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1. Introduction

Error correcting codes are used to control errors in data over unreliable or noisy communication
channels. We consider some of them, particularly Goppa codes and present their decoding algorithm.
The McEliece public-key cryptosystem, a candidate for post-quantum cryptography uses binary
Goppa codes for their efficient decoding algorithm. This enables the cryptosystem to have some
advantages because the encryption and decryption is faster, and it is also thought to be secure against
a quantum adversary. We will explain that, the cryptosystem nevertheless does not achieve IND-
CCA2 and briefly discuss the suggestions to make the system IND-CCA2 secure in its submission
to NIST.

2. Error-correcting codes

An error-correcting code is a code that can detect that an error has entered a message during its
transmission. It ensures good and reliable communication. It is an encoding technique based on
data redundancy. The redundancy allows the receiver to detect a limited number of errors that
may occur anywhere in the message, and often to correct these errors without retransmission. The
material in this section may be found in [4] and [11].

Example 2.1. If we repeat the message three times, and only one error occurs, we can detect it
and then correct it. Suppose we receive c = 001. The possible code words are 000 and 111. If the
probability of errors occurring during transmission is relatively small, then we may infer that the
message was most likely 000.

2.1. Linear codes [4].

Definition 2.2. A linear code C over the finite field F is a subspace C of Fn. Therefore C is a
subset of Fn := F × F × · · · × F that is closed under addition and multiplication by scalars in F.
An element c ∈ C is called a codeword. If dim (C) = k then 0 ≤ k ≤ n and we say that C is a
(n, k)-code over F.

Remark 2.3. When F = Z/2Z is a binary field, we usually write 0111 to mean a vector (0, 1, 1, 1) ∈
F4
2.

Example 2.4. The (3, 1)-repetition code Γ = {000, 111} is a subspace of F3
2. It is a linear code.
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2.2. Encoding. We saw that in general, for any codeword c = (c1, ..., cn), each ci ∈ F are its
components. The encoding is then done by choosing an isomorphism G such that G : Fk → C. To
encode a message m ∈ Fk we calculate and transmit c = G(m).

The choices for this linear map are the bases of C. Each choice of basis gives a different linear map
G. Then the matrix G of this map is the generator matrix of C. We choose the convention common
in the coding literature to write this as a k×n matrix, so that G(m) = mG where m is a row vector.
The result is the row vector c ∈ Fn. We will use row and column vectors interchangeably; which
one is meant will be clear from context.

Example 2.5. A generator matrix for the (3, 1)-repetition code is

G1 =
[
1 1 1

]
2.3. Decoding. Suppose that Alice sent y = G(m) ∈ C but that during the transmission y was
converted into a vector x ∈ Fn \ C. We are going to choose the y′ ∈ C most probable to be y, that
is to say, which would have produced x with the least number of errors.

Definition 2.6. Let C be a linear (n, k)-code over F. The dual code is the (n, n− k)-code given by
C⊥ := {v ∈ Fn|v · w = 0∀w ∈ C} where “·” is the dot product.

Definition 2.7. Let C be an (n, k)-linear code and let G⊥ be a matrix generating C⊥. We set
H = G⊥ that we call a parity check matrix of C. We have that C = ker(H).

Example 2.8. Let C be the (3, 1)-binary repetition code, with dual C⊥ =< 101, 011 >. So we can
take

G⊥ = H =

[
1 0 1
0 1 1

]
.

Lemma 2.9. Let C be a code with a parity check matrix H. Then w ∈ C if and only if Hw = 0.

Proof. Here w is viewed as a column vector. Since each entry of Hw is the dot product of a row of
H with w, and the rows of H are in C⊥, we see that if w ∈ C then Hw = 0. Conversely, if Hw = 0
then w is orthogonal to each row of H, so w ∈ (C⊥)⊥ = C. �

We can introduce errors by adding an error vector to the code word. If the codeword y has been
transmitted, but the vector x has been received, then we define z = x− y to be the error vector.

2.4. Hamming Distance [4].

Definition 2.10. Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) ∈ Fn. The Hamming distance from
x to y is defined as: d(x, y) := |{i|xi 6= yi}|. For example d(101101, 011100) = 3.

Definition 2.11. The Hamming weight of a vector x ∈ Fn is wt(x) = d(x, 0).

Definition 2.12. The minimum distance d of a linear code C is the minimum of the distances
between distinct codewords. Formally, this can be described as d = min{d(x, y)|x 6= y ∈ C}.

Lemma 2.13. If C is a linear code, then this is the same as the smallest Hamming weight of any
nonzero codeword.

Proof. If C is a linear code, then 0 is in C, and for any x ∈ C, d(x, 0) = wt(x), and so the minimum
weight is less or equal to the minimum distance. Conversely, if the minimum distance is attained
for some x, y ∈ C, then x − y ∈ C since C is linear so wt(x − y) = d(x, y) and thus it is also the
minimum weight. �
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Theorem 2.14. A code can correct r errors if and only if the minimum distance of the code is at
least 2r + 1.

Proof. Suppose the minimum distance is at least 2r + 1. Then if c is a codeword and e is an error
of weight r, then c+ e is a distance of r from c and it must be distance at least r+ 1 from any other
codeword by the triangle inequality; therefore c is the unique closest codeword, so the error can be
corrected.

Conversely, suppose the minimum distance is ≤ 2r. Then take two codewords c1 and c2 that are
this minimum distance apart. Let x = c1 − c2; then we can write x as a sum of two words of weight
less than or equal to r, say x = e + f. Then y := c1 + f = c2 − e is obtained from two different
codewords by an error of weight ≤ 2r, so the code cannot correct r errors. �

3. Syndrome decoding [4]

3.1. Definition syndrome decoding. Syndrome decoding is a method of decoding a linear code
over a noisy channel. It is minimum distance decoding using a table.

Definition 3.1. Let C be a (n, k) linear code with parity check matrix H. The syndrome of x ∈ Fn
is the vector Hx ∈ Fn−k.

Lemma 3.2. If x = c+ e where c ∈ C and e is an error vector, then

Hx = He

Proof. For all codewords c ∈ C,Hc = 0. Thus, Hx = H(c+ e) = Hc+He = He. �

If C can correct r errors, then the syndromes of all error vectors of weight less than or equal to r
will be distinct. So we create a table: the first column is a list of all the error vectors of weight less
than or equal to r; the second column is their syndromes. To decode x, we find the syndrome Hx
in the second column and then x− e = c is our corrected codeword.

Note that a (n, k) linear code over a finite field Fq has qk code words. Each row corresponds to a
syndrome which also corresponds to a specific coset.

3.2. Example. Let C=〈 100011, 010101, 001110 〉 ; a generator matrix is

G =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


and the parity check matrix

H =

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1


We have d(C)=3, so we can correct any error with weight at most 1. This gives the table of
syndromes:

e He
000000 000
100000 011
010000 101
001000 110
000100 100
000010 010
000001 001
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Say we receive the vector v= (111101), then we calculate Hv, after that we look in the table and
try to find e such that e is the most likely error vector and thus c = v − e. Here, the table tells us
that with e=(010000), He = Hv.

Therefore, c = v − e= 111101 - 010000=101101.

3.3. Complexity. If a codeword x ∈ Fnq is sent and an error e occurs, z = x + e is received.

Therefore to perform the decoding, we have to look-up a precomputed table of size qn−k, mapping
Hz to z.

Under the assumption that no more than t errors were made during transmission, the receiver can

look up the value He in a further reduced table of size

t∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k which is the Hamming

bound see [4, Theorem 1.7.8].

4. Goppa codes

All in this section is summarized from [7],[4] and [3].

4.1. Polynomial rings over finite fields [7],[4].

Definition 4.1. Let F be a field. The set F[x] := {
∑n
i=1 aix

i : ai ∈ F, 0 ≤ i ≤ n, and n ≥ 0} with
polynomial addition and multiplication forms a ring. It is called the polynomial ring over F. The
elements of F[x] are called polynomials over F. The degree of a polynomial is the highest power of
variable in it.

Definition 4.2. A polynomial f(x) of positive degree is reducible over F if there exist two poly-
nomials g(x) and h(x) over F such that 1 ≤ deg g(x),deg h(x) ≤ deg f(x) and f(x) = g(x)h(x). If
there does not exist such polynomials in F[x], then f(x) is irreducible over F.

Example 4.3. The polynomial f(x) = x3 + x5 ∈ Z3[x] is of degree 5 and reducible as f(x) =
x3(1+x2). The polynomial g(x) = 1+x+x3 ∈ Z2[x] is of degree 3 and is an irreducible polynomial.

Theorem 4.4. Let f(x) be a polynomial over a field F with degree ≥ 1. Then the ring F[x]/〈f(x)〉
is a field if and only if f(x) is an irreducible polynomial over F.

Example 4.5. The ring Z2[x]/〈1 + x+ x2〉 = {0, 1, x, 1 + x} is a field of order 22 = 4. An element
α in a finite field Fq is called a generator of Fq if F×q = {1, α, α2, · · · , αq−2}. Note that αq−1 = 1.

Consider the field F4 = F2[α], where α is a root of the irreducible polynomial 1 + x + x2 ∈ F2[x].
Then we have α2 = −(1 + α) = 1 + α;α3 = α(α2) = α(1 + α) = α+ α2 = α+ 1 + α = 1. From this,
we see F4 = {0, α, 1 + α, 1} = {0, α, α2, α3 = 1}, so α is a generator of F4.

For each power m of a prime q, there exists a unique finite field of size qm, that we denote Fqm . It
contains Fq as a subfield, so we have Fq ⊆ Fqm for all m.

4.2. Goppa codes. Let g(z) ∈ F[z] and α ∈ F be such that g(αi) 6= 0. Then (z − αi) is invertible
mod g(z) and so 1

z−αi
can be viewed as a polynomial pi(z) modulo g(z). It is defined as the unique

polynomial pi(z) satisfying

pi(z)(z − αi) ≡ 1 mod g(z)

and which has degree less than t. Here we have used that since g has degree t, each element of
Fqm [z]/〈g(z)〉 can be represented by a unique polynomial of degree at most t− 1. Thus

1

z − αi
≡ pi(z) = pi1 + pi2z + · · ·+ pitz

t−1 mod g(z).
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Example 4.6. Let F = F2. Suppose g(z) = z3 + z2 + 1. We have z3 + z2 + 1 = z2( z − 1) + 1 so

1

z − 1
≡ z2 mod g(z)

also z3 + z2 + 1 = z( z2 + z) + 1 so

1

z
= z2 + z mod g(z).

Definition 4.7. Let g(z) be a polynomial of degree t ∈ Fqm [z], and let T = {α1, α2, · · · , αn} ⊆ Fqm
such that, g(αi) 6= 0 for all αi ∈ T . Then the code denoted by Θ(T, g(z)) and defined by

{c = (c1, c2, · · · , cn) ∈ Fnq :

n∑
i=1

ci
z − αi

≡ 0 mod g(z)}

is called Goppa code.

4.3. Parameters [3]. The Goppa code Θ(T, g(z)) of size n is a linear code over Fq with the
properties :

• the dimension of the code k ≥ n−mt.

• the minimal distance satisfies d ≥ t+ 1.

We will use the notation [n, k, d] Goppa code for a Goppa code with parameters n, k and d with n
the length of the codewords c.

4.4. Syndrome decoding of Goppa codes. Goppa codes are interesting because their decoding
algorithm is more efficient than the one we presented in an earlier section. In the section below, we
will show how this algorithm works.

4.4.1. Parameters. Let y ∈ Fnq be a received word, containing r errors, with 2r + 1 ≤ d. Then

( y1, · · · , yn) = ( c1, · · · , cn) + ( e1, · · · , en)

where c = (c1, . . . , cn) ∈ C and ei 6= 0 in exactly r places. We call e = (e1, · · · , en) the error vector.

To correct the word, and find the right codeword c, we have to find the error vector e and discover :

• the set of error locations B = {i | ei 6= 0},

• the corresponding error values ei for i ∈ B.

For that we have to compute the syndrome of our codeword and define two polynomials which would
be essential in the error correction process.

4.4.2. Polynomial description [7]. Define:

• σ(z) =
∏
i∈B

(z − αi) : the error locator polynomial. This polynomial has a degree r.

• w(z) =
∑
i∈B

ei
∏

j∈B,j 6=i

(z − αj) : the error evaluator polynomial which is a degree-r − 1

polynomial.

Remark 4.8.
∏
j∈B,j 6=i(z − αj) is the product of all (z − αj) with j ∈ {1, ..., n} \ {i}. So if we

evaluate this product at z = αk with k 6= i ,we will obtain 0 as the result. Let us name this product
fi(z) =

∏
j∈B,j 6=i(z − αj). Then

fi(αk) =

{
0 if k 6= i∏
j∈B,j 6=i(αi − αj) if k = i.
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Lemma 4.9. If we obtain σ(z) and w(z) then we can deduce the positions of the errors and their
values.

Proof. 1� From this definition, it is clear that the error locations follow directly from the roots of
σ(z) since B = {i | αi is a root of σ(z)}.

2� To find the error made we first have to calculate σ′(z). Notice that

σ′(z) =
∑
i∈B

∏
j∈B,j 6=i

(z − αj) =
∑
i∈B

fi(z).

Therefore it follows that for i ∈ B:

w(αi) =
∑
k∈B ekfk(αi) = ei

∏
j∈B,j 6=i(αk − αj) if k=i (see remark 4.8.)

σ′(αi) =
∑
i∈B fi(z) =

∏
j∈B,j 6=i(αi − αj).

This implies

w(αi)

σ′(αi)
=

∑
k∈B

ekfk(αi)∑
k∈B

fk(αi)
=

ei
∏

j∈B,j 6=i

(αi − αj)∏
j∈B,j 6=i

(αi − αj)
= ei.

�

Example 4.10. Let’s imagine that we already found our polynomials and now we want to find the
error and its position. Suppose e = (0, 0, 2, 0, 1) is the error vector; we should be finding at the end
of this process and B = {3, 5} then:

σ(z) = (z − α3)(z − α5) and

w(z) = 2(z − α5) + (z − α3).

The roots of σ(z) are α3 and α5, so the errors are at position 3 and 5. Now we have to find the
error made at each position.

Here, σ′(z) = (z − α5) + (z − α3). This implies that at position 3, the error made was

w(α3)

σ′(α3)
=

2(α3 − α5) + (α3 − α3)

(α3 − α5) + (α3 − α3)

=
2(α3 − α5)

(α3 − α5)

= 2

We do the same calculation for α5 and the result is w(α5)
σ′(α5)

= 1. And we obtain (0, 0, 2, 0, 1) which is

the error vector that we were supposed to find.
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4.4.3. Syndrome of y = (y1, . . . , yn). Suppose that y is the received word, e the error vector and c
the word sent. Then

sy(z) ≡
n∑
i=1

yi
z − αi

mod g(z)

≡
n∑
i=1

ci + ei
z − αi

mod g(z)

≡
n∑
i=1

ci
z − αi

+
∑
i∈B

ei
z − αi

mod g(z)

≡
∑
i∈B

ei
z − αi

mod g(z); since

n∑
i=1

ci
z − αi

≡ 0 mod g(z)

This polynomial is called the syndrome of y. We know that w ∈ Θ if and only if sy(w) = 0. It is
analogous to the syndrome we studied earlier, see Lemma 2.9.

Lemma 4.11. σ(z)sy(z) ≡ w(z) mod g(z)

Proof. So we already know that the error locator polynomial σ(z) =
∏
i∈B(z − αi), the set of error

locations is B = {i | ei 6= 0} and the evaluator polynomial w(z) =
∑
i∈B ei

∏
j∈B,j 6=i(z − αj).

Therefore, it follows that, modulo g(z),

σ(z)sy(z) =
∏
i∈B

(z − αi)
∑
i∈B

ei
z − αi

=
e1
∏
i∈B(z − αi)
z − α1

+ ...+
er
∏
i∈B(z − αi)
z − αr

;B = {1...r}

= e1
∏

i∈B,i6=1

(z − αi) + ...+ er
∏

i∈B,i6=r

(z − αi)

=
∑
i∈B

ei
∏

j∈B,j 6=i

(z − αj)

= w(z)

�

After computing the syndrome sy(z), and knowing that σ(z)sy(z) ≡ w(z) mod g(z) we can find the
values of σ(z) and w(z). Since we already know what the degree of our two polynomials are, we can
solve the equation σ(z)sy(z) ≡ w(z) mod g(z) by writing :

σ(z) = σ0 + σ1z + σ2z
2 + ...+ zr, w(z) = w0 + w1z + w2z

2 + ...+ wr−1z
r−1

and solve for the 2r unknowns with t equations, since 2r ≤ d− 1 ≤ t.

Example 4.12. The following example is from [3, Example 3]. Let F32 be the field corresponding
to the primitive polynomial x2 − x− 1 over the base field F3, where F9 = {a+ bα}|a, b ∈ {0, 1,−1}
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and let α be one of its roots. We set x = α and we get α2 = 1 + α. Then we have :

0 = 0

1 = 1

α = α

α2 = 1 + α

α3 = 1− α
α4 = −1

α5 = −α
α6 = −1− α
α7 = −1 + α

Consider Θ(T, g(z)) such that g(z) = z(z − α7) = z2 + α3z and T = {αi|0 ≤ i ≤ 6}.

Suppose that the vector y = (0, 0, 0, 0,−1,−1, 0) = (y0, y1, . . . , y6) is received having one error, so
the degree of σ(z) is 1 and the degree of w(z) is 0. Our aim is to find the error vector.

(i) Syndrome. We compute

sy(z) =

6∑
i=0

yi
z − αi

= − 1

z − α4
− 1

z − α5

We know that if ab ≡ 1 mod g(z) then b ≡ 1
a mod g(z), this is our we proceed to find our inverse. So

here, our goal is find the two polynomials b1 and b2 such that: − 1
z−α4 ≡ b1 mod g(z) , − 1

z−α5 ≡ b2
mod g(z). Using long division we find

z2 + α3z = (z − α4)(z − α)− α5.

Multiplying both sides by (−α5)−1 = α7 gives

α7g(z) = (z − α4)(α7z − 1) + 1.

Therefore − 1
z−α4 ≡ α7z − 1 mod g(z). Similarly, we compute

z2 + α3z = (z − α5)(z − α2) + α7

αg(z) = (z − α4)(αz + α3) + 1

so − 1
z−α5 ≡ αz + α3 mod g(z). This implies :

sy(z) = − 1

z − α4
− 1

z − α5

≡ (αz + α3) + (α7z − 1) mod g(z)

≡ z(α+ α7) + α3 − 1 mod g(z)

≡ z(α− 1 + α) + 1− α− 1 mod g(z)

≡ z(2α− 1)− α mod g(z)

≡ α6z − α mod g(z)

(ii) Substituting σ(z) = σ0 + z, we get:

σ(z)sy(z) = (σ0 + z)(α6z − α)

= −σ0α+ (σ0α
6 − α)z + α6z2

≡ −σ0α+ (σ0α
6 − 2α)z mod g(z)

≡ σ0α+ (σ0α
6 + α)z mod g(z)
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Thus for w(z) = w0, we get the system of equations by comparing coefficients of σ(z)sy(z) ≡ w(z)
mod g(z). Here, we compare the coefficients of σ0α + (σ0α

6 + α)z ≡ w0 mod g(z) and the system

is:

{
w0 = −σ0α (1)

0 = σ0α
6 + α (2).

From (2), we derive the value of σ0 = −α3. Then, we substitute this value in equation (1) and we
obtain w0 = −α × −α3 = α4. Therefore, the unique solution to this system is σ0 = −α3, w0 = α4

hence σ(z) = z − α3 and w(z) = α4.

(iii) The root of σ(z) is α3 . The set of error locations is B = {i | σ(αi) = 0} = {3}.

(iv) The error value e3 is

e3 =
w(α3)

σ′(α3)
=
α4

1
= −1

(v) The codeword sent must have been

c = y − e = (0, 0, 0, 0,−1,−1, 0)− (0, 0, 0,−1, 0, 0, 0) = (0, 0, 0, 1,−1,−1, 0).

5. McEleice

NIST in [1] has initiated a process to standardize quantum-resistant public-key cryptographic algo-
rithms. The first code-based public-key cryptosystem was introduced in 1978 by Robert McEliece.
The McEliece cryptosystem is based on binary Goppa codes. Code-based public-key cryptosystems
like McEliece are built on codes for which there is an efficient decoding algorithm but such that an
attacker will be forced to use an inefficient decoding algorithm such as syndrome decoding.

In the next sections taken from [7], we fix the parameters of Goppa code as n : length of the code,
k : the dimension of code over the field Fq and t : the degree of the Goppa polynomial. In the classic
McEliece, we work with binary Goppa codes and the values of n, k and t are public parameters.
But the Goppa polynomial and the set T remain secret, they are private. Then, the public-key Ĝ is
computed as follows:

Firstly Alice has to generate a public and private key pair depending on the public parameters.
(i) Alice selects a binary [n, k]-Goppa code, with its generator matrix of size k×n capable to correct
up to t errors1;

(ii) She then selects a random k×k non-singular binary matrix S (S is called the scrambler matrix)
and a permutation matrix P of size n× n;

(iii) She computes the k × n matrix Ĝ = S ×G× P which is the public key2 and keeps her private
key (S,G, P ).

So whenever Bob wants to send Alice a message, he has to encrypt it as follows:

(i) Bob has a binary message m of length k;

(iii) He generates a random n-bit error vector e with Hamming weight t;

(iv) Bob computes the ciphertext c = m× Ĝ+ e and sends it to Alice.

After recieving the ciphertext from Bob, Alice decrypts it this way:

(i) Alice computes P−1 using her private key;

(ii) She computes c× P−1 = m× S ×G+ e× P−1;

1For binary Goppa codes, w(z) = σ′(z) so the decoding algorithm can correct t errors, not just t/2 errors.
2In another formulation, instead of choosing S and P independently, she chooses the for Ĝ the systematic form of

G, which is a particular example of SGP .
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(iii) Finally, she uses the Patterson’s decoding algorithm of Goppa codes in [7] to determine the
value of m. This algorithm is a more efficient version of syndrome decoding algorithm presented
earlier, but is specific to the binary case.

5.1. Properties or efficiency. The authors of [8] present several strong security arguments, among

them, the fact that knowing only Ĝ, the attacker cannot distinguish this code from a random linear
code, and since decoding random linear codes is inefficient (see section 3.3), decrypting the message
will be computationally infeasible for large enough parameters. Also, they evoked the fact that,
instances of McEliece’s encryption scheme can be reduced to instances of the Syndrome Decoding
problem, which is known to be NP-complete.

6. Attacks on McEliece

For the binary Goppa codes, no efficient structural attacks have been found and the existing attacks
depend on an exhaustive search [8]. Among them, we can enumerate the ISD (Information Set
Decoding Attack) in [7], the Gibson Attack [8] , and the Sidelnikov-Shestakov attack [9].

6.1. IND-CCA2. Ciphertext indistinguishability is a property of many encryption schemes [13].
When a cryptosystem is indistinguishable an adversary will be unable to distinguish pairs of cipher-
texts based on the message they encrypt, that is, no adversary can distinguish the ciphertexts with
probability greater than 1

2 + ε where ε is a negligible function in the security parameter k.

Definition 6.1. [10]

IND-CPA (indistinguishability under chosen plaintext attack)

In this game we suppose that the adversary who is Eve generates two messages of equal length.
Alice, the challenger, decides randomly to encrypt one of them. Eve after recieving the ciphertext
tries to guess which of the messages was encrypted.

IND-CCA1 (indistinguishability under non-adaptive chosen ciphertext attacks)

The target of the game is the same as in IND-CPA and it is basically the same process. Except that
here, Eve has an additional capability: to call an encryption or decryption oracle. In other words
Eve can encrypt or decrypt arbitrary messages before obtaining the challenge ciphertext from Alice.
She will have a temporary access to the algorithms of Bob.

IND-CCA2 (indistinguishability under adaptive chosen ciphertext attacks)

In addition to its capabilities under IND-CCA1, Eve is now given access to the oracles after receiving
the ciphertext from Alice, but cannot send the ciphertext to the decryption oracle. This means that
she is able to encrypt and decrypt any ciphertext in order to help her find out which of the two
messages Alice has chosen.

6.2. McEliece vs Chosen-ciphertexts Attacks [2]. In this section, we show that McEliece’s
system does not resist chosen-ciphertext attacks, it does not achieve “IND-CCA2 security.” For
instance, encryption of the same message twice produces two different ciphertexts which can be
compared to find out the original message despite the fact that it is highly unlikely that errors were
added in the same positions.

To see how the classic McEliece works under IND-CCA2 security, we have implemented a routine
in a Sage code followed by the original implementation of McEliece cryptosystem found in [6]. Our
implementation is based on the assumption that m0 and m1 are the chosen messages (by Eve), their
encryptions are enc0 = m0G+ e0 and enc1 = m1G+ e1. Also, the ciphertext c that Alice sends Eve
is c = mG+ e.

So Eve can just compare the Hamming distance of c and her own encryptions of m0 and m1. We know
that if Eve and Alice choose exactly the same message m, the Hamming distance of the ciphertext
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c and the encryption of m = mG + e′ will be d(c, enc) = d((mG + e), (mG + e′)) = d(e, e′). This
distance is always between 0 and 2× wt(e):

• 0 when the encryptions of c and m are exactly the same, which means that the error vectors
e, e′ are the same,

• 2 × wt(e) when the encryptions of c and m are completely different, which means that the
error vectors e, e′ are different,

• the distance is in between otherwise.

For example, if enc0 is chosen by Alice, mG = m0G: when we compute d(c, enc0) = d((mG +
e), (m0G+e0)) = d(e, e0). This implies that when Alice and Eve choose the same message, d(e, e0) ≤
2wt(e) (e of weight t, the maximum number of errors that the code can correct.

Here is our routine:

def main():

# We generate a field 3 times to see if Eve still has a chance to win when the field is big

for k in range(3):

m = k+6;

n = 2**m;

t = floor((2+(2**m-1)/m)/2);

F_2m = GF(n,’Z’);

PR_F_2m = PolynomialRing(F_2m,’X’);

#The algorithm prposed only used irreducible goppa codes because of their utility, see[5]

while 1:

irr_poly = PR_F_2m.random_element(t);

if irr_poly.is_irreducible():

break;

crypto = McElieceCryptosystem(n,m,irr_poly);

#Eve get two random messages and sends them to Alice encrypt it.

m0=GetRandomMessage(crypto.goppa_code().generator_matrix().nrows());

m1=GetRandomMessage(crypto.goppa_code().generator_matrix().nrows());

print("m0",m0,"--")

print("m1",m1,"\n")

#Alice chooses randomly one of them to encrypt and sends it back to Eve

r=randint(0,1)

if(r==0):

cypher=crypto.Encrypt(m0);

else:

cypher=crypto.Encrypt(m1);

print("number of errors:",crypto.max_num_errors())

#Eve now tries to guess which one of the original messages has been chosen

#We have a for loop in which we generate some encryptions of our two messages and

#we compare the Hamming distance of the ciphertext received from Alice and the two

#we actually have

#There is also an iteration to see how many times the Hamming distance is less or equal



12 NOLIVE GNAN

#than 2*wt(e), it should bigger for the right message since m*G is the same for the

#ciphertext and the right message

for i in range(20):

enc=crypto.Encrypt(m0)

enc1=crypto.Encrypt(m1)

t0=0

t1=0

#print(dist(enc, cypher),"m0")

#print(dist(enc1, cypher),"m1")

if dist(enc, cypher)<=2*crypto.max_num_errors():

t0+=1

if dist(enc1, cypher)<=2*crypto.max_num_errors():

t1+=1

#We compare the results to help us choose

if t0>t1:

print("Eve finds m0",m0,"--","Alice has chosen",crypto.Decrypt(cypher),"\n")

if t1>t0:

print("Eve finds m1",m1,"--","Alice has chosen",crypto.Decrypt(cypher),"\n")

#function to calculate the Hamming distance of two vectors

def dist(enc1,enc2):

i=0

ham=0

while(i<len(enc1[0])):

if (enc1[0][i]!=enc2[0][i]):

ham+=1

i+=1

return ham

#function to calculate the Hamming weight of a vector

def d(enc):

i=0

ham=0

while(i<len(enc[0])):

if (enc[0][i]!=0):

ham+=1

i+=1

return ham

After running our code, it appeared that every time Eve wins even when the fiels gets bigger.

6.3. Suggestions to make The McEliece cryptosystem CCA2-secure. It is a difficult prob-
lem to provide IND-CCA2 security but there are many articles that evoke suggestions to make it
secure. In some of them, they claimed that, it is possible to obtain CCA2-Security for the McEliece
cryptosystem in the random Oracle model [1], [5]. Concerning, the submission to NIST [1], the goal
was to create a KEM 3 with IND-CCA2 security in other words to send a random session key to use
as the cipher key for a subsequent symmetric cryptosystem.

3(Key Encapsulation mechanism is a protocol to transmit securely a session key to a party over an unsecured

channel.)
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7. Conclusion

Despite its vulnerability under some attacks, the McEliece Cryptosystem remains a good candidate
to NIST’s Post-Quantum Cryptography Standardization Project. This is because of all its benefits
and advantages cited earlier. It is considered to be more efficient than some existing cryptographic
systems due to its fast encryption and decryption scheme. It would interesting for us to do a follow
up of this submission to see if the system is as strong as it is said to be.
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