi = β−1
i

∏
j 6=i(αi − αj)−1 for all i = 1, . . . , n.

Proof. See Theorem 4 in Chapter 10 of [MS]. �

Remark 3.1.8. Consequently, a parity-check matrix for GRSn,k(α, β) will be the
transpose of a generator matrix for GRSn,n−k(α, γ).

22 FILIP STOJANOVIC

Using the canonical generator matrix of GRSn,n−k(α, γ), we can write a parity-
check matrix for GRSn,k(α, β) to be H as follows.

H =


γ1 γ2 . . . γn
γ1α1 γ2α2 . . . γnαn

...
...

. . .
...

γ1α
n−k−1
1 γ2α

n−k−1
2 . . . γnα

n−k−1
n



=


1 1 . . . 1
α1 α2 . . . αn
...

...
. . .

...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n



γ1

γ2

. . .

γn


= KC

We see from this that c ∈ ker(H) if and only if Cc ∈ ker(K). Thus, K is a
parity-check matrix for C(GRSn,k(α, β)) = {Cc : c ∈ GRSn,k(α, β)}.

3.2. Equivalence of GRS Codes. The same GRS code may be defined by multi-
ple different pairs of parameters. We will describe conditions on the pairs of vectors
in Fnpm that may define a GRS code such all pairs that satisfy these conditions will
define the same GRS code.

The following result is motivated by Problem 5.4 in [Ro].

Theorem 3.2.1. Let α, β ∈ Fnpm such that αi 6= αj ∀i 6= j and βi 6= 0 for all
i = 1, . . . , n. If we define vectors α′, β′ ∈ Fnpm in one of the three following ways,
GRSn,k(α, β) = GRSn,k(α′, β′).

• (Case-1 Equality) Let µ, ν, η ∈ Fpm such that µ, η 6= 0. Define α′ and β′

such that α′i = µαi + ν and β′i = ηβi ∀i = 1, . . . , n.
• (Case-2 Equality) Suppose further that αi 6= 0 ∀i = 1, . . . , n. Define α′

such that α′i = α−1
i and β′i = βiα

−(n−k−1)
i

∏
j 6=i(−αiαj) ∀ = 1, . . . , n.

• (Case-3 Equality) Let µ, ν, σ, τ, δ ∈ Fpm such that µτ 6= σν and δ 6= 0.
Suppose further that σαi + τ 6= 0 ∀i = 1, . . . , n. Define α′ such that α′i =
µαi+ν
σαi+τ

and define β′ such that

β′i = δβi(σαi + τ)−(n−k−1)
∏
j 6=i

[−(σαi + τ)(σαj + τ)] ∀i = 1, . . . , n.

Proof. We’ll prove each case separately.
Case-1 Equality

Let α′ and β′ be as described above. Define τ : Fpm → Fpm by x 7→ µx+ ν and
define σ : Pk−1(Fpm)→ Pk−1(Fpm) by f 7→ ηf . Notice that for all f ∈ Pk−1(Fpm),
we observe σ ◦ f ◦ τ(x) ∈ Pk−1(Fpm) too.

But each codeword of GRSn,k(α′, β′) can be expressed for some f ∈ Pk−1(Fpm)
as (ηβ1f(τ(α1)), . . . , ηβnf(τ(αn))) = (β1σ ◦ f ◦ τ(α1), . . . , βnσ ◦ f ◦ τ(αn)). But
this right-hand vector is a codeword of GRSn,k(α, β). Hence, GRSn,k(α′, β′) ⊆
GRSn,k(α, β), and since both vector spaces are of the same size, this is an equality.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 23

Case-2 Equality

Let α′ and β′ be as described above. Recall the definitions of K and C used in
the discussion immediately proceeding Remark 3.1.8.

K :=


1 1 . . . 1
α1 α2 . . . αn
...

...
. . .

...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n

 , C :=


γ1

γ2

. . .

γn


Define γ′ ∈ Fnpm such that γ′i = (β′i)

−1
∏
j 6=i(α

′
i − α′j) for all i = 1, . . . , n. Now,

notice that using the definitions of α′ and β′, we can simplify γ′i for all i = 1, . . . , n
as follows:

γ′i = (β′i)
−1
∏
j 6=i

(α−1
i − α

−1
j)−1

= (β′i)
−1
∏
j 6=i

[(
− 1

αiαj

)
(αi − αj)

]−1

= (β′i)
−1
∏
j 6=i

(−αiαj)
∏
j 6=i

(αi − αj)−1

=

βiα−(n−k−1)
i

∏
j 6=i

(−αiαj)

−1∏
j 6=i

(−αiαj)
∏
j 6=i

(αi − αj)−1

= αn−k−1
i β−1

i

∏
j 6=i

(αi − αj)−1

= αn−k−1
i γi.

Hence, by Proposition 3.1.7 and Remark 3.1.8, H′ defined as follows is a parity-
check matrix for GRSn,k(α′, β′).

H′ = K′DC where

K′ :=


1 1 . . . 1
α−1

1 α−1
2 . . . α−1

n
...

...
. . .

...

α
−(n−k−1)
1 α

−(n−k−1)
2 . . . α

−(n−k−1)
n

 ,D :=


αn−k−1

1

αn−k−1
2

. . .

αn−k−1
n

 .
Since αi 6= αj for all i 6= j and since βi 6= 0 for all i = 1, . . . , n, it is clear that

det(C) 6= 0, meaning that C is invertible. We also notice that K′D is a parity-check
matrix for C(GRSn,k(α′, β′)). Simplifying this product, we notice

K′D =


αn−k−1

1 αn−k−1
2 . . . αn−k−1

n

αn−k−2
1 αn−k−2

2 . . . αn−k−2
n

...
...

. . .
...

1 1 . . . 1

 .

24 FILIP STOJANOVIC

Let c ∈ C(GRSn,k(α, β)) = ker(K). We observe that the jth entry of K′Dc will
be

(K′Dc)j =

n∑
i=1

αn−k−ji ci = 0

since
∑n
i=1 α

j
i ci = 0 for all j = 0, . . . , n− k − 1, as c ∈ ker(K). Hence,

C(GRSn,k(α′, β′)) = ker(K′D) ⊇ ker(K) = C(GRSn,k(α, β)).

Recall that C is invertible, so taking the image of C(GRSn,k(α′, β′)) and C(GRSn,k(α, β))
under the map corresponding to multiplication by C−1 gives us thatGRSn,k(α′, β′) ⊇
GRSn,k(α, β). Since these GRS codes are vector spaces of the same size, the inclu-
sion is an equality.

Case-3 Equality

Let µ, ν, σ, τ ∈ Fpm such that µτ 6= σν and define α′ ∈ Fnpm such that α′i = µαi+ν
σαi+τ

for all i = 1, . . . , n. Define the vectors λ, γ ∈ Fnpm such that λi = µαi + ν and

γi = σαi + τ for all i = 1, . . . , n. Next, define γ′ ∈ Fnpm by γ′i = γ−1
i . We’ve

already shown through Case-1 and Case-2 Equalities that for λ, γ, and γ′, there
exist vectors b, b′, b′′ ∈ Fnpm such that

GRSn,k(α, β) = GRSn,k(λ, b) and

GRSn,k(α, β) = GRSn,k(γ, b′) = GRSn,k(γ′, b′′)

Maintaining that µτ 6= σν, if we also impose µ, σ 6= 0, then

α′i =
µαi + ν

σαi + τ
=
µσ−1(σαi + τ) + ν − µσ−1τ

σαi + τ
= µσ−1 +

ν − µσ−1τ

σαi + τ
.

Define x := µσ−1 and z := ν − µσ−1τ . By Case-1 Equality, there exists β′ ∈
(F×pm)n such that

GRSn,k(α, β) = GRSn,k(γ′, b′′) = GRSn,k(α′, β′).

We composed Case-1, Case-2, and then Case-1 Equalities in order to get this
result. By the relation of the equivalent parameters to the original parameters in
those cases, β′ may be chosen such that

β′i = δβi(σαi + τ)−(n−k−1)
∏
j 6=i

[−(σαi + τ)(σαj + τ)]

for any δ 6= 0 ∀i = 1, . . . , n, and it satisfies the desired equality.

Now, if µ = 0 and σ 6= 0, we see that α′i = ν
σαi+τ

= νγ′i for all i = 1, . . . , n. By

Case-1 Equality, there exists a vector β′ ∈ (F×pm)n such that

GRSn,k(α, β) = GRSn,k(γ′, b′′) = GRSn,k(α′, β′).

We again composed Case-1, Case-2, and then Case-1 Equalities in order to get
this result. Hence, by the relationships between equivalent and original parameters
in these cases, any β′ related to the original parameters such that

β′i = δβi(σαi + τ)−(n−k−1)
∏
j 6=i

[−(σαi + τ)(σαj + τ)]

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 25

for any δ 6= 0 ∀i = 1, . . . , n satisfies the equality.

Finally, if µ 6= 0 and σ = 0, we see that α′i = µαi+ν
τ = τ−1λi for all i = 1, . . . , n.

Note that τ 6= 0 since µτ 6= σν. Again by Case-1 Equality, there exists a vector
β′ ∈ (F×pm)n such that

GRSn,k(α, β) = GRSn,k(λ, b) = GRSn,k(α′, β′).

We applied Case-1 Equality twice in order to get this result, so any β′ related
to the original parameters such that β′i = δβi for any δ 6= 0 and for all i = 1, . . . , n
satisfies the equality. It’s easy to see that β′ defined in this way also adheres to

β′i = δβi(σαi + τ)−(n−k−1)
∏
j 6=i

[−(σαi + τ)(σαj + τ)]

for any δ 6= 0 and for all i = 1, . . . , n for σ = 0 since τ 6= 0.

This covers all possible choices of the scalars, µ, ν, σ, τ such that µτ 6= σν, so
this proves Case-3 Equality. �

It’s easy to see (especially given how we proved these case-equalities) that Case-
3 Equality encompasses both Case-1 and Case-2 Equalities. Hence, any pairs of
parameters that defines a GRS code that meet the conditions for Case-3 Equality
define the same GRS code.

4. Goppa Codes

Goppa codes are the linear error-correcting codes that form the cryptographic
primitive of the longest-enduring variant of the McEliece public-key cryptosystem.
We will define Goppa codes and relate them to GRS codes, in particular inter-
preting them using a similar definition to Definition 3.1.1 for GRS codes. We will
also identify basic properties including those about their dimension and minimum
distance.

4.1. Properties of Goppa Codes. We will define Goppa codes and establish a
few of their basic properties, in particular in how they relate to GRS codes.

We first introduce a function we will need to define a Goppa code.

Definition 4.1.1. Let g ∈ Fpm [x] be a polynomial of degree t and let a ∈ Fnpm such
that ai 6= aj for all i 6= j and g(ai) 6= 0 for all i = 1, . . . , n. The syndrome function
is a map S : Fnp → Fpm [x]/〈g〉 defined by

c 7→
n∑
i=1

ci
x− ai

(mod g).

We should be able to see that the choices for the entries of a guarantee that x−ai
is invertible in Fpm [x]/〈g〉. Since g(ai) 6= 0, we have that x − ai does not divide
g, meaning then that gcd(x − ai, g) = 1. As a consequence of Bézout’s identity,
x−ai is invertible mod g. With this, we understand that (x−ai)−1 is a polynomial
in the quotient ring Fpm [x]/〈g〉 for all i = 1, . . . , n, a fact we will make use of shortly.

26 FILIP STOJANOVIC

Note that g is called the Goppa polynomial and a is often called the locator.
Following this definition, we may now define a Goppa code.

Definition 4.1.2. Let g ∈ Fpm [x] and a ∈ Fnpm be chosen as in Definition 4.1.1.
The Goppa code defined by the pair (a, g) is Γ(a, g) = ker(S), where S is the
syndrome function based on the pair (a, g). More explicitly,

Γ(a, g) =

{
c ∈ Fnp :

n∑
i=1

ci
x− ai

≡ 0 (mod g)

}
.

We may deduce some basic facts about the dimension and minimum distances
of Goppa codes from this definition.

Proposition 4.1.3. Let Γ(a, g) be a kΓ-dimensional Goppa code defined by degree-t
Goppa polynomial g ∈ Fpm [x] and locator a ∈ Fnpm . The code’s dimension satisfies
kΓ ≥ n−mt.

Proof. It is clear from its definition that the syndrome function is a Fp-linear
map. Note also that Fpm [x]/〈g〉 ∼= Ftpm ∼= Fmtp , so dimFp

(Fpm [x]/〈g〉) = mt. Since
Γ(a, g) = ker(S), by the Dimension Theorem, we have

dimFp
(Γ(a, g)) = dimFp

(Fnp)− dimFp
(Im(S)).

But since Im(S) ⊆ Fpm [x]/〈g〉, dimFp
(Fpm [x]/〈g〉) ≤ mt, so we conclude

kΓ ≥ n−mt.
�

The following proposition appears as part of Theorem 2.1 in [J].

Proposition 4.1.4. Let Γ(a, g) be a Goppa code defined by degree-t Goppa polyno-
mial g ∈ Fpm [x] and locator a ∈ Fnpm . The minimum distance of Γ(a, g) is at least
t+ 1.

Proof. See [J]. �

Given the relationship between the minimum distance of a code and the number
of errors it can correct, we understand that the larger a code’s minimum distance,
the more errors it can correct. The next theorem stated in [J] will reveal that
a certain kind of binary Goppa code will possess a greater lower bound on its
minimum distance, thereby making these codes more desirable in situations that
call for their error-correcting capabilities.

Definition 4.1.5. A polynomial is called separable if it has no roots of multiplicity
greater than one.

Theorem 4.1.6. Let Γ(a, g) be a binary Goppa code defined by a separable degree-
t Goppa polynomial g ∈ F2m [x] and locator a ∈ Fn2m . The minimum distance of
Γ(a, g) is at least 2t+ 1.

Proof. See Theorem 2.2 in [J]. �

Because a linear code C with minimum distance d can correct up to d−1
2 errors,

binary Goppa codes defined by degree-t separable Goppa polynomials can correct
up to t errors. A typical way to construct a Goppa code with this greater mini-
mum distance is to choose the Goppa polynomial to be an irreducible polynomial in

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 27

Fpm [x]. Since irreducible polynomials of degree greater than one have no roots, this
ensures they are separable; hence, the last theorem applies. In fact, a Goppa code
constructed from an irreducible Goppa polynomial carries a special name: these
codes are called irreducible Goppa codes. Irreducible Goppa codes are very useful;
for example, the McEliece cryptosystem outlined in [B] is based a binary irreducible
Goppa code.

We will explore the link between Goppa codes and GRS codes starting with their
parity-check matrices. Consider the Goppa code Γ(a, g) with syndrome function
S mapping c 7→

∑n
i=1

ci
x−ai (mod g). We will rewrite 1

x−ai as a polynomial pi ∈
Fpm [x]/〈g〉 for all i = 1, . . . , n.

1

x− ai
=

t∑
j=1

pj,ix
j−1 =: pi(x)

Hence, for all codewords c ∈ Γ(a, g),

S(c) =

n∑
i=1

ci

t∑
j=1

pj,ix
j−1 ≡ 0 (mod g).

Define the coordinate isomorphism on the standard basis of Fpm [m]/〈g〉 as ϕ :
Fpm [m]/〈g〉 → Ftpm such that

∀f(x) =

t∑
i=1

fix
i ∈ Fpm [m]/〈g〉, ϕ(f) =

f1

...
ft

 .
We can see that each codeword of Γ(a, g) satisfies c ∈ Fnp and S(c) ≡ 0 (mod g).

This latter condition is equivalent to the following.

ϕ−1 ◦ ϕ(S(c)) = 0 (mod g)

⇐⇒ ϕ−1

 n∑
i=1

ci

p1,i

...
pt,i


 = 0 (mod g) by the linearity of ϕ

⇐⇒
n∑
i=1

ci

p1,i

...
pt,i

 = 0 since ϕ−1 is injective

⇐⇒


p1,1 . . . p1,n

p2,1 . . . p2,n

...
. . .

...
pt,1 . . . pt,n



c1
c2
...
cn

 = 0

This means the vectors in the kernel of this last matrix that are also in Fnp are
the codewords of Γ(a, g). Define

H =


p1,1 . . . p1,n

p2,1 . . . p2,n

...
. . .

...
pt,1 . . . pt,n

 .

28 FILIP STOJANOVIC

Explicitly, ker(H) ∩ Fnp = Γ(a, g). However, H has a familiar form, which will be
revealed by following the development from Section 2.4 of [J].

We notice that

pi(x) =
1

x− ai
≡ −g(x)− g(ai)

x− ai
g(ai)

−1 (mod g) ∀i = 1, . . . , k.

Write out g(x) as the following polynomial: g(x) =
∑t
i=0 gix

i. With this, we
may rewrite pi(x).

pi(x) ≡ −
∑t
j=0 gj(x

j − aji)
x− ai

g(ai)
−1 (mod g)

≡ −
t∑

j=1

gj

(
j−1∑
l=0

xj−l−1ali

)
g(ai)

−1 (mod g)

Comparing the coefficients of each power of x in this expression to those of
pi(x) =

∑t
j=1 pj,ix

j−1, we get the following set of equalities.

p1,i = −(g1 + g2ai + · · ·+ gta
t−1
i)g(ai)

−1

p2,i = −(g2 + g3ai + · · ·+ gta
t−2
i)g(ai)

−1

...

pt−1,i = −(gt−1 + gtai)g(ai)
−1

pt,i = −(gt)g(ai)
−1

But this then identifies the values of the parity-check matrix H.

H =


−
∑t
j=1 gja

j−1
1 g(a1)−1 . . . −

∑t
j=1 gja

j−1
n g(an)−1

−
∑t
j=2 gja

j−2
1 g(a1)−1 . . . −

∑t
j=1 gja

j−2
n g(an)−1

...
. . .

...
−gtg(a1)t . . . −gtg(an)−1

 = UKC

We define

U :=


−gt −gt−1 −gt−2 . . . −g1

0 −gt −gt−1 . . . −g2

...
...

...
. . .

...
0 0 0 . . . −gt

 ,K :=


at−1

1 at−1
2 . . . at−1

n

at−2
1 at−2

2 . . . at−2
n

...
...

. . .
...

1 1 . . . 1

 ,

C :=


g(a1)−1

g(a2)−1

. . .

g(an)−1

 .
Note that deg(g) = t implies that gt 6= 0. Because U is upper-triangular, its

determinant, which is the product of its diagonal entries, therefore cannot be 0,
meaning U is invertible. Hence, we will have Γ(a, g) = ker(KC) ∩ Fnp as well since
for any vector x ∈ Fnpm ,

UKCx = 0 ⇐⇒ KCx = 0.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 29

For the same reason, if we multiply KC by any permutation matrix from the left,
because permutation matrices are invertible, the kernel of this product intersected
with Fnpm will also be Γ(a, g). One such product will be K′C such that

K′ :=


1 1 . . . 1
a1 a2 . . . an
...

...
. . .

...
at−1

1 at−1
2 . . . at−1

n

 .
However, notice that by the discussion following Remark 3.1.8, K′C is a parity-
check matrix for a GRS. The particular GRS code of which it is a parity-check
matrix is GRSn,k(α, β) such that t = n− k, α = a, and

β−1
i

∏
j 6=i

(αi − αj)−1 = g(ai)
−1 ⇐⇒ βi =

g(ai)∏
j 6=i αi − αj

∀i = 1, . . . , n

by Proposition 3.1.7. Choosing α and β as just described, we see ker(K′C) =
GRSn,k(α, β), meaning then that Γ(a, g) = GRSn,k(α, β) ∩ Fnp . This is the key re-
lationship between Goppa codes and GRS codes: Goppa codes are subfield subcodes
of GRS codes. We’ll state this formally as a proposition.

Proposition 4.1.7. Consider the Goppa code Γ(a, g) defined by degree-t Goppa
polynomial g ∈ Fpm [x] and locator a ∈ Fnpm . This code is the subfield subcode of

GRSn,k(α, β) such that t = n− k, α = a, and βi = g(ai)∏
j 6=i αi−αj

for all i = 1, . . . , n.

Proof. We have proven this with the above discussion. �

We should note that the family of codes wherein each member is a subfield
subcode of a GRS code carries a special name.

Definition 4.1.8. An Alternant code is a subfield subcode of a GRS code.

It’s important to note that by what we’ve shown, a Goppa code is necessarily
an Alternant code, but this does not imply that an Alternant code is a Goppa
code. A particular relationship given in Proposition 4.1.7 between the parameters
of a Goppa code and its corresponding GRS code must be satisfied in order for
the subfield subcode of the GRS code to be a Goppa code. Returning to this
relationship from Proposition 4.1.7, we see that the n entries of β are determined
by the t+1 ≤ n coefficients of g (along with the entries of a), so there’s less freedom
of choice in choosing β for a GRS code whose subfield subcode is a Goppa code than
there is in choosing β for an arbitrary GRS code. We won’t prove this rigorously
here, but one can be made to believe that as a result, we can define a GRS code
whose subfield subcode cannot be a Goppa code.

4.2. Reinterpreting Goppa Codes. With the knowledge that a Goppa code is
a subfield subcode of some GRS code, we will use the polynomial-evaluation defi-
nition of GRS codes to develop an analogous characterization for Goppa codes.

The main tool we will use to develop this characterization is the following result
given as a part of Theorem 1 from [SB].

Theorem 4.2.1. Let GRSn,k(α, β) be a (n, k) GRS code whose subfield subcode is
a kΓ-dimensional Goppa code Γ(a, g). If G is a generator matrix for GRSn,k(α, β),

30 FILIP STOJANOVIC

then there exists a matrix Γ ∈ Mk×kΓ
(Fpm) such that a generator matrix GΓ for

Γ(a, g) can be expressed as GΓ = GΓ. Furthermore, Γ can be found from α and β.

Proof. See [SB]. �

We will now give the polynomial-evaluation characterization for a Goppa code.

Proposition 4.2.2. Let Γ(a, g) be a (n, kΓ) Goppa code that is the subfield subcode
of GRSn,k(α, β) where these codes satisfy the relationship outlined in Proposition
4.1.7. We have that

Γ(a, g) = {(β1q(a1), . . . , βnq(an)) : q ∈ P}

where P is a Fp-linear subspace of Pk−1(Fpm) that is of dimension kΓ and P can
be determined from a and β.

Proof. Let G be a generator matrix for GRSn,k(α, β) and let Ci denote its ith

column. By Theorem 4.2.1, there exists a matrix Γ ∈ Mk×kΓ
(Fpm) such that GΓ

is a generator matrix for Γ(a, g). Let γi,j denote the (i, j)th entry of Γ. Explicitly,
we write out the generator matrix GΓ.

GΓ =
[
C1 C2 . . . Cn

]

γ1,1 γ1,2 . . . γ1, kΓ

γ2,1 γ2,2 . . . γ2, kΓ

...
...

. . .
...

γk,1 γk,2 . . . γk, kΓ


=
[∑k

i=1 γi,1Ci
∑k
i=1 γi,2Ci . . .

∑k
i=1 γi,kΓ

Ci

]
But since GRSn,k(α, β) = {(β1p(a1), . . . , βnp(an)) : p ∈ Pk−1(Fpm)}, each col-

umn Ci is a basis vector of this code, meaning that we can write it as

Ci =


β1pi(a1)
β2pi(a2)

...
βnpi(an)


for some pi ∈ Pk−1(Fpm) such that {pi(x) : i = 1, . . . , k} is a basis for Pk−1(Fpm).

With this, we write the jth column of GΓ is

(GΓ)j =

k∑
i=1

γi,jCi =


β1

∑k
i=1 γi,jpi(a1)

β2

∑k
i=1 γi,jpi(a2)

...

βn
∑k
i=1 γi,jpi(an)

 =


β1qj(a1)
β2qj(a2)

...
βnqj(an)


such that qj(x) :=

(∑k
i=1 γi,jpi

)
(x) ∈ Pk−1(Fpm). Thus, we can associate the jth

column of GΓ to a polynomial qj ∈ Pk−1(Fpm).

Since each codeword of Γ(a, g) can be expressed as a linear combination over
Fp of the columns of GΓ, we have for all codewords c ∈ Γ(a, g), there exists

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 31

λ1, . . . , λkΓ
∈ Fp such that

c =

kΓ∑
j=1

λj


β1qj(a1)
β2qj(a2)

...
βnqj(an)

 =


β1

(∑kΓ

j=1 λjqj

)
(a1)

β2

(∑kΓ

j=1 λjqj

)
(a2)

...

βn

(∑kΓ

j=1 λjqj

)
(an)

 .

We see that q(x) :=
(∑kΓ

j=1 λjqj

)
(x) ∈ spanFp

{q1, . . . , qkΓ
}. Thus, we’ve shown for

each codeword c ∈ Γ(a, g), there exists a polynomial q ∈ spanFp
{q1, . . . , qkΓ

} such

that c = (β1q(a1), . . . , βnq(an)). Hence,

Γ(a, g) ⊆ {(β1q(a1), . . . , βnq(an)) : q ∈ spanFp
{q1, . . . , qkΓ}.

The inclusion in the other direction is immediately apparent since spanFp
{q1, . . . , qkΓ} ⊆

Pk−1(Fpm). Defining P := spanFp
{q1, . . . , qkΓ

}, we finally get

Γ(a, g) = {(β1q(a1), . . . , βnq(an)) : q ∈ P}.
�

Note that to explicitly determine P, we need to know the basis used to form
the generator matrix G and then we need to use this along with the GRS code
parameters α = a and β to identify Γ by Theorem 4.2.1. By the discussion fol-
lowing Proposition 3.1.6, we can take G to be the canonical generator matrix for
GRSn,k(α, β), meaning we can explicitly construct it given a and β. Hence, we can
determine P given a and β.

32 FILIP STOJANOVIC

Part 2. Attacks on the McEliece PKC

5. The McEliece PKC and the Two Classes of Attacks Against It

We briefly outline the scheme for a McEliece PKC and we describe the two
main classes of attacks against it, message attacks and structural attacks. The
complexity of the best known message attacks is considered, ultimately motivating
us to explore in more detail structural attacks as a means of cryptanalyzing the
McEliece PKC.

5.1. The McEliece PKC. We reiterate the general form of the cryptosystem
McEliece introduced in [M].

Algorithm 1: The McEliece PKC

• Private Key
– G, a n× k generator matrix for a (n, k) linear code C
– S ∈ GLk(Fpm), the scrambler matrix
– P, a n× n permutation matrix
– DG, an efficient error-correction algorithm specific to the code C that

can only be used if one has knowledge of G
• Public Key

– M = PGS, which is the generator G that has been masked by P and
S. In fact, M is a generator matrix for P(C) given that the
invertibility of S implies Im(GS) = Im(G) = C.

– t, the number of errors C can correct
• Encryption

– We generate ciphers from plaintexts, which are k-tuples over Fpm .
– To generate a cipher c from a plaintext m ∈ Fkpm , we first choose a

vector z ∈ Fnpm such that ω(z) = t and then we encode m as a
codeword of P(C) that has been damaged in the non-zero entries of z
as follows:

c = Mm+ z.

• Decryption
– To decrypt a cipher c, we first calculate

c′ = P−1c = GSm+ P−1z.

We notice that because Im(GS) = C and ω(P−1z) = t, c′ is a
codeword of C that has been subjected to t errors.

– Because C can correct t errors, we apply the error correction
algorithm to c′, recovering DG(c′) = GSm given that d(c′,GSm) = t.

– Let GLI denote a left inverse of G. We recover the plaintext with a
final calculation:

S−1GLIGSm = m.

At the heart of the McEliece cryptosystem is a trapdoor one-way function. The
one-way function is the application of t errors to a codeword of a linear code C.
Indeed, the one-wayness of the function comes from the fact that identifying if there
is a codeword in a binary code C of distance at most t to a given vector y ∈ Fn2
corresponds to a NP -Complete problem. This problem is equivalent to identifying

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 33

for a given (n, k) binary code C and vector y ∈ Fn2 with syndrome s ∈ Fn−k2 if
there is an error vector z ∈ Fn2 with the same syndrome s such that ω(z) ≤ t and
y = c + z for some codeword c ∈ C. This latter problem was proven to be NP -
Complete in [BMT]. The trapdoor is the code-specific, efficient, error-correction
algorithm DG.

5.2. Classes of Attacks Against the McEliece PKC. Attacking the McEliece
PKC means trying to decrypt a McEliece cipher without access to the private key.
The two primary strategies to accomplish this are encompassed in the two following
classes of attacks:

• message attacks, which replace the trapdoor with an efficient, generic error-
correction algorithm;
• structural attacks, which consist of ad hoc methods to reconstruct the gener-

ator G given the information gleaned from the public key, thereby granting
an attacker access to the trapdoor.

We will now briefly study message attacks by examining the complexity of the
best known generic error-correction algorithm, which is Information Set Decoding
(ISD). ISD solves problems from the family of Computational Syndrome Decoding
(CSD) problems, which we define using the following definition from [TS].

Definition 5.2.1. The Computational Syndrome Decoding problem considering
the input (n, k, t) is denoted CSDn,k,t and it consists of correcting t errors applied
to a codeword of a binary (n, k) code.

When the code C in the definition of the McEliece PKC is a binary code, its
cryptographic primitive is exactly a computational syndrome decoding problem.
Consider a McEliece scheme based on a (n, k) binary code C that can correct t
errors where t = o(n). Hence, by the result of [TS], for any variant of ISD, the
expected number of binary operations needed to decrypt a cipher from such a
McEliece scheme is O(2ct(1+o(1))) where c = log2

1
1−R such that R = limn→∞

k
n .

In [TS], it is noted that this result extends to the McEliece scheme based on binary
Goppa codes as the error-correcting capacity for such codes is t = O(n/log(n)).
The McEliece scheme based on binary Goppa codes is the longest-enduring variant
and the one currently proposed for NIST’s PQC standardization project, so this re-
sult shows message attacks to be intractable against it given that the best instance
of such an attack is of exponential complexity.

Structural attacks, however, are in a position to better exploit the algebraic
structure of the particular codes used to form a McEliece scheme. As a result,
there are instances of structural attacks of polynomial complexity against McEliece
schemes based on codes other than Goppa codes (notably GRS codes and random
subcodes thereof) that can give an attacker access to the McEliece trapdoor. It
is for this reason and because of the intractability of message attacks against the
McEliece scheme based on binary Goppa codes that we will focus on structural
attacks in our analysis going forward.

6. The Sidelnikov-Shestakov Attack

The Sidelnikov-Shestakov (S-S) attack is a structural attack of polynomial com-
plexity that grants an attacker access to the trapdoor of a McEliece scheme based

34 FILIP STOJANOVIC

on GRS codes. We will present a slight modification to the S-S attack Wieschebrink
delivered in [W] that reduces its complexity. We will also identify a subset of the
family of Goppa codes for which a McEliece scheme based on any code from this
subset will also be vulnerable to the attack. Lastly, we will consider codes outside
of this subset and outline the difficulties of applying the S-S attack to a McEliece
scheme based on Goppa codes in general.

6.1. The Sidelnikov-Shestakov Attack on GRS Codes. We will begin by
adapting the McEliece scheme presented in Algorithm 1 so that the secret code is
a GRS code. For such a scheme, the private and public keys are as follows.

• Private key
– G, a n× k generator matrix for GRSn,k(α, β)
– S ∈ GLk(Fpm), the scrambler matrix
– (α, β), the code parameters

• Public key
– M = GS, the public matrix
– t, the number of errors GRSn,k(α, β) can correct

We note the primary differences between the above and its analogue in Algo-
rithm 1 is the removal of the permutation matrix P and the replacement of the
error-correction algorithm DG with the GRS code parameters (α, β). The former
change follows from a shift in our perspective as attackers. For the S-S attack,
we are satisfied with recovering a given message up to permutation from a cipher
since the permutation can be undone by methods based on the Support Splitting
Algorithm introduced by Sendrier in [S]. As such, the permutation matrix from
Algorithm 1 disappears into the generator matrix G as we may now think of a
permutation of the GRS code being the secret code. The latter change results from
the efficient, code-specific error-correction algorithms for GRS codes (as well as for
Goppa codes) being accessible immediately from the code parameters. Hence, the
goal of the S-S attack becomes to recover the code parameters from public key.

In fact, the goal of the S-S attack can be changed to the recovery of equivalent
parameters defining the same GRS code, as per the case-equalities outlined in
Theorem 3.2.1. Any error-correction algorithm for a (n, k) GRS code defined by
equivalent parameters (α′, β′) will apply to GRSn,k(α, β) because they are the same
codes. It is for this reason that we may start the S-S attack with the knowledge of
a part of the code parameters, as Wieschebrink suggests in [W].

Lemma 6.1.1. Without loss of generality, α1 = 0, α2 = 1, and β1 = 1.

Proof. Take µ = (α2 − α1)−1, ν = (−α1)(α2 − α1)−1, and η = β−1
1 . These satisfy

µ, η 6= 0. Define α′, β′ ∈ Fnpm such that α′i = µαi+ν and β′i = ηβi for all i = 1, . . . , n.
It is clear that α′1 = 0, α′2 = 1, and β′1 = 1. Because it suffices to solve for any pair
of equivalent parameters to gain access to the McEliece trapdoor, we will instead
choose to solve for (α′, β′), which we already know in part. �

We will now present our slight modification of Wieschebrink’s presentation of
the Sidelnikov-Shestakov attack in [W]. Without loss of generality, by possibly per-
muting the rows of G, we assume that the first k rows G are linearly independent.
We also assume that 2 ≤ k ≤ n − 2 so that we may proceed with the attack. We

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 35

start by transposing M and bringing Mᵀ to its RREF form, denoted E(Mᵀ).

Mᵀ ∼ E(Mᵀ) = [Ik|A] =


R1

R2

...
Rk


By the first assumption, the first k × k submatrix of E(Mᵀ) is the identity.

Notice that we write E(Mᵀ) as a matrix of row vectors where Ri denotes its ith

row. Because Row(E(Mᵀ)) = Im(GS) = GRSn,k(α, β), the rows of E(Mᵀ) are
codewords of GRSn,k(α, β). Hence, we write for all i = 1, . . . , k,

Ri = (β1pRi
(α1), . . . , βnpRi

(αn)) for some pRi
∈ Pk−1(Fpm).

Because the first k × k submatrix of E(Mᵀ) is Ik, we observe

(Ri)j =

{
1, i = j

0, i 6= j
∀i = 1, . . . , k, =⇒ pRi(αj) = 0 ∀j ∈ {1, . . . , k}\{i} since βj 6= 0.

This immediately implies (x − αj) | pRi(x) for all j ∈ {1, . . . , k}\{i}, which,
because degree-1 factors are irreducible, implies

∏
j∈{1,...,k}\{i}(x − αj) | pRi

(x).

Given that deg(pRi
) ≤ k − 1 and the degree of this product of degree-1 factors is

k − 1, pRi must be a non-zero scalar multiple of this product. Written explicitly,

pRi(x) = ci ·
∏

j∈{1,...,k}\{i}

(x− αj) for some ci ∈ F×pm .

The strategy in the S-S attack to recover the code parameters is to divide non-
zero entries of the rows of E(Mᵀ) to get degree-1 rational functions in the entires
of the parameters and to solve for code parameters entry by entry. We begin by
recovering α.

Pick j ∈ {k + 1, . . . , n}. The quotient
(R1)j
(R2)J

simplifies as follows:

(R1)j
(R2)j

=
βjpR1

(αj)

βjpR2(αj)
=
c1
∏
r∈{1,...,k}\{1}(αj − αr)

c2
∏
r∈{1,...,k}\{2}(αj − αr)

=
c1(αj − α2)

c2(αj − α1)
.

We recall that we assumed α1 = 0 and α2 = 1, so
(R1)j
(R2)j

=
c1(αj−1)
c2(αj) . The orig-

inal attack presented by Wieschebrink had us make a guess for the value of c1
c2

,
but under the slightly stronger hypothesis that k ≥ 3, we can compute it without
any guesswork in a fixed number of operations by Lemma 6.1.2. Thus, the only
unknown in this last expression is αj . Rearranging this equation to reflect this,

we get c2
c1

(R1)j
(R2)j

=
αj−1
αj

, which relates αj to known values by a fractional linear

transformation. Fractional linear transformations are bijective, so we may uniquely
recover αj for all j = k + 1, . . . , n from these equations.

To recover αi for all i ∈ {3, . . . , k}, we pick distinct values j1, j2 ∈ {k+ 1, . . . , n}
and calculate the quotients

(R1)j1
(Ri)j1

and
(R1)j2
(Ri)j2

. We get

(R1)j1
(Ri)j1

=
c1
ci

αj1 − αi
αj1

and
(R1)j2
(Ri)j2

=
c1
ci

αj2 − αi
αj2

.

36 FILIP STOJANOVIC

Rearranging these expressions for c1
ci

and then equating them, we get a an ex-
pression for αi.

αj1
αj1 − αi

(R1)j1
(Ri)j1

=
c1
ci

=
αj2

αj2 − αi
(R1)j2
(Ri)j2

=⇒ (R1)j1(Ri)j2
(R1)j2(Ri)j1

αj1
αj2

=
αj1 − αi
αj2 − αi

The rightmost equation relates an expression consisting of known values to the
unknown αi by a fractional linear transformation since αj1 6= αj2 , so we can use
this equation to uniquely solve for αi for all i = 3, . . . , k.

We will recover β in an approach that differs from Wieschebrink’s in [W]. First,
we divide the diagonal entries of E(Mᵀ), giving us

(Ri)i
(Rj)j

=
βici

∏
r∈{1,...,k}\{i}(αi − αr)

βjcj
∏
r∈{1,...,k}\{j}(αj − αr)

for some i, j ∈ {1, . . . , k} such that i 6= j.

Noticing that each element of the diagonal of E(Mᵀ) is 1 and taking i = 1, this
last equation may be rearranged into the following expression:

βj =
c1
cj

∏
r∈{2,...,k}(−αr)∏

r∈{1,...,k}\{2}(αj − αr)
.

Since we solved for α already and by Lemma 6.1.2, the right-hand side is fully
known and can be calculated in O(k) operations. We use this last equation to
uniquely solve for βj for all j = 2, . . . , k.

Next, we divide different non-zero entries of R1. Pick j ∈ {k + 1, . . . , n} and
compute

(R1)1

(R1)j
=

1 · c1
∏
r∈{2,...,k}(0− αr)

βjc1
∏
r∈{2,...,k}(αj − αr)

⇐⇒ βj = (R1)j
∏

r∈{2,...,k}

−αr
αj − αr

.

Again, everything is known on the right-hand side of this last equation, which lets
us uniquely determine βj for all j = k + 1, . . . , n. With this, we’ve recovered the
code parameters entirely. ♦

This improves the complexity of the variant of the S-S attack Wieschebrink
outlines in [W]. Wieschebrink’s suggestion to guess c1

c2
and approach for solving

for β resultin his attack having both an expected and worst-case complexity of
O((n + pmk)k2). The approach outlined above reduces the complexity of the at-
tack to O(nk2), the complexity of row-reducing Mᵀ. We should however note
the difference in hypotheses: Wieschebrink’s original proposal only required k ≥ 2
whereas the above approach making use of Lemma 6.1.2 requires k ≥ 3.

The following lemma is what let us avoid the need to guess in the above attack.

Lemma 6.1.2. If GRSn,k(α, β) is a GRS code such that. 3 ≤ k, then c1
ci

can be

computed in O(1) operations for all i = 1, . . . , k.

Proof. We start with the (n, k) GRS code over Fpm GRSn,k(α, β) and assume that
k ≥ 3 so that any generator matrix of GRSn,k(α, β) has 3 columns. Thus, E(Mᵀ)
has at least 3 rows, so we may divide the non-zero entries of row 1 of E(Mᵀ) by

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 37

those of row 2 and likewise divide the non-zero entries of row 1 by those of row 3.
This gives us the following equations.

(R1)j
(R2)j

=
c1
c2

αj − 1

αj
∀j ∈ {k + 1, . . . , n} and

(R1)j
(R3)j

=
c1
c3

αj − α3

αj
∀j ∈ {k + 1, . . . , n}

We recall that we assumed α1 = 0 and α2 = 1. We can then rewrite these
equations as follows.(

(R1)j
(R2)j

− c1
c2

)(
c1
c2

)−1

= −αj ∀j ∈ {k + 1, . . . , n}(
(R1)j
(R3)j

− c1
c3

)(
c1
c3

)−1

α−1
3 = −αj ∀j ∈ {k + 1, . . . , n}

Equating the top and bottom expressions for −αj , we get

(R1)j
(R2)j

(
c1
c2

)−1

− 1 =

(
(R1)j
(R3)j

(
c1
c3

)−1

− 1

)
α−1

3 ∀j ∈ {k + 1, . . . , n}.

Define x :=
(
c1
c2

)−1

, y :=
(
c1
c3

)−1

, z := α−1
3 , aj :=

(R1)j+k

(R2)j+k
, and bj :=

(R1)j+k

(R3)j+k
.

Finding c1
c2

amounts to solving for x in the following equations where aj and bj are
the known values.

ajx− 1 = (bjy − 1)z ∀j ∈ {1, . . . , n− k}

By rearranging for z and equating the zs, we get

a1x− 1

b1y − 1
=
a2x− 1

b2y − 1
= · · · = an−kx− 1

bn−ky − 1
6= 0.

Of course, we are assuming bjy − 1 6= 0 and ajx − 1 6= 0 for all j. However, if
there exists some j ∈ {1, . . . , n− k} such that one of bjy − 1 = 0 or ajx− 1 = 0,
then the other would also necessarily hold since z 6= 0, so we have a solution for x
as desired.

From the leftmost equality, we get

(a1x− 1)(b2y − 1) = (a2x− 1)(b1y − 1)

⇐⇒ (a1b2x− b2 + b1 − a2b1x)y = (a1 − a2)x

⇐⇒ y =
(a1 − a2)x

(a1b2 − a2b1)x+ b1 − b2
.

The last if and only if holds because a1b2x − b2 + b1 − a2b1x 6= 0. Suppose for
a contradiction that it were 0. This implies (0)y = 0 = (a1 − a2)x by the second

line above. Since
(R1)j
(R2)j

6= (R1)i
(R2)i

for all i 6= j ∈ {k + 1, . . . , n}, we have ai 6= aj for

all i 6= j. Thus, we must have x = 0. But since x =
(
c1
c2

)−1

is invertible, x ∈ F×pm ,

which means x = 0 is a contradiction.

38 FILIP STOJANOVIC

Using distinct i, j ∈ {2, . . . , n− k} and the above equation for y, we can recover
x. We start with the equality

aix− 1

biy − 1
=
ajx− 1

bjy − 1
.

Proceeding as before, we write

(aix− 1)(bjy − 1) = (ajx− 1)(bix− 1)

⇐⇒ (aibjy − ajbiy + aj − ai)x = (bj − bi)y

⇐⇒ x =
bj − bi

aibj − ajbi + (aj − ai)y−1
.

This last if and only if holds because aibjy − ajbiy + aj − ai 6= 0. If it were 0,

then, again, we have 0 = (bj − bi)y. For all l ∈ {3, . . . , k}, (R1)j
(Rl)j

6= (R1)i
(Rl)i

∀i 6= j ∈

{k+1, . . . , n}, so bj 6= bi for our choice of distinct i, j. This implies y =
(
c1
c3

)−1

= 0,

which of course is a contradiction since y ∈ F×pm .

Substituting our previous expression for y in the place of y−1 in this last expres-
sion gives

x =
bj − bi

aibj − ajbi + (aj − ai)
(

(a1b2−a2b1)x+b1−b2
(a1−a2)x

) .
From this expression for x, we find

x

[
aibj − ajbi + (aj − ai)

(
a1b2 − a2b1 + (b1 − b2)x−1

a1 − a2

)]
= bj − bi

(∗) ⇐⇒
[
(aibj − ajbi) +

(aj − ai)(a1b2 − a2b1)

a1 − a2

]
x = bj−bi+

(aj − ai)(b2 − b1)

a1 − a2
.

Finally, we write

x =
(bj − bi) +

(aj−ai)(b2−b1)
a1−a2

(aibj − ajbi) +
(aj−ai)(a1b2−a2b1)

a1−a2

.

We conclude this because (aibj − ajbi) +
(aj−ai)(a1b2−a2b1)

a1−a2
6= 0. Recalling that

we derived all preceding equations from the equality

a1x− 1

b1y − 1
=
a2x− 1

b2y − 1
=
aix− 1

biy − 1
=
ajx− 1

bjy − 1
,

which we may rewrite as

a1x− 1

a2x− 1
=
b1y − 1

b2y − 1
=
bjy − 1

biy − 1
=
ajx− 1

aix− 1
,

we can view these as fractional linear transformations in x.

Consider the maps x 7→ a1x−1
a2x−1 and x 7→ ajx−1

aix−1 . These are fractional linear trans-

formations since ar 6= as if and only if (−1)ar 6= (−1)as for all r 6= s. This means
they are bijective, so there exists a unique value of x satisfying this equality and any
equations derived directly from it. In particular, this means there is a unique value

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 39

of x satisfying (∗). Suppose for a contradiction (aibj−ajbi)+
(aj−ai)(a1b2−a2b1)

a1−a2
= 0.

The right-hand side of (∗) may be zero or non-zero. If it is non-zero, then (∗) has no
solutions for x, which is a contradiction. Likewise, if it is zero, then each element in
Fpm is a solution, which is also a contradiction. Thus, we conclude the expression
for x, which gives us an explicit expression for c1

c2
by reciprocating.

We now move on to finding an explicit expression for c1
ci

for all i ∈ {3, . . . , k}.
Let i ∈ {3, . . . , k} be given. Dividing the non-zero entries of R1 by those of R2 and
dividing the non-zero entries of R1 by those of Ri, we get

(R1)j
(R2)j

=
c1
c2

αj − 1

αj
∀j ∈ {k + 1, . . . , n}

(R1)j
(Ri)j

=
c1
ci

αj − αi
αj

∀j ∈ {k + 1, . . . , n}.

By the same development as in the case where i = 3, we get

(R1)j
(R2)j

(
c1
c2

)−1

− 1 =

(
(R1)j
(Ri)j

(
c1
ci

)−1

− 1

)
α−1
i ∀j ∈ {k + 1, . . . , n}.

Define x :=
(
c1
c2

)−1

, y :=
(
c1
ci

)−1

, z := α−1
i , dj :=

(R1)j+k

(R2)j+k
, and fj :=

(R1)j+k

(Ri)j+k
.

Using these definitions, we rewrite the preceding equations as follows.

d1x− 1

f1y − 1
=
d2x− 1

f2y − 1
= · · · = dn−kx− 1

fn−ky − 1
6= 0.

Of course, we assume djx − 1 6= 0 and fjy − 1 6= 0 for all j, but if this weren’t
true, we’d already have our desired expression for y. From the leftmost equality,
we get an expression for y:

y =
(d1 − d2)x

(d1f2 − d2f1)x+ f1 − f2
.

Given that we have an expression for x, we know everything on the right-hand
side of this equality. Reciprocating, we get an explicit expression for c1

ci
in terms of

known values:
c1
ci

=
(f1 − f2) c1c2 + d1f2 − d2f1

d1 − d2
.

�

6.2. The Sidelnikov-Shestakov Attack on Full-Rank Goppa Codes. When
the secret code of a McEliece scheme is a Goppa code of maximal dimension, the
S-S attack can be applied to such a scheme to recover the code parameters.

Proposition 6.2.1. Consider a McEliece scheme based on a full-rank Goppa code.
The S-S attack can be applied to this scheme to recover the Goppa polynomial and
locator with the exact same complexity with which the S-S attack can recover the
parameters of the corresponding GRS code.

Proof. Consider a McEliece scheme based on a (n, k) full-rank Goppa code Γ(a, g)
such that Γ(a, g) = GRSn,k(a, β) ∩ Fnp . We note that the public matrix M and
the private generator matrix G both generate the secret Goppa code. By Lemma
2.1.15, Γ(a, g) being of full-rank implies Γ(a, g)⊗ Fpm = GRSn,k(a, β). By Lemma

40 FILIP STOJANOVIC

2.1.13, any basis for Γ(a, g) will also be a basis for GRSn,k(a, β), so both G and
M will be generator matrices for GRSn,k(a, β) (if viewed as matrices over Fpm).
Hence, the private-key-public-key pair of this McEliece scheme corresponds exactly
to one for a McEliece scheme based on a GRS code, the latter of which we’ve
shown is vulnerable to the S-S attack. Thus, the S-S attack applies perfectly well
to a McEliece scheme based on full-rank Goppa codes to recover the parameters
(a, β), the code parameters of GRSn,k(a, β).

However, we recall that the Goppa polynomial g is related to (a, β) by g(aj) =
βj
∏
l 6=j(aj − al). Having recovered (a, β) we may reconstruct g by Lagrangian

interpolation as follows.

g(x) =

n∑
i=1

βi
∏
j 6=i

(ai − aj)
∏
l 6=i

(
x− al
ai − al

)

=

n∑
i=1

βi
∏
l 6=i

(x− al)

This, of course, follows from recognizing that g passes through the n points

D :=
{(
ai, βi

∏
j 6=i(ai − aj)−1

)
: i = 1, . . . , n

}
. It is also possible to reconstruct

g through Lagrangian interpolation using a subset of t + 1 points from D given
that deg(g) = t. In any case, because Lagrangian interpolation over a set of size
n has complexity O(nlog(n)), the addition of the recovery of g to the S-S attack
presented before means the complexity of recovering the code parameters for a
full-rank Goppa code is also O(nk2), the same as for a GRS code. �

In fact, by Corollary 2.1.17, we can also characterize GRS codes with subfield
subcodes that are full-rank Goppa codes as being Gal(pm, p)-invariant. Hence,
the S-S attack is successful on any Goppa code defined as a subfield subcode of a
Gal(pm, p)-invariant GRS code.

While, from an attacker’s perspective, it is heartening to see that any McEliece
scheme based on a full-rank Goppa code is vulnerable to the S-S attack, we will show
that such codes lead to an insecure McEliece scheme for another, more concerning
reason. Consider a Goppa code Γ(a, g) defined by the degree-t Goppa polynomial
g ∈ Fpm [x] and the locator a ∈ Fnpm . As a consequence of the GRS-Goppa code
relationship detailed in Proposition 4.1.7, Γ(a, g) is a subfield subcode of a GRS
code GRSn,k(α, β), where notably k = n− t. Let d denote the minimum distance
of Γ(a, g). By Proposition 3.1.5, GRSn,k(α, β) is MDS, so because Γ(a, g) is a
subcode of GRSn,k(α, β), we may place a lower bound on its minimum distance:
d ≥ n− k + 1 = t + 1. Thus, we conclude the maximum number of zero positions
in any codeword of Γ(a, g) is

n− d ≤ n− (t+ 1) = k − 1.

This isn’t surprising. It’s the exact same bound we got by considering the poly-
nomial interpretation of the Goppa code from Proposition 4.2.2,

Γ(a, g) = {(β1q(a1), . . . , βnq(an)) : q ∈ P},

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 41

with P a Fp-linear subspace of Pk−1(Fpm) as defined before. For each codeword in
Γ(a, g), the polynomial q associated to it has at most k−1 roots, translating to the
codeword having at most k − 1 zeros.

Goppa codes are linear, so by the Singleton bound,

n− k + 1 ≤ d ≤ n− kΓ + 1.

Clearly, if kΓ = k, then Γ(a, g) is MDS. This fact about a full-rank Goppa code is
what we will use to show it is unsuitable for a McEliece scheme. The unsuitability
follows from this next proposition.

Proposition 6.2.2. Let C be a (n, k) code and suppose it is MDS. All columns
of the systematic generator matrix for C will therefore be of minimum Hamming
weight.

Proof. Let G be the systematic generator matrix for C and let i ∈ {1, . . . , k} be
given. We know that

(Gi)j =

{
1, j = i

0, j 6= i
∀j ∈ {1, . . . , k}.

Using d to denote the minimum distance of C, we have d = n− k+ 1, since C is
MDS. The linearity of C implies that each column of G must have Hamming weight
greater than the code’s minimum distance: ω(Gi) ≥ n− k + 1 for all i = 1, . . . , k.
But for each column Gi, we have |{j ∈ {1, . . . , k} : (Gi)j 6= 0}| = 1, so for the
inequality to hold, we must also have (Gi)j 6= 0 for all j ∈ {k + 1, . . . , n}. Thus,
we conclude ω(Gi) = n− k + 1 = d for all i = 1, . . . , k. �

Corollary 6.2.3. Any binary, full-rank Goppa code can correct at most 1 error.

Proof. Consider a binary, full-rank Goppa code Γ(a, g) of dimension k with a gen-
erator matrix M. The RREF form of Mᵀ will be the transpose of the systematic
generator matrix for Γ(a, g), written

E(Mᵀ) =
[
Ik|A

]
such that A ∈ Mk×(n−k)(F2). By the last proposition, since Γ(a, g) being of full
rank means it is MDS, every entry of A is 1. For any two rows Ri and Rj such
that i 6= j, we have Ri +Rj ∈ Γ(a, g), but since the last n− k positions of Ri +Rj
are all 0, ω(Ri + Rj) = 2. Because the minimum distance is d = t + 1, we must
have 2 ≥ t+1, which implies that t = 1. As a consequence of Proposition 4.1.4 and
Theorem 4.1.6, a Goppa code can correct at most t

2 errors and a binary, separable
Goppa code can correct at most t errors. Thus, if Γ(a, g) were separable, it could
correct at most t = 1 error; else, it could correct no errors. �

Note that this result does not extend to non-binary, full-rank Goppa codes. The
sum of any pair of rows Ri and Rj of the RREF form a transposed generator matrix
for such a code will not necessarily be a codeword of weight 2 precisely because we
can’t ensure (Rj)l = (Ri)

−1
l for all l = k + 1, . . . , n as we could in the binary case,

where (Ri)l = (Rj)l = 1.

Since all practical implementations of a McEliece scheme based on Goppa codes
call for the code to be binary, the last corollary ensures that a full-rank Goppa

42 FILIP STOJANOVIC

code used in practice can correct at most 1 error. Availing oneself of the S-S attack
to correct the errors added in generating a cipher possesses little advantage over
a message attack on such a McEliece scheme. Indeed, since at most 1 error was
added in creating a cipher, an attacker only needs to check at worst n different
vectors in Fn2 to correct the error without needing the code-specific error-correction
algorithm, whereas the recovery of the code parameters for a full-rank Goppa code
alone needs O(nk2) operations. Both approaches will identify the error vector z,
after which point the message (up to permutation) can be recovered by identifying
a left inverse of GS. We illustrate this by letting c ∈ Fn2 denote a cipher generated
by a plaintext m ∈ Fk2 and by noticing the following:

c = GSm+ z =⇒ m = GSLI(c− z).

Finding a left inverse of GS amounts to row-reducing a n× k matrix, which can
be done in O(n2k) operations. If we follow this model and neglect the complexity
of applying the code-specific error-correction algorithm (which is valid given that
the complexity of the decoding algorithm is o(n2) as can be gleaned from the its
complexity breakdown in Chapter 3 of [Bi]), the complexity of the structural at-
tack required to recover m is O(n2k) whereas the complexity of the message attack
required to accomplish the same is O(n3k). Their complexities are comparable, so
a McEliece scheme based on binary, full-rank Goppa codes is susceptible to both
structural and message attacks. However, in practice no McEliece scheme would
use a Goppa code capable of correcting only one error; indeed, t is chosen to be far
larger in the McEliece parameter sets proposed in [B], so practical implementations
of McEliece aren’t vulnerable in this way.

6.3. The Sidelnikov-Shestakov Attack on (k-1)-Dimensional Goppa Codes.
We consider a McEliece scheme based on a Goppa code Γ(a, g) = GRSn,k(a, β) of
dimension kΓ = k − 1. We will elaborate on the progress we can make in adapting
the S-S attack to this scheme and, ultimately, why it is difficult to do so for any
McEliece scheme based on Goppa codes that are not of maximal dimension.

Recall by Proposition 4.2.2, Γ(a, g) = {(β1q(a1), . . . , βnq(an)) : q ∈ P} where
P ⊂ Pk−1(Fpm) such that P is Fp-linear and dimFp

(P) = kΓ = k−1. For a McEliece
scheme based on Γ(a, g), the public matrix M and the private generator matrix G
both generate Γ(a, g). The goal of the S-S attack is the recover the code parameters
(a, g), which by the discussion in Section 6.2 is equivalent to recovering the code
parameters of the corresponding GRS code GRSn,k(a, β). We can see that Lemma
6.1.1 applies similarly here and that we need only recover equivalent parameters for
GRSn,k(a, β) in order to access the efficient decoding algorithm for Γ(a, g).

Lemma 6.3.1. Without loss of generality, a1 = 0, a2 = 1, and β1 = 1.

Proof. By Lemma 6.1.1, there is a GRS code defined by equivalent parameters
(a′, β′) such that GRSn,k(a, β) = GRSn,k(a′, β′) where a′1 = 0, a′2 = 1, and β′1 = 1.

Let Γ(a′, g′) = GRSn,k(a′, β′) ∩ Fnp where g′ satisfies

g′(a′j) = β′j
∏
l 6=j

(a′j − a′l) ∀j = 1, . . . , n.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 43

But then Γ(a, g) = GRSn,k(a, β) ∩ Fnp = GRSn,k(a′, β′) ∩ Fnp = Γ(a′, g′), so the
decoding algorithm for Γ(a, g) is accessible for either pair of parameters (a, β) and
(a′, β′). We will choose to find (a′, β′). �

To get a sense of where the difficulties for the S-S attack lie, we will try to apply
it to the McEliece scheme we’re considering. Again, WLOG, by possibly permuting
rows of G, we assume that the first kΓ rows of G are linearly independent. We
must again find the RREF form of Mᵀ, which will also have a systematic form by
our assumption.

Mᵀ ∼ E(Mᵀ) = [IkΓ |A] =


R1

R2

...
RkΓ


Since the rows are codewords of Γ(a, g), we interpret them as such: for all i =
1, . . . , kΓ,

Ri = (β1qRi(a1), . . . , βnqRi(an)) for some qRi ∈ P.
As before, the zero entries of each row imply for all i = 1, . . . , kΓ,∏

j∈{1,...,kΓ}\{i}

(x− aj) | qRi(x).

The difference now is that because the product of degree-1 factors is a polynomial
of degree kΓ − 1 and deg(qRi

) ≤ k − 1, we don’t know if this identifies qRi
up to

scalar multiple as before. Indeed, our next proposition will show that for any
i = 1, . . . , kΓ, qRi will be a scalar multiple of this product with low probability.
However, to complete the factorization of qRi using this product, we must introduce
another polynomial ρi ∈ Pk−1(Fpm) such that

qRi
(x) = ρi(x)

∏
j∈{1,...,kΓ}\{i}

(x− aj) where ρi(x) =

k−kΓ∑
j=0

λi,jx
j .

By considering the RREF form of Mᵀ, we get for all i = 1, . . . , kΓ,

βjqRi
(aj) =


0, j ∈ {1, . . . , kΓ}\{i}
1, j = i

(Ri)j , j ∈ {kΓ + 1, . . . , n}

⇐⇒ ρi(aj)
∏

l∈{1,...,kΓ}\{i}

(aj − al) =


0, j ∈ {1, . . . , kΓ}\{i}
β−1
i , j = i

β−1
j (Ri)j , j ∈ {kΓ + 1, . . . , n}

.

From these, we are able to glean some useful equations about ρi.

ρi(aj) =


β−1
i∏

l∈{1,...,kΓ}\{i}
(ai−al) , , j = i

β−1
j (Ri)j∏

l∈{1,...,kΓ}\{i}
(aj−al) , , j ∈ {kΓ + 1, . . . , n}

It would appear we have no information on the degrees of the row polynomials
qRi , but this changes in the binary case, as is summarized in the following proposi-
tion. Indeed, the information we know is particularly relevant when kΓ = k−1, but

44 FILIP STOJANOVIC

it more generally shows that the product
∏
j∈{1,...,kΓ}\{i}(x − αj) will very rarely

identify qRi
up to scalar multiple.

Proposition 6.3.2. Let Γ(a, g) be a (n, kΓ) Goppa code over F2 that is a sub-
field subcode of a GRS code of dimension k > kΓ. There exists at most one
i ∈ {1, . . . , kΓ} such that deg(qRi) = kΓ − 1.

Proof. Let i ∈ {1, . . . , kΓ} be given. We have qRi(x) =
(∏

l∈{1,...,kΓ}\{i}(x− al)
)
ρi(x).

We also developed the following equations.

ρi(aj) =


β−1
i∏

l∈{1,...,kΓ}\{i}
(ai−al) , j = i

β−1
j (Ri)j∏

l∈{1,...,kΓ}\{i}
(aj−al) , j ∈ {kΓ + 1, . . . , n}

Notice that deg(qRi
) = kΓ − 1 if and only if ρi is constant and non-zero. But we

know ρi is constant if and only if

β−1
i∏

l∈{1,...,kΓ}\{i}(ai − al)
=

β−1
j (Ri)j∏

l∈{1,...,kΓ}\{i}(aj − al)
∀j ∈ {kΓ + 1, . . . , n}.

Since these equations give the equality of n − kΓ + 1 y-values, each for different
points ρi passes through. The maximum degree of ρi is k− kΓ < n− kΓ + 1, so the
converse direction holds as this guarantees ρi is constant.

The above holds if and only if

βj
βi

∏
l∈{1,...,kΓ}\{i}

(
aj − al
ai − al

)
= (Ri)j ∀j ∈ {kΓ + 1, . . . , n}.

Recalling that j ≥ kΓ + 1, we notice we can’t have (Ri)j = 0 or else it would
mean there exists some l 6= j such that al = aj , a contradiction. Also, this would
then force ρi to be the zero polynomial, which we said it wasn’t. Since Γ(a, g) is
binary, (Ri)j 6= 0 implies (Ri)j = 1. We get the following rearrangement.

βj
βi

∏
l∈{1,...,kΓ}\{i}

(
aj − al
ai − al

)
= 1

⇐⇒ βj
∏

l∈{1,...,kΓ}\{i}

(aj − al) = βi
∏

l∈{1,...,kΓ}\{i}

(ai − al)

Recall that g(aj) = βj
∏
l 6=j(aj − al). With this, we rewrite the last equation as

follows.

g(aj)[∏
l∈{kΓ+1,...,n}\{j}(aj − al)

]
(aj − ai)

=
g(ai)∏

l∈{kΓ+1,...,n}(ai − al)

⇐⇒ g(aj)∏
l∈{kΓ+1,...,n}\{j}(aj − al)

=
−g(ai)∏

l∈{kΓ+1,...,n}\{j}(ai − al)

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 45

⇐⇒ g(aj) = −

 ∏
l∈{kΓ+1,...,n}\{j}

(aj − al)
(ai − al)

 g(ai)

This holds for all j ∈ {kΓ + 1, . . . , n}. If there exists some i′ ∈ {2, . . . , kΓ}\{i}
such that ρi′(x) is constant, then we must have

g(aj) = −

 ∏
l∈{kΓ+1,...,n}\{j}

(aj − al)
(ai′ − al)

 g(ai′) ∀j ∈ {kΓ + 1, . . . , n}.

Therefore,

g(ai)∏
l∈{kΓ+1,...,n}\{j}(ai − al)

=
g(ai′)∏

l∈{kΓ+1,...,n}\{j}(ai′ − al)
∀j ∈ {kΓ +1, . . . , n},

and thus,

g(ai′) =

 ∏
l∈{kΓ+1,...,n}\{j}

(ai′ − al)
(ai − al)

 g(ai) ∀j ∈ {kΓ + 1, . . . , n}.

Since g(ai) and g(ai′) are just values in F2m independent of the choice of j, this
equation holding for all j ∈ {kΓ + 1, . . . , n} implies∏
l∈{kΓ+1,...,n}\{j}

(ai′ − al)
(ai − al)

=
∏

l∈{kΓ+1,...,n}\{h}

(ai′ − al)
(ai − al)

∀j, h ∈ {kΓ+1, . . . , n} such that j 6= h.

This implies

(ai′ − ah)

(ai − ah)
=

(ai′ − aj)
(ai − aj)

∀j, h ∈ {kΓ + 1, . . . , n} such that j 6= h.

Since ai 6= ai′ because i 6= i′, both the left-hand and right-hand expressions can
be viewed as fractional linear transformations in ah and aj , respectively. Define

the map T by x 7→ −x+ai′
−x+ai

. The value of ah is some fixed number in F2m and

let j ∈ {kΓ + 1, . . . , n}\{h} be given. We want to solve T (aj) = ai′−ah
ai−ah . Since

T is bijective, there is only one solution to this equation. We see that by taking
aj = ah, we solve the equation, so aj = ah is the unique solution. However, this is
a contradiction since ai 6= aj for all i 6= j. Therefore, we can’t have two distinct
values of i, i′ ∈ {2, . . . , kΓ} such that ρi(x) and ρi′(x) are both constant. �

The direct application of this proposition to Goppa codes of dimension kΓ = k−1
is that there is at most one row polynomial of degree k − 2. All others must be of
degree k−1 and since all irreducible polynomials over F2m of degree one have roots
in F2m , this means these other row polynomials factor over F2m . More precisely,
we know the degrees of all row polynomials for a McEliece scheme based on such
Goppa codes and we know that at most one row polynomial qRi won’t admit an
additional, degree-1 factor ρi.

Notice that as a consequence of this proposition, the quotient
(R1)j
(R2)j

for some

j ∈ {kΓ + 1, . . . , n} (or the quotient of the same entries in any two different rows,
for that matter) will never simplify to a fractional linear transformation in aj , as

46 FILIP STOJANOVIC

it did in the S-S attack on a McEliece scheme based on GRS codes. Instead, it
simplifies as follows:

(6.1)
(R1)j
(R2)j

=
βjqR1(aj)

βjqR2
(aj)

=
ρ1(aj)

∏
r∈{1,...,kΓ}\{1}(aj − ar)

ρ2(aj)
∏
r∈{1,...,kΓ}\{2}(aj − ar)

=
ρ1(aj)(aj − 1)

ρ2(aj)(aj)
.

For large enough k, it stands to reason that with high probability neither ρ1 nor
ρ2 are constant, so we will be forced to assume this. The rightmost expression in
(6.1) is a rational function in aj of degree at most k − kΓ + 1 and at least 2. The
injectivity of this rational function is only guaranteed when it is of degree 1 since it
is a fractional linear transformation in this case, so we will not necessarily be able
to invert this function as we outlined in the S-S attack before in order to relate aj
to known values. Even then, inverting a high-degree rational function is difficult to
do. This blocks direct application of the S-S attack.

We will illustrate the difficulty of using (6.1) to partially recover α. Let r ∈ F2m

such that ρ2(r) = 0. Define S : F2m \ {0, r} → F2m by the map x 7→ ρ1(x)(x−1)
ρ2(x)x .

Suppose for all j ∈ {kΓ + 1, . . . , n} we are always able to identify S−1
(

(R1)j
(R2)j

)
and

that this preimage contains only 2 elements. However, both elements are equally
likely to be aj , so we have no better option but to arbitrarily take aj to be one
of these two values. Repeating this for all of j = kΓ + 1, . . . , n, we observe that
the partial recovery of akΓ+1, . . . , an requires at worst O(2n−kΓ) operations in F2m ,

excluding the complexity needed to identify S−1
(

(R1)j
(R2)j

)
. We immediately see that

it is intractable to use (6.1) to solve for aj ; hence, the S-S attack cannot be applied
directly to Goppa codes that are not of full rank.

7. Wieschebrink’s Squaring Attack

Wieschebrink mounts a structural attack on a McEliece scheme based on random
subcodes of GRS codes in [W] that takes advantage of the polynomial-evaluation
interpretation of GRS codes and that the square (defined using the component-
wise product) of random subcodes of GRS codes will be a GRS code itself. We will
outline this attack for random subcodes of GRS and then show that this attack
doesn’t generalize to subfield subcodes of GRS codes (that is to say, to Alternant
codes).

7.1. The Squaring Attack. Consider the McEliece scheme using a random sub-
code of the code GRSn,k(α, β) of dimension k − l over Fpm where l is chosen to
be some value in {1, . . . , k − 1}. Following the model presented in Section 6.1, the
public matrix of this scheme will be M = GS such that G is a n × k generator
matrix for GRSn,k(α, β) and S is now a k× (k− l) matrix of rank k− l is a random
matrix of rank k − l. As usual, M is a generator matrix for the public code, but
the public code is now a (k − l)-dimensional subspace of GRSn,k(α, β).

At the risk of possible confusion with the degree of the field extension m = [Fpm :
Fp], in order to stay consistent with Wieschebrink’s notation, we define m := k− l.
Note that in the rest of this section, m will always mean k− l and it will only ever
refer to [Fpm : Fp] when written as the exponent of pm in Fpm . M is therefore
a n × m matrix whose transposed, RREF form E(Mᵀ) has rows R1, . . . , Rm, to

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 47

which are associated the row polynomials pR1
, . . . , pRm

∈ Pk−1(Fpm). Next, we
define the bilinear operation called the component-wise product (or Schur product)
as ∗ : Fnpm ×Fnpm → Fnpm by a∗ b 7→ (a1b1, a2b2, . . . , anbn). With this, we introduce
the square of a linear code C as

C(∗2) := spanFpm
({c ∗ d : c, d ∈ C}).

For a GRS code GRSn,k(α, β) = {(β1p(α1), . . . , βnp(αn)) : p ∈ Pk−1(Fpm)}, its
square is

GRSn,k(α, β)(∗2) = spanFpm
({(β2

1pq(α1), . . . , β2
npq(αn)) : p, q ∈ Pk−1(Fpm)})

⊆ {(β2
1p(α1), . . . , β2

np(αn)) : p ∈ P2k−2(Fpm)}

since for p, q ∈ Pk−1(Fpm), we have p(x)q(x) = pq(x) ∈ P2k−2(Fpm) given the ring
structure of Fpm [x], to which both p and q belong. For 2k − 1 ≤ n, the square is
contained in the GRS code GRSn,2k−1(α, β′) such that β′ := β ∗ β. In fact, the
square is exactly this GRS code.

Before we show this, let us define the evaluation map and use it to prove an
intermediary result.

Definition 7.1.1. The evaluation map for a vector α ∈ Fnpm is the linear map
evα : Fpm [x]→ Fnpm given by p 7→ (p(α1), . . . , p(αn)).

Lemma 7.1.2. Consider the (n, k) GRS code GRSn,k(α, β) and let a basis for
Pk−1(Fpm) be {pi(x) : i = 1, . . . , k}. We observe that

GRSn,k(α, β)(∗2) =
{

(β2
1p(α1), . . . , β2

np(αn)) : p ∈ spanFpm
{pi(x)pj(x) : i ≤ j}

}
.

Proof. The ⊇ inclusion is straightforward. We will just show the ⊆ inclusion.
Let p, q ∈ Pk−1(Fpm), so the vectors β ∗ evα(p) and β ∗ evα(q) both belong to
GRSn,k(α, β). We notice we have

(β ∗ evα(p)) ∗ (β ∗ evα(q)) =
(
β2

1p(α1)q(α1), . . . , β2
np(αn)q(αn)

)
.

This will be rewritten as follows.β2
1

(
k∑
i=1

λipi(α1)

) k∑
j=1

γjpj(α1)

 , . . . , β2
n

(
k∑
i=1

λipi(αn)

) k∑
j=1

γjpj(αn)


=

β2
1

k∑
i=1

k∑
j=1

λiγjpi · pj(α1), . . . , β2
n

k∑
i=1

k∑
j=1

λiγjpi · pj(αn)


We can rewrite the polynomial appearing in each entry of (β∗evα(p))∗(β∗evα(q)).

We see that
k∑
i=1

k∑
j=1

λiγjpi · pj(x) =

k∑
j=1

j∑
i=1

(λiγj + λjγi)pi · pj(x)−
k∑
j=1

λjγjp
2
j (x)

and this is clearly in spanFpm
{pi · pj : i ≤ j}. Hence, we may conclude

GRSn,k(α, β)(∗2) ⊆
{

(β2
1p(α1), . . . , β2

np(αn)) : p ∈ spanFpm
{pi(x)pj(x) : i ≤ j}

}
,

which gives us the result. �

48 FILIP STOJANOVIC

Proposition 7.1.3. Consider the (n, k) GRS code GRSn,k(α, β) such that 2k−1 ≤
n. Defining β′ := β ∗ β, we have

GRSn,k(α, β)(∗2) = GRSn,2k−1(α, β′).

Proof. Let the basis {pi(x) : i = 1, . . . , k} for Pk−1(Fpm) used in the last lemma be
the standard monomial basis {1, x, . . . , xk−1}. It’s clear that the standard monomial
basis of P2k−2(Fpm) will be contained in spanFpm

{pi(x)pj(x) : i ≤ j}, so by the last

lemma, we get

GRSn,k(α, β)(∗2) =
{

(β2
1p(α1), . . . , β2

np(αn)) : p ∈ P2k−2(Fpm)
}
.

Since 2k − 1 ≤ n, this vector space is GRSn,2k−1(α, β′). �

Wieschebrink considers two cases for his squaring attack in which we can recover
the code parameters to this random subcode of GRSn,k(α, β) of dimension m =
k − l. We’ll present the recovery of the code parameters in each case as separate
lemmas.

Lemma 7.1.4. Consider the (n, k) GRS code GRSn,k(α, β) such that 2k ≤ n− 2.
If M is the public matrix for a McEliece scheme such that it generates a random
subcode of GRSn,k(α, β) of dimension m = k − l, then we can recover (α, β) with
high probability1using M.

Proof. We row-reduce the transpose of the public matrix to get E(Mᵀ), the ma-
trix whose rows we denote by R1, . . . , Rm. The code generated by the rows of
E(Mᵀ) is a subcode of GRSn,k(α, β), so by the last proposition, the square of

spanFpm
{R1, . . . , Rm} will be a subspace of GRSn,k(α, β)(∗2) = GRSn,2k−1(α, β′).

It is Wieschebrink’s claim in [W] that for C = Im(M), the probability that
C(∗2) = GRSn,2k−1(α, β′) is very high. Recall that we associated each row Ri
to a polynomial pRi such that Ri = evα(pRi) ∗ β.

It’s easy to see that the same development used to prove Lemma 7.1.2 applies
to C as well, giving us

C(∗2) =
{

(β2
1p(α1), . . . , β2

np(αn)) : p ∈ spanFpm
{pRi

(x)pRj
(x) : 1 ≤ i ≤ j ≤ m}

}
.

We can continue simplifying this.

C(∗2) =
{
β ∗ evα(p) ∗ β ∗ evα(q) : p ∈ spanFpm

{pRj (x) : 1 ≤ j ≤ m}, q ∈ spanFpm
{pRi(x) : 1 ≤ i ≤ j}

}
=

β ∗ evα
 m∑
j=1

λjpRj

 ∗ β ∗ evα(j∑
i=1

γipRi

)
: λj , γi ∈ Fpm


=


 m∑
j=1

λj(β ∗ evα(pRj
))

 ∗(j∑
i=1

γi(β ∗ evα(pRi
))

)
: λj , γi ∈ Fpm


by the associativity and bilinearity of ∗ and the linearity of evα

=


 m∑
j=1

λjRj

 ∗(j∑
i=1

γiRi

)
: λj , γi ∈ Fpm


= spanFpm

{Ri ∗Rj : 1 ≤ i ≤ j ≤ m}

1See [W] for a discussion on what is meant by “high probability”

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 49

Thus, we can generate C(∗2) by computing the component-wise product between
pairs of rows Ri and Rj for all 1 ≤ i ≤ j ≤ m. C(∗2) will be the GRS code

GRSn,2k−1(α, β′) with very high probability, so since dim(C(∗2)) = 2k− 1 ≤ n− 2,

we may apply the Sidelnikov-Shestakov attack to a generator matrix of C(∗2) to
recover α and β′, from which point it is easy to recover β. �

The other case where if 2k− 1 > n− 2, requires a somewhat different approach.
To tackle this case, we need the notion of a shortened code.

Definition 7.1.5. Let C ⊆ Fnpm be a (n, k) code and let d ∈ {0, . . . , k}. The

shortened code Sd(C) is the code consisting of all codewords (s1, . . . , sn−d) ∈ Fn−dpm

such that (0, . . . , 0, s1, . . . , sn−d) ∈ C.

Remark 7.1.6. It’s clear that if G = [Ik|A]ᵀ is the systematic generator matrix
for C, then the last k − d columns of G restricted to their last n − d entries will
form a basis of Sd(C).

We can now address the other case addressed by Wieschebrink.

Lemma 7.1.7. Consider the (n, k) GRS code GRSn,k(α, β) such that 2k > n− 2.
Let M be the public matrix for a McEliece scheme such that it generates a random
subcode of GRSn,k(α, β) of dimension m = k− l. If there exists and integer d such
that d ≤ m− 1 and 2(k − d)− 1 ≤ n− d− 2, then we can recover (α, β) with high
probability2using M.

Proof Sketch. Again, row-reduce the transpose of the public matrix to get E(Mᵀ),
the matrix whose ith row is Ri to which we associate the polynomial pRi

. Again,
we define C := Im(M).

Let d be an integer and define the set I := {d+1, . . . , n} to be used for puncturing
the rows of E(Mᵀ) to generate a basis for the shortened code Sd(C) for some value
d satisfying d ≤ m− 1 and 2(k−d)− 1 ≤ n−d− 2. Since E(Mᵀ) is the transposed
form of the systematic generator matrix for C, by Remark 7.1.6, a basis for the
shortened code Sd(C) is {(Rd+i)I : i = 1, . . . ,m−d}. Note that because d ≤ m−1,
this really will be a valid shortened code. Also by Remark 7.1.6, a systematic
generator matrix for Sd(C) can be defined as follows:

MS := [(Rd+1)I
ᵀ

(Rd+2)I
ᵀ
. . . (Rm)I

ᵀ
] .

For simplicity, we will let Si denote the ith column of MS . We recognize that

(0, . . . , 0, (Si)1, . . . , (Si)n−d) ∈ C ⊆ GRSn,k(α, β).

Thus, we know the ith column, Si, will have the form Si = (βd+1p(αd+1), . . . , βnp(αn))
for some p ∈ Pk−1(Fpm). However, the codeword from which Si is punctured is in
GRSn,k(α, β), so we have

(0, . . . , 0, (Si)1, . . . , (Si)n−d) = (β1p(α1), . . . , βnp(αn)),

which means we must have p(αj) = 0 for all j = 1, . . . , d since βj 6= 0 for all
j = 1, . . . , n. Therefore, we may write

p(x) = h(x)

d∏
j=1

(x− αj) for some h(x) ∈ Fpm [x] such that deg(h) ≤ k − 1− d.

2Again, see [W] for further details

50 FILIP STOJANOVIC

Thus, for all i = 1, . . . ,m− d, we have

Si =

βd+1

d∏
j=1

(αd+1 − αj)

h(αd+1), . . . ,

βn d∏
j=1

(αn − αj)

h(αn)

 .

Defining z :=
(
βd+1

∏d
j=1(αd+1 − αj), . . . , βn

∏d
j=1(αn − αj)

)
and α′ := (αd+1, . . . , αn),

we can see that for each column, Si ∈ GRSn−d,k−d(α′, z) for all i = 1, . . . ,m − d.
Hence, Sd(C) ⊆ GRSn−d,k−d(α′, z).

Picking C to be a random, m-dimensional subcode of GRSn,k(α, β) is equiv-
alent to picking Q := {p1, . . . , pm} to be a random, linearly independent subset
of Pk−1(Fpm) such that C = {β ∗ evα(p) : p ∈ spanFpm

(Q)}. Q being randomly

chosen means that the basis {pR1
, . . . , pRm

} of row polynomials, where these row
polynomials are all linear combinations of the polynomials in Q, will also be a set
of m random, linearly independent vectors in Pk−1(Fpm).

Define the polynomial hRi
(x) such that pRi

(x) = hRi
(x)
∏d
j=1(x − αj). Since

pRi
(x) is randomly chosen and

∏d
j=1(x−αj) is a fixed polynomial defined entirely

by α, the randomness must come from hRi
(x). Hence, {hRi

: i = d + 1, . . . ,m} is
a set of randomly-chosen vectors in Pk−d−1(Fpm) that is linearly independent since
the corresponding columns of MS (Sd+1, . . . , Sm) form a linearly independent set
and a set of vectors from a GRS code are linearly independent if and only if the
set of their corresponding polynomials is linearly independent. This is easy to verify.

Thus, Sd(C) =
{
z ∗ evα′(h) : h ∈ spanFpm

{hRi : i = d+ 1, . . . ,m}
}

is a random,

(m − d)-dimensional subcode of GRSn−d,k−d(α
′, z). By Lemma 7.1.4, with high

probability the square of this code will be a GRS code, so we can find the square
code Sd(C)(∗2) and if 2(k − d) − 1 ≤ n − d − 2 holds, then we can and apply the
Sidelnikov-Shestakov attack to recover the parameters (α′, z). By the hypothesis,
d satisfies 2(k− d)− 1 ≤ n− d− 2, so we can apply the S-S attack. The remaining
entries of α can be recovered by going through the same process as above with a
permutation of M with the precise details of the recovery left in [W]. �

For this attack to be successful, we must be able to pick d such that d ≤ m− 1
and 2(k − d)− 1 ≤ n− d− 2. Both of these conditions together can be written as
2k−n+1 ≤ d ≤ m−1. This condition for the success of the attack explains in part
why McEliece using Goppa codes won’t succumb to this attack. Consider the (n, kΓ)
Goppa code Γ(α, g) that is the subfield subcode of GRSn,k(α, β). Since Γ(α, g) is
a kΓ-dimensional subspace of GRSn,k(α, β), we have m = kΓ; further usage of m
will now refer to the degree of the field extension m = [Fpm : Fp]. Reinterpreting
the conditions on d for the success of the attack, we get 2k − n + 1 ≤ d ≤ kΓ − 1.
We recall the lower bound on the dimension of a Goppa code given in Proposition
4.1.3:

kΓ ≥ n−mt,
where m is the degree of the field extension [Fpm : Fp] and t is the degree of the
Goppa polynomial g. Thus, because t = n− k, we may rewrite the above as

kΓ ≥ n− 2t− (m− 2)t = 2k − n− (m− 2)t.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 51

Since m is taken to greater than 1 or else the Goppa code is not a subfield
subcode of a GRS code and the Sidelnikov-Shestakov attack applies, we also have
2k − n + 1 > 2k − n − (m − 2)t. If the Goppa code is taken to be of minimum
dimension, then there is no way to pick d to proceed with the squaring attack since

@d ∈ N such that 2k − n+ 1 ≤ d ≤ kΓ − 1 = 2k − n− 1− (m− 2)t < 2k − n+ 1.

Also, if the Goppa code is taken to be of dimension kΓ such that kΓ < 2k−n+ 2 =
n − 2t + 2, then the attack fails because we can’t pick a value of d satisfying the
required condition. Thus, for any parameters used to define a particular McEliece
scheme using Goppa codes, a private key can be chosen such that the Goppa code
it generates will resist applications of the squaring attack.

There is also another reason why Goppa codes and, more generally, Alternant
codes will resist applications of the squaring attack. The key-recovery procedure in
the attack is performed by the Sidelnikov-Shestakov attack, so the critical condition
we need in order to use the Sidelnikov-Shestakov attack is for C(∗2) or Sd(C)(∗2) to
be a GRS code, where C is the code spanned by the columns of M.

Suppose C = GRSn,k(α, β) ∩ Fnp is an Alternant code of dimension kΓ. For

the squaring attack to be successful, we need either C(∗2) = GRSn,2k−1(α, β′) or

Sd(C)(∗2) = GRSn−d,2(k−d)(α
′, z ∗z) for an appropriate choice of integer d outlined

in Lemma 7.1.7, where the notation used for the parameters α′ and β′ in these
GRS codes carries the same meaning as before. Since C and Sd(C) ⊆ Fnp , both

C(∗2) and Sd(C)(∗2) ⊆ Fnp as well. For these codes to be equal to their respective
GRS codes, the GRS codes must also be subspaces of Fnp . This will never hold true
in practice by the next lemmas.

Lemma 7.1.8. If n > p, then GRSn,2k−1(α, β′) 6⊆ Fnp .

Proof. Suppose for a contradiction that GRSn,2k−1(α, β′) ⊆ Fnp .

GRSn,2k−1(α, β′) = {(β2
1p(α1), . . . , β2

np(αn)) : p ∈ P2k−2(Fpm)},

so since {1, x, . . . , x2k−2} ⊆ P2k−2(Fpm), we must have that the codeword entries
defined by these polynomials are in Fp:

β2
i α

j
i ∈ Fp ∀i = 1, . . . , n, ∀j = 0, . . . , 2k − 2.

This means for all i = 1, . . . , n and for all j = 0, . . . , 2k−2, there exists γ ∈ Fp such

that β2
i α

j
i = γ ⇐⇒ αji = γ(β2

i)−1 since βi 6= 0 for all i. Thus, we get αji ∈ Fp for
all i, j.

In particular for j = 1, we have αi ∈ Fp for all i = 1, . . . , n. Since n > p, by the
Pigeonhole Principle, there exist i, j ∈ {1, . . . , n} such that i 6= j and ai = aj . But
this is a contradiction. �

Lemma 7.1.9. Let d(C) denote the minimum distance of C. If d(C) > p, then
GRSn−d,2(k−d)(α

′, z ∗ z) 6⊆ Fnp .

Proof. Suppose for a contradiction that GRSn−d,2(k−d)(α
′, z ∗ z) ⊆ Fnp .

GRSn−d,2(k−d)(α
′, z ∗ z) = {(z2

1p(α
′
1), . . . , z2

np(α
′
n)) : p ∈ P2(k−d)−1(Fpm)},

52 FILIP STOJANOVIC

so, just as in the last lemma, we will have α′i ∈ Fp for all i = 1, . . . , n − d. The
bounds for d in Lemma 7.1.7 give us that d ≤ kΓ−1, so n−d ≥ n−kΓ+1 ≥ d(C) by
the Singleton bound. But since d(C) > p, by the Pigeonhole Principle, there exist
i, j ∈ {1, . . . , n− d} such that i 6= j and ai = aj . This is again a contradiction. �

For a McEliece scheme using a (n, k) subcode of Fnp as the secret code, the ciphers
will be vectors in Fnp and the public key contains a matrix over Fp. The expan-
sion that results from encoding these objects in terms of their binary equivalents
is exponential in dlog(p)e. In order to minimize this expansion, we take p to be as
small as possible, optimally taking it to be 2. In all practical implementations of
McEliece, this is exactly what is done. We will certainly have n ≥ d(C) > 2 or else
if d(C) ≤ 2, the code can’t correct any errors and it would not be appropriate for
the McEliece PKC. Thus, by the two preceding lemmas, if C and Sd(C) are chosen
with respect to the virtually gratuitous condition d(C) > p, the squares of these
codes can’t possibly be equal to the corresponding GRS codes they’re contained
within.

By this discussion, binary Goppa codes in particular are resistant to the squar-
ing attack. As binary, irreducible Goppa codes are the Goppa codes that allow
for the greatest error correction by Theorem 4.1.6, these are the most useful for
constructing a McEliece scheme. The most popular form of the McEliece PKC as
seen in [B] therefore isn’t threatened directly by this attack.

8. Wieschebrink’s Guessing Attack

There are no known structural attacks on the McEliece scheme using Goppa
code that run in polynomial time. We would like to have a sense of the least
amount of work we need to put into acquiring these equivalent parameters before
a polynomial-time attack becomes available to finish the job. To that end, we
describe an attack based on one of the attacks Wieschebrink presents in [W] that
recovers the parameters (a, g) of a Goppa code if a subset of the entries of a were
known in advance.

8.1. The Guessing Attack. We detail an attack based on Section 4.2 in [W]
that can be applied to a McEliece scheme based on Goppa codes to recover the
parameters in polynomial time if a certain subset of the code parameters is known
in advance and given certain conditions. We then interpret this as a lower bound on
the amount of information needed on the code parameters of a Goppa code before
we can efficiently acquire the trapdoor of a McEliece scheme based on said Goppa
code.

Proposition 8.1.1. Consider the McEliece scheme using a (n, kΓ) Goppa code
Γ(a, g) that is the subfield subcode of GRSn,k(a, β) defined by degree-t Goppa poly-
nomial g(x). Define l := k − kΓ = n − t − kΓ. Suppose n ≥ kΓ + 2l + 4 and that
the entries akΓ+1, . . . , akΓ+2l+4 of the parameter a were known and that none of the
entries akΓ , . . . , an are roots of any of the row polynomials qRi for all i = 1, . . . , kΓ,
where these polynomials possess the same meaning as in Section 6.3. There exists
an attack of polynomial algebraic complexity that recovers the rest of (a, g).

Proof. We begin by row-reducing the transpose of the public matrix M, bringing
it to the form E(Mᵀ), whereupon we get the following interpretation of each row

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 53

of E(Mᵀ):

Ri = (β1qRi(a1), . . . , βnqRi(an)) ∀i ∈ {1, . . . , kΓ}.

We recall that each row polynomial qRi
can be written as

qRi =

 ∏
j∈{1,...,kΓ}\{i}

(x− aj)

 ρi(x) such that ρi ∈ Pk−kΓ(Fpm)

by the characterization immediately preceding Proposition 6.3.2. We divide by the
non-zero entries of the rows of E(Mᵀ) and we get the equations

(Ri)j
(Rh)r

=
βjqRi

(aj)

βrqRh
(ar)

∀i, h ∈ {1, . . . , kΓ}, j, r ∈ {kΓ+1, . . . , n} such that (Rh)r 6= 0.

For j = r, these equations become

(Ri)j
(Rh)j

=
(aj − ah)ρi(aj)

(aj − ai)ρh(aj)
∀i, h{1, . . . , kΓ}, j ∈ {kΓ+1, . . . , n} such that (Rh)j 6= 0.

Take h = kΓ. Define P̃i(x) := (x− akΓ)ρi(x) and Q̃i(x) := (x− ai)ρkΓ(x). With
this, we rewrite the last equation as
(8.1)

(Ri)j
(RkΓ)j

=
P̃i(aj)

Q̃i(aj)
∀i ∈ {1, . . . kΓ}, j ∈ {kΓ + 1, . . . , n} such that (RkΓ)j 6= 0.

Since the degrees of deg(P̃i) and deg(Q̃i) are both less than or equal to k−kΓ+1 =
l+1, we need to know at least l+2 points that either one passes through to be able
to interpolate it. Since we know akΓ+1, . . . , akΓ+2l+4, we know 2l+ 4 points P̃i and

Q̃i pass through, so we can interpolate them. From equation (8.1), we recognize

that P̃i passes through the points
{

(aj ,
(Ri)j

(RkΓ
)j
Q̃i(aj)) : j = kΓ + 1, . . . , kΓ + 2l + 4

}
and Q̃i passes through the points

{
(aj ,

(RkΓ
)j

(Ri)j
P̃i(aj)) : j = kΓ + 1, . . . , kΓ + 2l + 4

}
.

Let P̃i(x) =
l+1∑
r=0

prx
r and Q̃i(x) =

l+1∑
r=0

qrx
r.

We will define two matrices as follows:

A :=


1 akΓ+1 . . . akΓ+1

l+1

1 akΓ+2 . . . akΓ+2
l+1

...
...

. . .
...

1 akΓ+l+2 . . . akΓ+l+2
l+1

 and B :=


1 akΓ+l+3 . . . akΓ+l+3

l+1

1 akΓ+l+4 . . . akΓ+l+4
l+1

...
...

. . .
...

1 akΓ+2l+4 . . . akΓ+2l+4
l+1

 .
We recognize immediately that A and B are both square Vandermonde matrices,
so because ai 6= aj for all i 6= j, A and B are both invertible.

We also define two vectors p,q ∈ Fl+2
pm to be the vectors of the coefficients of

P̃i and Q̃i, respectively: p := [p0, p1, . . . , pl+1]ᵀ and q := [q0, q1, . . . , ql+1]ᵀ. The

54 FILIP STOJANOVIC

following system follows directly from matrix multiplication.

Ap =


P̃i(akΓ+1)

P̃i(akΓ+2)
...

P̃i(akΓ+l+2)

 =


Q̃i(akΓ+1)

(Ri)kΓ+1

(RkΓ
)kΓ+1

Q̃i(akΓ+2)
(Ri)kΓ+2

(RkΓ
)kΓ+2

...

Q̃i(akΓ+l+2)
(Ri)kΓ+l+2

(RkΓ
)kΓ+l+2


Rewrite the above as follows.

(8.2) p = A−1


Q̃i(akΓ+1)

(Ri)kΓ+1

(RkΓ
)kΓ+1

Q̃i(akΓ+2)
(Ri)kΓ+2

(RkΓ
)kΓ+2

...

Q̃i(akΓ+l+2)
(Ri)kΓ+l+2

(RkΓ
)kΓ+l+2


Likewise, we also have the following system involving the remaining akΓ+l+3, . . . , akΓ+2l+4

and Q̃i.

Bq =


Q̃i(akΓ+l+3)

Q̃i(akΓ+l+4)
...

Q̃i(akΓ+2l+4)

 =


P̃i(akΓ+l+3)

(Ri)kΓ+l+3

(RkΓ
)kΓ+l+3

P̃i(akΓ+l+4)
(Ri)kΓ+l+4

(RkΓ
)kΓ+l+4

...

P̃i(akΓ+2l+4)
(Ri)kΓ+2l+4

(RkΓ
)kΓ+2l+4


We also rewrite this by inverting B.

q = B−1


P̃i(akΓ+l+3)

(Ri)kΓ+l+3

(RkΓ
)kΓ+l+3

P̃i(akΓ+l+4)
(Ri)kΓ+l+4

(RkΓ
)kΓ+l+4

...

P̃i(akΓ+2l+4)
(Ri)kΓ+2l+4

(RkΓ
)kΓ+2l+4

 = B−1Diag(
(Ri)kΓ+l+3

(RkΓ
)kΓ+l+3

, . . . ,
(Ri)kΓ+2l+4

(RkΓ
)kΓ+2l+4

)


P̃i(akΓ+l+3)

P̃i(akΓ+l+4)
...

P̃i(akΓ+2l+4)


But we see this can easily be rewritten as

q = B−1Diag(
(Ri)kΓ+l+3

(RkΓ
)kΓ+l+3

, . . . ,
(Ri)kΓ+2l+4

(RkΓ
)kΓ+2l+4

)Bp.

Define D1 := Diag(
(Ri)kΓ+l+3

(RkΓ
)kΓ+l+3

, . . . ,
(Ri)kΓ+2l+4

(RkΓ
)kΓ+2l+4

).

Define D2 := Diag(
(Ri)kΓ+1

(RkΓ
)kΓ+1

, . . . ,
(Ri)kΓ+l+2

(RkΓ
)kΓ+l+2

).

By our expression for p in equation (8.2), this becomes

q = B−1D1BA−1D2Aq.

Evidently, q is a 1-eigenvector of V := B−1D1BA−1D2A, so we can find q from
ker(V−I). Suppose we have found q, so we’ve identified Q̃i(x) (note that we won’t
question its uniqueness in this argument).

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 55

We can use Q̃i(x) to find a1, . . . , akΓ−1. We will factor Q̃i(x) into irreducibles
over Fpm for all i = 1, . . . , kΓ − 1. We get

Q̃i(x) = (x− ai)ρkΓ
(x) = (x− ai)

u∏
j=1

rj(x)

such that ρkΓ
(x) = r1(x) · · · ru(x) is the factorization into irreducibles of ρkΓ

(x).

The factors rj(x) for all j = 1, . . . , u will all factor Q̃i no matter the choice of i,
but since ai 6= aj for all i 6= j, the factor x − ai will be different for each different

choice of i. For any particular choice of i, we may partition the factors of Q̃i into
the multiset of factors shared by all of Q̃i for all i = 1, . . . , kΓ − 1, which will be
{rj(x) : j = 1, . . . , u}, and the one linear factor x−ai not belonging to this multiset.
Note that because this is a multiset, even if there were some j ∈ {1, . . . , u} such
that rj(x) = x− ai, we won’t have x− ai ∈ {rj(x) : j = 1, . . . , u} as well since this
would require |{rj(x) : j = 1, . . . , u}| > deg(ρkΓ

), which can’t happen. With this,
we can identify ai for any i ∈ {1, . . . , kΓ − 1} from the constant term in the linear

factor of Q̃i not belonging to {rj(x) : j = 1, . . . , u}.

To recover the remaining entries akΓ , akΓ+2l+5, akΓ+2l+6, . . . , an, we will repeat
the above process for an appropriately-chosen permutation of E(Mᵀ). We begin by
finding a column E(Mᵀ)s of E(Mᵀ) among {E(Mᵀ)i : i ∈ {kΓ}∪{kΓ+2+5, . . . , n}}
such that the column’s first entry, (E(Mᵀ)s)1, is non-zero, thereby ensuring that
E(Mᵀ)s is a linear combination of the first column of E(Mᵀ) (and possibly some
others).

Define the following permutation:

πs : Fnpm → Fnpm by (v1, . . . , vn) 7→ (vs, v2, . . . , vs−1, v1, vs+1, . . . , vn).

Define M′ to be the matrix E(Mᵀ) with πs applied to each of its rows. Row-reduce
M′, bringing it to its RREF form E(M′). We’ll say that the ith row of E(M′) is
R′i = (πs(β)1qR′i(πs(a)1), . . . , πs(β)nqR′i(πs(a)n)), where we are again associating

a polynomial qR′i ∈ Pk−1(Fpm) to the ith row R′i. By dividing R′i by R′kΓ
on their

non-zero entries, we get

(R′i)j
(R′kΓ

)j
=

(πs(a)j − πs(a)kΓ)ρ′i(πs(a)j)

(πs(a)j − πs(a)i)ρ′kΓ
(πs(a)j)

such that ρ′i, ρ
′
kΓ
∈ Pl(Fpm).

Define P̃ ′i (x) := (x− πs(a)kΓ)ρ′i(x) and Q̃′i(x) := (x− πs(a)i)ρ
′
kΓ

(x) for each i =

1, . . . , kΓ − 1. Proceed with the method from before to identify Q̃′i(x). Notice that
for all i = 2, . . . , kΓ − 1, we have πs(a)i = ai. Since we already know a2, . . . , akΓ−1,

we can identify ρ′kΓ
(x) by dividing Q̃′i(x) by x − ai for all i ∈ {2, . . . , kΓ − 1}.

Having identified ρ′kΓ
(x), we can find πs(a)1 = as by dividing Q̃1(x) by ρ′kΓ

(x) and
extracting the constant term of the quotient.

Repeat this for all s ∈ {kΓ}∪{kΓ +2l+5, . . . , n}\{i : ai is known} such that the
sth column satisfies (E(Mᵀ)s)1 6= 0. If there remain unidentified entries of a, pro-
ceed by repeating this process for all s ∈ {kΓ}∪{kΓ+2l+5, . . . , n}\{i : ai is known}
such that (E(Mᵀ)s)2 6= 0, adapting the process as needed for having chosen the
second entry of E(M′)s instead of the first in the latter condition. For all choices of
j ∈ {3, . . . , kΓ}, continue repeating the selection of s ∈ {kΓ}∪{kΓ+2l+5, . . . , n}\{i :

56 FILIP STOJANOVIC

ai is known} such that (E(Mᵀ)s)j 6= 0 and following through with the according
process to find as until there are no more values of s to pick. As long as no column
of E(Mᵀ) is the zero vector, this algorithm will finish by fully identifying a. Of
course, because the rows of E(Mᵀ) generate Γ(a, g), a column of zeros means that
every codeword in Γ(a, g) has a zero in the position indexed by that column, say
for instance column i. This happens if and only if ai is a root to all polynomials
in P, which happens if and only if x − ai factors all polynomials in any basis of
P. This is unlikely to hold if P was chosen randomly, but even if it did occur, we
could still find ai by the same approach as above with minor modifications. The
modified approach to recover ai will be treated in the appendix.

Because all the work we needed to perform to identify a involved solving lin-
ear systems, row-reducing matrices, and dividing polynomials, all of which can be
performed with polynomial complexity, and since these were all performed a poly-
nomial number of times in kΓ, identifying all of a requires a polynomial number
of arithmetic operations. In particular, the more streamlined method proposed by
Wieschebrink in [W] requires O(k2

Γn+ kΓl
3) operations to find a.

To find β, which then lets us find the Goppa polynomial g(x), we recall the
following fact about the dual of GRS codes given in Proposition 3.1.7: if α and β
are vectors in Fnpm such that GRSn,k(α, β) is a (n, k) GRS code, then for γ ∈ Fnpm
whose ith entry is defined by γi := β−1

i

∏
j 6=i(αi−αj)−1, we have GRSn,k(α, β)⊥ =

GRSn,n−k(α, γ). Since Γ(a, g) ⊆ GRSn,k(a, β), the rows of E(Mᵀ) are codewords
of GRSn,k(a, β), so we can see by this fact about the dual of GRS codes that

Ri


γ1a

j
1

γ2a
j
2

...
γna

j
n

 = 0 ∀i = 1, . . . , kΓ, ∀j = 0, . . . , n− k − 1,

given that (γ1a
j
1, . . . , γna

j
n) ∈ {(γ1p(a1), . . . , γnp(an)) : p ∈ Pn−k−1(Fpm)}, where

the latter set is GRSn,n−k(a, γ) = GRSn,k(a, β)ᵀ. But because γ is related to a

and β by the relation γi = β−1
i

∏
j 6=i(ai − aj)−1, we need only find γ satisfying the

above to find β given that a is already known. The last set of equations can be
rewritten as the homogeneous system

[(Ri)1a
j
1 . . . (Ri)na

j
n] 1≤i≤kΓ

0≤j≤n−k−1
γ = 0kΓ(n−k)×1.

This gives kΓ(n − k) equations in n unknowns. Typically, kΓ(n − k) ≥ n, so
this should be enough to uniquely determine γ (which then fully determines β) as
indicated in [W]. Indeed, the minimum dimension of a Goppa code is kΓ = n−mt,
so we’ll have (t − 1)n ≥ mt2 ⇐⇒ (n −mt)t ≥ n =⇒ kΓ(n − k) ≥ n. We have
that

(8.3) (t− 1)n ≥ mt2

holds for all proposed parameters by Bernstein et al. in Chapter 3 of [B], so we can
uniquely solve for β in practice.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 57

Table 1. Verification that the parameters in [B] satisfy (8.3)

Parameters (t− 1)n mt2

n = 3488, m = 12, t = 64 219744 49152
n = 4608, m = 13, t = 96 437760 119808
n = 6688, m = 13, t = 128 849376 212992
n = 6960, m = 13, t = 119 821280 184093
n = 8192, m = 13, t = 128 1040384 212992

Finding γ can be done inO(n(kΓ(n−k))2) arithmetic operations and then finding
β will take another O(n2) operations. From this, g(x) can be reconstructed by
Lagrangian interpolation in O(nlog(n)) operations. Thus, the Goppa polynomial
can be recovered in O(n(kΓ(n−k))2) operations, giving us a polynomial complexity
for the whole attack. �

Instead of assuming a1 = 0 and a2 = 1, we may instead assume akΓ+1 = 0 and
akΓ+2 = 1 and the above algorithm will find equivalent parameters to the secret
Goppa code Γ(a, g) as suggested in [W]. This reduces the amount of information
we need to know before we can quickly solve for the private key from knowing 2l+4
entries of a to knowing just 2l + 2 entries.

As a consequence, if we are attacking a McEliece scheme based on a (n, kΓ)
Goppa code that is a subcode of GRSn,k(a, β), our condition for breaking this
scheme is to efficiently identify akΓ+1, . . . , akΓ+2l+2 (as long as n ≥ kΓ + 2l + 2
and none of the last n− kΓ + 1 entries are roots of any row polynomial qRi) as we
can apply the attack of Proposition 8.1.1 given these values to find the full code
parameters with polynomial complexity.

We can also see that Proposition 8.1.1 applies if we instead knew any 2l + 2
entries of the last n − kΓ entries of a (assuming that none of these are 0 or 1
because we assume two other entries among the last n− kΓ are 0 and 1). The only
modifications to the attack are that we change the matrices A and B to reflect
the new known values for the identification of a1, . . . akΓ−1 and, to identify the
remaining entries of a, when we pick the sth column of E(Mᵀ), we choose s from
{1, . . . , n} \ {i : ai is known} at each step of the recovery.

9. Galois-Closure-Based Attack

We present further constructions of linear codes defined by operations we can
perform on a parent code in the form of punctured and shortened codes. We
then introduce a new key-recovery approach for McEliece schemes based on Goppa
codes whose difficulty lies in the problem of identifying a linear code given its
Galois closure. We consider a modification of this approach using punctured codes
motivated by the Guessing Attack from the last section and several easy cases
we may potentially run into. Ultimately, we reveal that these easy cases will not
occur if we assume the McEliece scheme is based on full-rank Goppa codes, but
the development results in a condition on the parameters of a GRS code that can
be used to inform us of when its subfield subcode is of full rank. We also mention
several open problems for future work.

58 FILIP STOJANOVIC

9.1. Results About Puncturing and Shortening. We present the code oper-
ations of puncturing and shortening on an indexing set and study the properties of
punctured GRS, Alternant, and Goppa codes.

Definition 9.1.1. Let C be a (n, k) linear code and let I ⊆ {1, . . . , n} be a set of
indices. We define the punctured code of C by I as

PI(C) := {(ci)i 6∈I : c ∈ C}.

Perhaps counterintuitively, this definition means that the coordinates of code-
words of C indexed by I are removed by the puncturing operation, not kept.

We reintroduce code shortening (Definition 7.1.5) with a bit more generality so
as to describe the relationship between it and code puncturing.

Definition 9.1.2. Let C be a (n, k) linear code and let I ⊆ {1, . . . , n} be a set of
indices. We define the shortened code of C by I as

SI(C) := {(ci)i 6∈I : c ∈ C and ∀i ∈ I, ci = 0}.

There exists a relationship between shortened and punctured codes that bears a
strong resemblance to Delsarte duality.

Proposition 9.1.3. Let C be a (n, k) linear code and let I ⊆ {1, . . . , n} be a set
of indices. We have both

SI(C)⊥ = PI(C
⊥) and PI(C)⊥ = SI(C

⊥).

Proof. See Theorem 1.5.7 in [H]. �

Next, we make the observation that puncturing is a morphism of vector spaces.
It is clear to see that it is a linear operation on the codewords of a given code, so we
can represent it by a matrix. If we puncture a code of length n on the set of indices
I = {i1, . . . , is} ⊆ {1, . . . , n}, the matrix of this transformation (with respect to the
standard basis vectors of Fnpm and Fn−spm) will be

[PI] =


eᵀj1
eᵀj2
...

eᵀjn−s


such that {j1, . . . , jn−s} = {1, . . . , n} \ I = I (with j1 < j2 < · · · < jn−s) and
ej denotes the jth standard basis vector of Fnpm . We then see that our notation
PI(C) reflects that the punctured code is the image of C under the linear map
PI : Fnpm → Fn−spm defined by the matrix [PI].

We will keep this observation in mind for upcoming proofs. For now, we can
summarize the basic relationships between a linear code C and the codes we can
construct by puncturing it, shortening it, and taking its dual with the following
diagram.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 59

C SI(C) PI(C
⊥)

C⊥
⊥

⊥

PI

The diagram is made commutative by noticing that PI(C
⊥)⊥ = SI(C).

We will now present certain results about puncturing in the context of GRS,
Goppa, and Alternant codes. We will begin by recalling the polynomial-evaluation
characterizations of codes from these families. By this, we mean characterizations
of the form given in Definition 3.1.1 for GRS codes and Proposition 4.2.2 for Goppa
codes. These characterizations are often written using the evaluation map for a vec-
tor α ∈ Fnpm and component-wise product (both introduced in Section 7.1). We will
recall the definitions of these maps and the polynomial-evaluation characterizations
of these codes. First, the definitions:

evα : Fpm [x]→ Fnpm given by f 7→ (f(αi))
n
i=1,

∗ : Fnpm × Fnpm → Fnpm given by ((xi)
n
i=1, (yi)

n
i=1) 7→ (xiyi)

n
i=1.

The characterization for a (n, k) GRS code defined by vectors α, β is

GRSn,k(α, β) = {β ∗ evα(f) : f ∈ Pk−1(Fpm)}.

For a (n, kΓ) Goppa code Γ(α, g) where g ∈ Fpm [x] is a degree-t polynomial, if

we take k = n− t and β ∈ Fnpm such that βi = g(αi)∏
j 6=i(αj−αi)

for all i = 1, . . . , n, then

its polynomial-evaluation characterization is

Γ(α, g) = {β ∗ evα(q) : q ∈ P},

where P is a Fp-linear subspace of Pk−1(Fpm) that is of dimension kΓ that can be
determined from α and β. This Goppa code is the subfield subcode of GRSn,k(α, β).

We will now consider puncturing these codes. For a vector x ∈ Fnpm and a set
I ⊆ {1, . . . , n}, we will introduce the notation x|I := (xi)i∈I for convenience when
dealing with vectors punctured on I.

Proposition 9.1.4. Let GRSn,k(α, β) be a (n, k) GRS code and let I ⊆ {1, . . . , n}
be a set such that |I| ≤ n− k. We have PI(GRSn,k(α, β)) = GRS|I|,k(α|I , β|I).

Proof. This follows immediately from the definitions of a GRS and puncturing.

PI(GRSn,k(α, β)) = {(βif(αi))i∈I : f ∈ Pk−1(Fpm)}
= {β|I ∗ evα|I (f) : f ∈ Pk−1(Fpm)}
= GRS|I|,k(α|I , β|I)

The condition |I| ≤ n − k is only needed so that when we puncture GRSn,k(α, β)
on I, the resulting code will be of length at least k, which is necessary for the
punctured code to also have dimension k. �

Thus, when we puncture a GRS code on a set I of size less than or equal to its
codimension, the resulting code will be a shorter GRS code of the same dimension.
We will now prove a similar result for punctured Goppa codes.

60 FILIP STOJANOVIC

Proposition 9.1.5. Let Γ(α, g) be a (n, kΓ) Goppa code with degree-t Goppa poly-
nomial g(x). If I ⊆ {1, . . . , n} is a set such that |I| ≤ n − k = t, then PI(Γ(α, g))
will be a kΓ-dimensional subcode of an Alternant code of length s = |I|.

Proof. We begin by using the fact that Γ(α, g) is the subfield subcode of a GRS
code to show the punctured code will be an Alternant code. For k = n− t and the
appropriately chosen β, we have

PI(Γ(α, g)) = PI(GRSn,k(α, β) ∩ Fnp) ⊆ PI(GRSn,k(α, β)) ∩ Fnp ,

since for any linear code C, we observe PI(C ∩ Fnp) ⊆ PI(C) ∩ Fnp . By the last
proposition, the code on the right-hand side is the subfield subcode of a GRS code,
so it is Alternant and its length is s = |I|.

What remains is to show the dimension of the punctured code is again kΓ. Let
I = {j1, . . . , js} with j1 < j2 < · · · < js. Recall from the polynomial-evaluation
characterization of Γ(α, g) that

Γ(α, g) = {β ∗ evα(q) : q ∈ P},
where P is a Fp-linear subspace of Pk−1(Fpm) that is of dimension kΓ. Write a basis
for P as {q1, . . . , qkΓ}. We’ll show that Q = {β|I ∗ evα|I (qi) : i = 1, . . . , kΓ} is a

basis for PI(Γ(α, g)). Firstly, it’s clear to see that

PI(Γ(α, g)) = {β|I ∗ evα|I (q) : q ∈ P},

so for each codeword c ∈ PI(Γ(α, g)), there exists a polynomial q ∈ P such that
c = β|I ∗ evα|I (q). Since {q1, . . . , qkΓ} is a basis for P, there exist λ1, . . . , λkΓ ∈ Fp
such that

∑kΓ

i=1 λiqi(x) = q(x). Thus, we have

c = β|I ∗ evα|I

(
kΓ∑
i=1

λiqj(x)

)

=

(
βj1

(
kΓ∑
i=1

λiqi

)
(αj1), . . . , βjs

(
kΓ∑
i=1

λiqi

)
(αjs)

)

=

kΓ∑
i=1

λi(βj1qi(αj1), . . . , βjsqi(αjs))

=

kΓ∑
i=1

λiβ|I ∗ evα|I (qi),

which exactly means c ∈ spanFp
(Q). Next, we will show Q is linearly independent.

We now let λ1, . . . , λkΓ
∈ Fp and we consider the equation

kΓ∑
i=1

λiβ|I ∗ evα|I (qi) =

kΓ∑
i=1

λi

βj1qi(αj1)
...

βjsqi(αjs)

 = 0.

But since α, β defines a GRS code, βi 6= 0 for all i, so this implies(
kΓ∑
i=1

λiqi

)
(αj) = 0 for all j ∈ I.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 61

Recall that P ⊆ Pk−1(Fpm), so deg(qi) < k for all i = 1, . . . , kΓ. There is a unique
polynomial of degree at most k−1 passing through at least k distinct points. Since

s = n − |I| ≥ k, we know at least k points that the polynomial
∑kΓ

i=1 qi(x) passes

through; in particular, it must pass through each point in {(aj , 0) : j ∈ I}. The
zero polynomial satisfies this condition, so because it must be the unique polynomial
satisfying this,

kΓ∑
i=1

λiqi(x) = 0 =⇒ λ1, . . . , λkΓ = 0 by the linear independence of {q1, . . . , qkΓ}

Thus, Q is a basis for PI(Γ(α, g)), so dimFp
(PI(Γ(α, g))) = kΓ = dimFp

(Γ(α, g)).
�

Remark 9.1.6. The last proposition applies if we considered an Alternant code
instead of a Goppa code: that is, puncturing a (n, k) Alternant code on a set of
indices I such that |I| ≤ n − k will yield a (|I|, k) subcode of an Alternant code.
The proof is exactly the same as for the Goppa code since Alternant codes possess
a polynomial-evaluation characterization of the exact same form as Goppa codes
(which can be seen from the proofs of Theorem 1 in [SB] and Proposition 4.2.2).

9.2. Approach for Using the Galois Closure to Identify Equivalent Code
Parameters. We detail the groundwork for a new approach to identifying the
equivalent parameters for a secret Goppa code in a McEliece scheme using the code
operations of taking the dual and extending a Fp-linear over Fpm . The work in this
section builds on the results collected in sections 2.1 and 2.2, so the reader should
be familiar with the aforementioned material before proceeding.

We will now give a first insight into how we intend on tackling the key-recovery
problem before filling it in with the full details. Let Γ(α, g) be a (n, kΓ) Goppa code
and let GRSn,k(α, β) be the (n, k) GRS code such that Γ(α, g) = GRSn,k(α, β)∩Fnp .
It is clear that Γ(α, g)⊗ Fpm = GRSn,k(α, β) ∩ Fnp ⊗ Fpm ⊆ GRSn,k(α, β). In fact,
this is an equality if and only if dimFp

(Γ(α, g)) = dimFpm
(GRSn,k(α, β)) by Lemma

2.1.15, which means Γ(α, g) is a full-rank Goppa code; we know how to identify its
parameters by methods from Section 6.2, so we will ignore this easy case and try
to find a method that works for when the subset inclusion is strict.

Since both Γ(α, g) ⊗ Fpm and GRSn,k(α, β) are Fpm-linear codes, it is easy to
verify that GRSn,k(α, β)⊥ ⊂ (Γ(α, g) ⊗ Fpm)⊥. The code on the right is one for
which we can easily find a generator matrix given the public key (ignoring the
permutation matrix in the McEliece scheme) and the code on the left is a GRS
subcode of (Γ(α, g)⊗ Fpm)⊥ whose parameters can be used to find the Goppa pa-
rameters (α, g). Since we can apply the Sidelnikov-Shestakov attack to a GRS code
to recover its parameters efficiently, we need to describe a method to systematically
identify this GRS subcode (or another one with equivalent parameters) to recover
the Goppa code’s parameters. This is the perspective our approach will take.

Seeing that the code (Γ(α, g)⊗Fpm)⊥ will be the starting point for our approach,
we present some results that reveal it to be related to the GRS subcode we want
to identify by means of the Galois closure.

Proposition 9.2.1. If C be a (n, k) Fp-linear code, then (C⊗Fpm)⊥ = C⊥⊗Fpm .

62 FILIP STOJANOVIC

Proof. Certainly, we will have

C⊥ ⊗ Fpm = spanFpm
{x ∈ Fnp : xᵀc = 0 ∀c ∈ C} ⊆ {x ∈ Fnpm : xᵀc = 0 ∀c ∈ C}.

It is easy to verify that {x ∈ Fnpm : xᵀc = 0 ∀c ∈ C} = (C⊗Fpm)⊥ so we must have

C⊥ ⊗ Fpm ⊆ (C ⊗ Fpm)⊥. Next, by the fact that dimFp
(C) = dimFpm

(C ⊗ Fpm),
which appears as Corollary 2.1.14, we will have

dimFpm
((C ⊗ Fpm)⊥) = n− dimFpm

(C ⊗ Fpm) = n− dimFp
(C) = n− k

and

dimFpm
(C⊥ ⊗ Fpm) = dimFp(C⊥) = n− k.

Both (C ⊗ Fpm)⊥ and C⊥ ⊗ Fpm being of the same dimension then forces them to
be the same by the above inclusion. �

This gives us the new formulation (Γ(α, g) ⊗ Fpm)⊥ = Γ(α, g)⊥ ⊗ Fpm . We
will use Delsarte Duality, which gives the relationship between subfield subcodes
and trace codes, and Theorem 2.2.13, which gives the relationship between trace
codes and the Galois closure, to classify Γ(α, g)⊥ ⊗ Fpm as the Galois closure of
GRSn,k(α, β)⊥. Applying these theorems, we find

Γ(α, g)⊥ ⊗ Fpm = (GRSn,k(α, β) ∩ Fnp)⊥ ⊗ Fpm

= Tr(GRSn,k(α, β)⊥)⊗ Fpm by Delsarte Duality

= (GRSn,k(α, β)⊥)∗ ∩ Fnp ⊗ Fpm by Theorem 2.2.13

= (GRSn,k(α, β)⊥)∗ by Theorem 2.1.16.

We recall that our perspective is to start from Γ(α, g)⊥⊗Fpm = (GRSn,k(α, β)⊥)∗

and then identify the GRS subcode GRSn,k(α, β)⊥ from it, at which point the re-
covery of the Goppa code parameters follows immediately from the recovery of the
GRS code’s parameters. We can now see the correspondence between this task and
the more general problem of identifying a linear code that generates a particular
Galois closure. This raises some natural questions.

(1) Given a particular code that we know is Galois closure of another, can we
count how many codes there are whose Galois closure is precisely this code?

(2) Is there an informative equivalence relation that exists on the set of codes
whose Galois closure is some given code?

(3) Is it possible to devise an attack to tease out the underlying code C from
its Galois closure C∗?

All of these questions remain interesting open problems (as far as I’m aware). In
what follows, we will an answer to the second in the context of GRS codes, recall
a tool that can be used to give an answer to the third question, and present a
modification to the approach we described so far.

We begin our answer to the second by first showing that, in the cases of interest to
us, if C∗ is the Galois closure of a linear code C, there will exist another linear code
D such that D 6= C and D∗ = C∗. If C is fixed under φn, then C =

∑m
i=1 φ

i
n(C) =

C∗, so C is Gal(pm, p)-invariant. Since we are interested in cases when C is a GRS
code whose subfield subcode is not of full rank, which is equivalent to C not being
Gal(pm, p)-invariant, we see that this restricts us to considering codes not fixed
under φn. Thus, for φn(C) 6= C, we will show that both of these codes have the

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 63

same Galois closure by showing all codes in the orbit of C under 〈φn〉 have the
same Galois closure.

Lemma 9.2.2. Let C be a Fpm-linear code. For all j ∈ {1, . . . ,m}, we have
φjn(C)∗ = C∗.

Proof. Let j ∈ {1, . . . ,m} be given.

φjn(C)∗ =

m∑
i=1

φin(φjn(C))

=

m∑
i=1

φi+jn (C)

=

m∑
i=1

φin(C) since 〈φn〉 is a cyclic group of order m

= C∗

�

While the orbit of C under 〈φn〉 does not only consist of C, in the case that C
is a GRS code, the parameters of the codes in this orbit are in fact related to each
other through the Frobenius map.

Proposition 9.2.3. Let GRSn,k(α, β) be the (n, k) GRS code defined by α, β ∈ Fnpm
with the usual conditions on α β. For any j ∈ {1, . . . ,m}, we have

φjn(GRSn,k(α, β)) = GRSn,k(φjn(α), φjn(β)).

Proof. Let j ∈ {1, . . . ,m} be given and lets consider the code φjn(GRSn,k(α, β)).

φjn(GRSn,k(α, β)) = {φjn(β ∗ evα(f)) : f ∈ Pk−1(Fpm)}

=

φjn(β) ∗

(k∑
t=1

ftα
t−1
i

)pjn

i=1

: ft ∈ Fpm ∀t = 1, . . . , k


Examining this more closely, we have the following for any choice of i ∈ {1, . . . , n},(

k∑
t=1

ftα
t−1
i

)pj
=

∑
d1+···+dk=pj

(
pj

d1, . . . , dk

) k∏
t=1

(ftα
t−1
i)dt

=

k∑
t=1

(ftα
t−1
i)p

j

since char(Fpm) = p

=

k∑
t=1

φj(ft)φ
j(αi)

t−1,

We define the operator T : Pk−1(Fpm)→ Pk−1(Fpm) such that it maps

f =

k∑
t=1

ftx
t−1 to T (f) =

k∑
t=1

φj(ft)x
t−1.

64 FILIP STOJANOVIC

The bijectivity T follows immediately from the bijectivity of φ. We may then
conclude T (Pk−1(Fpm)) = Pk−1(Fpm) since the former set is clearly included in the
latter. Hence, we conclude

φjn(GRSn,k(α, β)) = {φjn(β)∗evφj
n(α)(f) : f ∈ Pk−1(Fpm)} = GRSn,k(φjn(α), φjn(β)).

�

We can use this proposition to give an answer to our second open question. Let
C∗ be a Fpm -linear code and let G denote the set of GRS subcodes of C∗ whose
Galois closure is C∗ itself. Define an equivalence relation ∼ on G by

G ∼ G′ ⇐⇒ ∃i ∈ {1, . . . ,m} such that φin(G) = G′.

By Lemma 9.2.2, all codes in the equivalence class [G] have the same Galois
closure, so we observe that [G] ⊆ G. But by Proposition 9.2.3, there is a stronger
relationship between all of these codes, which is that the locators of these codes be-
long in the same orbit under 〈φn〉 and likewise for the multipliers. This is powerful
because it’s easy to compute φin(α) and φin(β) for any choice of i, so given any one
code in the equivalence class [G], it’s computationally efficient to identify the rest.

Therefore, if we wish to identify the Fpm-linear code C whose Galois closure is C∗,
we need to at worst identify the quotient G/∼. This will at most reduce the number
of codes we need to identify by a factor of m over identifying all of G and solving
for G/∼ instead of G will be faster unless all codes in G are Gal(pm, p)-invariant.

This defines an equivalence relation that answers question (2), but we might
wonder if there are other relationships between the parameters of the codes in G
that can be used to define another equivalence relation R on G such that G/R is
small. Indeed, we might also wonder what are necessary conditions on α and β for
the set G of GRS subcodes of GRSn,k(α, β)∗ whose Galois closure is GRSn,k(α, β)∗

to simply be the orbit of a single code under 〈φn〉. If we could devise a way of
efficiently finding a single element of G, then subject to these conditions, α and β
can efficiently be recovered. We also leave these as open questions for future work.

9.3. Modification to the Approach Based on the Galois Closure. We present
a modification to the key-recovery approach introduced in the last section through
the use of puncturing. We discuss initial motivations for this modification and
why they ultimately do not agree with our assumption of GRSn,k(α, β) being
Gal(pm, p)-invariant. This discussion culminates in describing sufficient conditions
for the Gal(pm, p)-invariance of a GRS code motivated by the observation that a
linear code’s dimension is invariant under an appropriate puncturing. We finally
describe briefly what advantage we can still hope to achieve with this modification.

Returning to the particular code C∗ = (GRSn,k(α, β)⊥)∗ specified in our setup,
we introduce a modification to our approach in the interest of increasing the effi-
ciency at which we can recover the code parameters. The inclusion we are work-
ing from is Γ(α, g) ⊂ GRSn,k(α, β), where Γ(α, g) is a (n, kΓ) Goppa code and
GRSn,k(α, β) is a (n, k) GRS code. We notice by propositions 9.1.4 and 9.1.5,
if we puncture both codes on a set I such that |I| ≤ n − k, then the inclu-
sion will be preserved (although potentially not strictly), meaning PI(Γ(α, g)) ⊆

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 65

PI(GRSn,k(α, β)). If we again extend PI(Γ(α, g)) by Fpm and take the dual of both
codes, then we get the familiar inclusion

PI(GRSn,k(α, β))⊥ ⊆ PI(Γ(α, g))⊥ ⊗ Fpm by Proposition 9.2.1.

Since PI(Γ(α, g)) = PI(GRSn,k(α, β) ∩ Fnp) ⊆ PI(GRSn,k(α, β)) ∩ F|I|p , by the
development following Proposition 9.2.1, we again conclude

(PI(GRSn,k(α, β)) ∩ F|I|p)⊥ ⊗ Fpm = (PI(GRSn,k(α, β))⊥)∗.

Summarizing the above inclusions, we have

PI(GRSn,k(α, β))⊥ ⊆ (PI(GRSn,k(α, β))⊥)∗ ⊆ PI(Γ(α, g))⊥ ⊗ Fpm .

While the notation is getting a bit cumbersome, we again have a scenario where
we want to find a GRS subcode given some additional knowledge of its Galois clo-
sure. However, this time we do not know the Galois closure, but we instead know a
code that contains it, this being PI(Γ(α, g))⊥⊗Fpm . To clarify, a generator matrix
for this code can be obtained from a generator matrix for Γ(α, g), M, by puncturing
it by I and then finding a basis for the kernel of PI(M)ᵀ, which can be done with
polynomial complexity.

Our motivation for puncturing is that while we suppose GRSn,k(α, β) is not
Gal(pm, p)-invariant because we can easily recover the code parameters of Γ(α, g) if
it were, it might be possible for the dual of an appropriate puncturing ofGRSn,k(α, β)
to be Gal(pm, p)-invariant or for an appropriately punctured closure (PI(GRSn,k(α, β))⊥)∗

to itself be a GRS code. In the former case, both PI(GRSn,k(α, β))⊥ and its Galois
closure will be equal and the Gal(pm, p)-invariance of PI(GRSn,k(α, β))⊥ might
imply certain restrictions on PI(Γ(α, g))⊥ ⊗ Fpm such that using it to recover the
punctured GRS subcode will be easy. In the latter case, if the Galois closure is a
GRS code, it will either be equal to or contain PI(GRSn,k(α, β))⊥ . If it is equal,
then this is a reduction to the preceding case; if it is not equal, then we might be
able to a filtration-style attack similar to the one introduced by Couvreur et al.
in [C2] to recover the parameters of the punctured GRS subcode. Despite these
hopes, we will show that the first case will not occur if GRSn,k(α, β) is assumed not
to be Gal(pm, p)-invariant and the second will not occur under certain conditions
on α and β. Through this, we will give another sufficient condition for a GRS code
being Gal(pm, p)-invariant.

We will first address the case where PI(GRSn,k(α, β))⊥ is Gal(pm, p)-invariant
with the following lemma.

Lemma 9.3.1. Let GRSn,k(α, β) be a (n, k) GRS code defined by vectors α, β ∈
Fnpm with the usual restrictions. If I ⊆ {1, . . . , n} is a set of indices such that
|I| ≤ n− k, then we have the following:

PI(GRSn,k(α, β)) = PI(GRSn,k(α, β))∗ ⇐⇒ GRSn,k(α, β) is Gal(pm, p)-invariant.

Proof. We note that GRSn,k(α, β) is Gal(pm, p)-invariant if and only if this code
equals its Galois closure, so we need only show PI(GRSn,k(α, β)) = PI(GRSn,k(α, β))∗

66 FILIP STOJANOVIC

if and only if GRSn,k(α, β) = GRSn,k(α, β)∗. This can be done as follows.

PI(GRSn,k(α, β))∗ =

m∑
j=1

φj|I|(PI(GRSn,k(α, β)))

=

m∑
j=1

GRS|I|,k(φj|I|(α|I), φ
j

|I|(β|I)) by propositions 9.1.4 and 9.2.3

=

m∑
j=1

GRS|I|,k(φjn(α)|I , φ
j
n(β)|I)

=

m∑
j=1

PI(GRSn,k(φjn(α), φjn(β))) by Proposition 9.1.4

=


m∑
j=1

PI(φ
j
n(β) ∗ evφj

n(α)(fj)) : fj ∈ Pk−1(Fpm)∀j


= PI


m∑
j=1

φjn(β) ∗ evφj
n(α)(fj) : fj ∈ Pk−1(Fpm)∀j


 by the linearity of PI

= PI(GRSn,k(α, β)∗)

Thus, we have

PI(GRSn,k(α, β)) = PI(GRSn,k(α, β))∗ ⇐⇒ PI(GRSn,k(α, β)) = PI(GRSn,k(α, β)∗).

Although we only proved that puncturing a code on a set I preserves its dimension in
the case of GRS and Goppa codes, this holds for all linear codes given an appropriate
choice of I as noted in Ch.1 §9 of [MS]. Thus, we conclude

PI(GRSn,k(α, β)) = PI(GRSn,k(α, β)∗) =⇒ dimFpm
(GRSn,k(α, β)) = dimFpm

(GRSn,k(α, β)∗).

But sinceGRSn,k(α, β) is a subcode of its Galois closure, this impliesGRSn,k(α, β) =
GRSn,k(α, β)∗. This completes the only if part of the proof. The converse direction
follows immediately from the equality PI(GRSn,k(α, β))∗ = PI(GRSn,k(α, β)∗).

�

It is not difficult to show that if C is a Fpm-linear code, then C is Gal(pm, p)-invariant
if and only if C⊥ is Gal(pm, p)-invariant. With this, we have that PI(GRSn,k(α, β))
is Gal(pm, p)-invariant if and only if its dual is Gal(pm, p)-invariant. By applying the
lemma to the punctured GRS code, we see that the dual will Gal(pm, p)-invariant
if and only if the unpunctured GRS code is Gal(pm, p)-invariant. Since we as-
sume the latter condition is not true, we conclude that no matter how we choose
I so long as |I| ≤ n − k, there is no puncturing such that PI(GRSn,k(α, β))⊥ is
Gal(pm, p)-invariant.

Next, we will consider the case when (PI(GRSn,k(α, β))⊥)∗ is a GRS code. This

occurs if and only if exist α′, β′ ∈ F|I|pm and an integer k′ such that the coordinates

of α′ are distinct, the coordinates of β′ are non-zero, and (PI(GRSn,k(α, β))⊥)∗ =
GRS|I|,k′(α

′, β′). Since we know both the forms of the dual of a GRS code and of

a punctured GRS code, we have that

PI(GRSn,k(α, β))⊥ = GRS|I|,|I|−k(α|I , γ
′),

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 67

where γ′ is a vector in F|I|pm that can be found by Proposition 3.1.7. One way to
meet this condition is if the orbits of α|I and γ′ under 〈φ|I|〉 consist of only α′ and

β′, respectively. We will show this implies GRSn,k(α, β) is Gal(pm, p)-invariant.

Lemma 9.3.2. Let GRSn,k(α, β) be a (n, k) GRS code defined by vectors α, β ∈
Fnpm with the usual restrictions. Suppose there are vectors α′, β′ ∈ Fnpm such that
〈φn〉(α) = {α′} and 〈φn〉(β) = {β′}. Consequently, we have

GRSn,k(α, β)∗ = GRSn,k(α, β).

Proof. We begin by developing the expression for the Galois closure.

m∑
j=1

φjn(GRSn,k(α, β)) =


m∑
j=1

φjn(β) ∗ evφj
n(α)(fj) : fj ∈ Pk−1(Fpm)∀j


By the hypothesis, φjn(α) = α′ and φjn(β) = β′ for all j = 1, . . . ,m, so we can

simplify the above expression.

GRSn,k(α, β)∗ =

β′ ∗ evα′
 m∑
j=1

fj

 : fj ∈ Pk−1(Fpm)∀j


We will show F :=

{∑m
j=1 fj : fj ∈ Pk−1(Fpm)∀j

}
= Pk−1(Fpm). F is a vector

space over Fpm and it contains the standard basis of Pk−1(Fpm). Thus, Pk−1(Fpm) =
spanFpm

{1, . . . , xk−1} ⊆ F . The other inclusion is obvious, so we get F = Pk−1(Fpm).

Using this in the above expression for GRSn,k(α, β)∗ gives us the following:

GRSn,k(α, β)∗ = {β′ ∗ evα′(f) : f ∈ F} = GRSn,k(α′, β′).

Since all linear codes are subcodes of their Galois closure, we have thatGRSn,k(α, β) ⊆
GRSn,k(α′, β′). But because both of these codes are of the same dimension, this
must be an equality. �

Applying this lemma to the GRS code PI(GRSn,k(α, β))⊥ = GRS|I|,|I|−k(α|I , γ′)
gives us that PI(GRSn,k(α, β))⊥ is Gal(pm, p)-invariant if the orbits of its locator
and multiplier consist of only a single element each. But the Gal(pm, p)-invariance
of this code is equivalent to the Gal(pm, p)-invariance of GRSn,k(α, β) by Lemma
9.3.1 and the discussion immediately proceeding it. Again, since we assume the
latter condition is not true, we can conclude that there is no puncturing by a set
of at most n − k indices such that the GRS parameters of the punctured code
PI(GRSn,k(α, β))⊥ are fixed under 〈φn〉. In fact, stating it this way makes the
following characterization for this condition more obvious.

Lemma 9.3.3. Let GRSn,k(α, β) be a (n, k) GRS code defined by vectors α, β ∈
Fnpm with the usual restrictions. The orbits of α and β are fixed under 〈φn〉 if and
only if α, β belong in Fnp .

Proof. Let α′, β′ ∈ Fnpm such that 〈φn〉(α) = {α′} and 〈φn〉(β) = {β′}. We will
complete the proof for the locator as the proof for the multiplier is exactly the same

68 FILIP STOJANOVIC

so long as we replace every instance of α with β. The condition 〈φn〉(α) = {α′}
holds if and only if

φj(αi) = α′i ∀i = 1, . . . , n, ∀j = 1, . . . ,m.

In particular, this implies

αi = α′i, φ(αi) = α′i ∀i = 1, . . . , n.

This then lets us conclude φ(α′i) = α′i for all i = 1, . . . , n. But by Lemma 2.1.2,
this can happen if and only if α′ ∈ Fnp . Since we found that α = α′, this complete
the proof of the forwards direction. The converse direction follows immediately
from Lemma 2.1.2, which gives us that the coordinates of α will be fixed under 〈φ〉
if α ∈ Fnp . �

In combining these last three lemmas, we get another sufficient condition for a
GRS code to be Gal(pm, p)-invariant.

Theorem 9.3.4. Let GRSn,k(α, β) be a (n, k) GRS code defined by vectors α, β ∈
Fnpm with the usual restrictions. If any k of the same entries of α and β belong in
Fp, then GRSn,k(α, β) is Gal(pm, p)-invariant.

Proof. Let J ⊆ {1, . . . , n} be the set of the indices for which αj , βj ∈ Fp for all j ∈ J .
Since |J | ≥ k, Proposition 9.1.4 gives us PJ(GRSn,k(α, β)) = GRS|J|,k(α|J , β|J),
which then lets us apply the last two lemmas to conclude that PJ(GRSn,k(α, β))∗ =
PJ(GRSn,k(α, β)). Finally, applying Lemma 9.3.1 gives us the result. �

While our initial motivation for considering puncturing in the approach out-
lined in Section 9.2 does not agree with our assumption that GRSn,k(α, β) is not
Gal(pm, p)-invariant, our consideration of puncturing in the approach led us to this
last surprising result about when GRS codes are Gal(pm, p)-invariant. That is to
say, while puncturing may not be useful in the context of Section 9.2 as we might
have hoped, it gave us a way of saying when a McEliece scheme will be vulnerable
to other attacks like the S-S attack detailed in Section 6.2 through this last theo-
rem. Obviously, this poses no threat to McEliece schemes based on binary codes
(i.e. where p = 2), but this gives some room to worry for schemes based on q-ary
Goppa codes where q ≥ k. Whether this is any cause for alarm, meaning when the
proportion F

T is sufficiently large where F counts the number of locator-multiplier
pairs that possess k of n common entries in Fq and where T counts the total number
of locator-multiplier pairs in Fqm × Fqm , will be considered in further work.

There may still be some value in the use of puncturing in the approach from
Section 9.2. For instance, there are fewer GRS subcodes of a fixed dimension k
of the space Fspm than there are of the space Fnpm for s such that k ≤ s < n
since the number of ways to choose the locator and multiplier as vectors in Fspm
is smaller. It may therefore be easier to identify PI(GRSn,k(α, β))⊥ as a subcode
of PI(Γ(α, g))⊥ ⊗ Fpm than it would be without puncturing. There is also an
advantage to this approach coming from Proposition 8.1.1, which gives us an attack
of polynomial complexity that recovers the private key given partial knowledge of
the key. If we can develop this approach so that it can recover the punctured locator
α|I in a way that beats randomly guessing, then this will allow us to begin chipping
away at the security of the McEliece cryptosystem. Again, we leave this for future
work.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 69

9.4. Squaring as a GRS Distinguisher. We lastly note that code squaring (in-
troduced in Section 7.1) can be used to distinguish between GRS codes and random
linear codes. This gives us a tool that can be used in the approach of Section 9.2
for identifying GRS subcodes of a given Galois closure, which is a starting point
for justifying the feasibility of this approach.

Recall that for a Fpm-linear code C, we define its square as

C(∗2) := spanFpm
{c ∗ d : c, d ∈ C}.

We also recall Proposition 7.1.3, which tells us that the square of a GRS code is
again a GRS code and, more more importantly for us now, what its dimension will
be. If we consider GRSn,k(α, β) where 2k − 1 ≤ n, we have

GRSn,k(α, β)(∗2) = GRSn,2k−1(α, β ∗ β).

Thus, we note that the dimension of a squared GRS code will be nearly twice the
dimension of the original code. It’s not hard to see that if we had 2k− 1 > n, then
the squared code will be the maximal subspace of Fnpm , which is Fnpm itself. In fact,
squaring a Fpm -linear (as long as its dimension isn’t too small) will often result in
the square being the maximal subspace. GRS codes are unique in that the cutoff
on their dimensions needed for this to occur is higher than for an arbitrary linear
code. We will begin to see this by considering generic bounds on the dimension of
a squared code as presented in [C2]

Proposition 9.4.1. Let C be a (n, k) Fpm-linear code. The dimension of its square
is bounded as follows:

dimFpm
(C(∗2)) ≤ min

{
n,

(
k + 1

2

)}
.

Proof. Let {b1, . . . , bk} be a basis for C. We therefore have

C(∗2) = spanFpm
{c ∗ d : c, d ∈ C}

= spanFpm


k∑
i=1

λibi ∗
k∑
j=1

γjbj : λi, γj ∈ Fpm ∀i, j


= spanFpm


k∑
i=1

k∑
j=1

λiγjbi ∗ bj : λi, γj ∈ Fpm ∀i, j


= spanFpm

{bj ∗ bj : i, j = 1, . . . , k}.

However, we know that the component-wise product is symmetric, so we have
{bi ∗ bj : i, j = 1, . . . , k} = {bi ∗ bj : i ≤ j, j = 1, . . . , k}. Hence, the number of
distinct elements in the generating set {bi ∗ bj : i ≤ j, j = 1, . . . , k} is at most(
k+1

2

)
. If each choice of j and i ≤ j yields a distinct element bi ∗ bj and this set is

linearly independent, then
(
k+1

2

)
is the dimension of the square. Else, the dimension

is lower. The upper bound of n on the dimension is trivial since the square is a
subspace of Fnpm . �

It has been shown in [Ca] and [Ra] that almost all linear codes of a given length
and dimension reach these bounds. However, as previously discussed, squaring a

70 FILIP STOJANOVIC

GRS code inflates its dimension by less than this. When it does not map a Fpm -
linear code to Fnpm , squaring nearly doubles the dimension of a GRS code and it
nearly squares the dimension of an arbitrary linear code. In general, the square of
a GRS code is of much lower dimension than we would expect, so this can be used
to distinguish a GRS code from an arbitrary linear code.

A CONSIDERATION OF ATTACKS AND THEORY IN CODE-BASED CRYPTOGRAPHY 71

References

[B] D. J. Bernstein, T. Chou, T. Lange, I. V. Mauri, R. Misoczki, R. Niederhagen, E. Persichetti,
C. Peters, P. Schwabe, N. Sendrier, J. Szefer, W. Wang, “Classic McEliece: conservative

code-based cryptography,” NIST PQC Competition, 2019.

[Bi] B. Biswas, “Implementational aspects of code-based cryptography,” Cryptography and Se-
curity [cs.CR]. Ecole Polytechnique X, 2010. English. pastel-00523007

[BMT] E. Berlekamp, R. .J. McEliece, H. van Tilborg, “On the inherent intractability of certain

coding problems,” IEEE Transactions on Information Theory, 24(3):384–386, 1978.
[Ca] I. Cascudo, R. Cramer, D. Mirandola, G. Zémor, “Squares of random linear codes,” IEEE

Transactions Information Theory, 61(3): 1159–1173, 2015.
[C1] A. Couvreur, 2019, Introduction to Coding Theory, lecture notes, Informatics laboratory of

l’École Polytechnique, delivered 6 December 2019.
[C2] A. Couvreur, A. Otmani, J. Tillich, “Polynomial Time Attack on Wild McEliece Over

Quadratic Extensions,” IEEE Transactions on Information Theory, 63(1): 404-427, 2017.

[D] P. Delsarte, “On subfield subcodes of modified Reed–Solomon codes,” IEEE Transactions
on Information Theory, 21(5): 575-576, 1975.

[GP] M. Giorgetti, A. Previtali, “Galois invariance, trace codes and subfield subcodes”, Finite

Fields and Their Applications, 16(2): 96-99, 2010.
[H] W. C. Huffman, V. Pless, Fundamentals Error-Correcting Codes, Cambridge University

Press, 2003.

[J] E. Jochemsz. “Goppa Codes & the McEliece Cryptosystem,” Ph.D Thesis, Vrije Universiteit
Amsterdam, 2002.

[M] R. J. McEliece, “A public key cryptosystem based on algebraic coding theory”, DSN Progress
Report 44, 1978.

[MS] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland,

1978.
[N] M. Nevins, MAT 3743: Algèbre linéaire appliquée, lecture notes, University of Ottawa,

delivered 14 March 2020.

[P] R. Pellikaan. “Polynomial Codes,” in Codes, Cryptography and Curves with Computer Al-
gebra, pages 200-242. Cambridge University Press, 2018.

[Ra] H. Randriambololona, “Linear independence of rank 1 matrices and the dimension of prod-

ucts of codes,” in Proceedings of IEEE International Symposium on Information Theory
(ISIT): 196–200, 2016.

[R] J. Rotman, Advanced Modern Algebra, Prentice Hall, 2002.

[Ro] R. Roth. Introduction to Coding Theory, Cambridge University Press, 2006.
[S] N. Sendrier, “The Support Splitting Algorithm,” Research Report 3637, INRIA, 1999. Avail-

able: https://hal.inria.fr/inria-00073037.
[St] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin-Heidelberg,

2009.
[SB] C. Senger, R. Bohara, “A Linear Algebraic Approach to Subfield Subcodes of GRS Codes,”

Mar. 2018, [online] Available: http://arxiv.org/abs/1803.04028.

[SS] V. M. Sidelnikov, S. O. Shestakov, “On the insecurity of cryptosystems based on generalized

Reed-Solomon codes,” Discrete Mathematics and its Applications, 2(4): 439-444, 1992.
[TS] R. C. Torres, N. Sendrier, “Analysis of Information Set Decoding for a Sub-linear Error

Weight,” PQCrypto 2016, Feb 2016, Fukuoka, Japan. hal-01244886v2
[W] C. Wieschebrink,“Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Sub-

codes,” in Sendrier, N. (ed.) Post-Quantum Cryptography, PQCrypto 2010. Lecture Notes

in Computer Science, 6061: 61-72. Springer, Berlin-Heidelberg, 2010.

72 FILIP STOJANOVIC

Appendix

Modification to the algorithm presented in Proposition 8.1.1. Suppose
column i of Mᵀ is the zero vector. If the rest of the columns are not the zero
vector, then we can solve for them by the algorithm presented in Proposition 8.1.1.
Since column i of Mᵀ is zero, all vectors in any basis of P are divisible by x− ai.
In particular, this means the basis of row polynomials, {qRj

: j = 1, . . . , kΓ}, must
have that

qRj
(x) =

 ∏
l∈{1,...,kΓ}\{i,j}

(x− al)

 (x− ai)ρj(x) ∀j = 1, . . . , kΓ.

Define ρi,j(x) := (x − ai)ρj(x) for all j ∈ {1, . . . , kΓ}\{i}. By dividing the
non-zero entries l of both Rj and RkΓ

, we get the familiar equations

(Rj)l
(RkΓ)l

=
(al − akΓ

)ρj(al)

(al − aj)ρkΓ(al)
=
P̃j(al)

Q̃j(al)
.

We identify Q̃j by following the same algorithm as presented in Proposition
8.1.1, which also identifies ρkΓ

through the greatest common divisor of the set

{Q̃j : j = 1, . . . , kΓ − 1}. We can then identify ai from the constant term in the

quotient
ρi,kΓ

(x)

ρkΓ
(x) .

If there were more than one zero column, then the linear factors of the quotient
ρi,kΓ

(x)

ρkΓ
(x) identify the values of the missing entries of a, but not their order. Recov-

ering these, assigning them an arbitrary order, and then proceeding with the rest
of the algorithm finds parameters to a code that’s permutation equivalent to the
secret Goppa code, which is equivalent to what the Sidelnikov-Shestakov attack
finds for GRS codes.

